










 

( 0.1 = , 0.2 =  and 0.3 =  ) at two critical points 0.7z =

And 2.1z = . As seen in Figure 5a, the axial velocity 

decreases with an increase in stenotic value at 0.7z = . Figure 

5b shows an opposite behavior in the case of aneurysm. 

According to Figure 5b, the axial velocity increases with an 

increase in aneurysm value. These results agree closely with 

the observations of Lorenzini and Casalena [26] which they 

concluded that the blood flow peak velocities depend on the 

height of stenosis. 

 

 
 

Figure 4. The axial velocity of radial variation 

 

 
(a) 

 
(b) 

 

Figure 5. The dimensionless axial velocity profile for 

different values of stenotic and aneurysm 

 

Figure 6 provides the axial velocity pattern of the artery 

against different tapered angles of aneurysm and stenotic. 

Figure 6 pointed on this fact that the axial velocity inside the 

artery has an increasing pattern against the increasing angle. 

Also, the result of non-tapered artery is located between the 

convergent and divergent tapered arteries curves. These 

results agree closely with the observations of Lorenzini and 

Casalena [26] which they concluded that the blood flow 

velocity and recirculation are strongly affected by the 

stenotic slope. Figure 7 shows the effect of Prandtl number 

on the temperature distributions inside the artery. This figure 

shows that the heat transfer rate will decrease with increase 

in the Prandtl number. In other words, the rate of heat 

transferred from the artery to the blood decreases with 

increase in the Prandtl number. 

 

 
 

Figure 6. The dimensionless axial velocity profile for 

different tapered angles 

 

 
 

Figure 7. The dimensionless temperature profile for 

different prandtl numbers 

 

Figure 8 denotes the variation of Br against the 

dimensionless temperature profile. It can be seen that the 

temperature of crossing blood increases with increases in the 

Br value. Also, it can be seen that when Br increases the heat 

transfer decreases as the result of temperature increasing. 

 

 
 

Figure 8. The dimensionless temperature profile for 

different prandtl numbers 

 

Figure 9 the effect of body acceleration (
2D ) on the non-

Newtonian flow rate (blood) is described in Figure 9. Figure 

9a declares that the blood flow is strongly up to the 

acceleration of the body. When
2D is increased slowly, the 

maximum velocity develops sooner. Since the axial velocity 



 

of the blood flow and the volumetric rate are in a close 

relationship, the flow rate will increase with improvement in 

the body acceleration parameter. Figure 9b shows that the 

profiles of the flow rate which changes against the time. As a 

result, comparison between three different values of 

stenosis/aneurysms leads to this point; increase in the 

aneurysm value can result a significant enhance in the 

volumetric flow rate. (The graph shows the pulse behavior 

blood flow in different heartfelt periods). 
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Figure 9. The flow rate profile for different acceleration 

values 
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Figure 10. The Flow rate profile for different values of 

aneurysm 

Figure 10a shows the effect of body acceleration parameter 

on the blood flow inside the considered artery. As said before, 

the acceleration of body and the blood flow rate are directly 

related to each other, so, when the velocity increases, the 

flow rate increases too. Figure 10b describes the effect of 

aneurysms/ stenotic size on the blood flow against the 

position and place. When the aneurysms size increases the 

flow rate improves and consequently the blood velocity 

increases. 

Figure 11 illustrates the effect of Weissenberg number (as 

a dimensionless number at different times) on dimensionless 

blood flow rate. In can be visible that the blood flow rate will 

reduce with the increasing Weissenberg number. As another 

result, the patterns or treatments of volumetric flow rates for 

the Weissenberg numbers are related to the geometry of the 

stenosis and aneurysms. 

Figure 12 the effect of Reynolds number on the blood flow 

resistance is indicated in Figure 11. This figure illustrates that 

when the Reynolds number increases the resistance against 

the blood flow increases. In other words, the pressure drop 

enhances with the increasing velocity. 

 

 
 

Figure 11. The flow rate profile for different Weissenberg 

number 

 

 
 

Figure 12. The resistance to flow profile for different 

Reynolds number 

 

Figure 13 tries to declare the impact of dimensionless 

Weissenberg number we at different times on dimensionless 

impedance. As shown in Figure 12, the enhancing 

Weissenberg number can create an important increase in 

impedance. Also, in can be understood that the volumetric 

flow rate plays an opposite role against the blood flow 

resistance. 

Figure 14 indicates the flow resistance different time series 

for different Power law indexes. According to these results, 

increase in the Power law index leads to decrease in the 

blood flow resistance, or in other words, blood flow 

resistance decreases with the increasing n parameter. 



 

 
 

Figure 13. The resistance impedance profile for different 

Weissenberg number 

 

 
 

Figure 14. The resistance impedance profile for different 

power low index 

 

Figure 15 the impact of Reynolds number on the wall 

shear stress is presented in Figure 15. This figure states that 

the wall shear stress can be increased when the related 

Reynolds number increases. 

 

 
 

Figure 15. The wall shear stress profile for different 

Reynolds number 

 

 
 

Figure 16. The wall shear stress profile for different values 

Figure 16 based on the results of Figure 16 (at 2.1Z = ), 

when the size of stenosis grows the wall shear stress 

increases. Furthermore, when the size of aneurysms increases 

the wall shear stress decreases. 

Figure 17 points on the wall shear stress values for tapered 

and non-tapered arteries in geometry. As seen in this figure, 

the wall shear stress allays when the angle tapered increases. 

Also, it can be observed that the trend for non-tapered artery 

is located between the curves belong to the convergent and 

divergent arteries. 

 

 
 

Figure 17. The wall shear stress profile for different tepered 

angles 
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Figure 18. Contour of velocity of blood flow 

 

Figure 18 the patterns and behaviors of the blood flow for 

different values of 𝑊𝑒, 𝜏, 𝜉, 𝐷2  and Re are shown in Figure 

18. Figure 18a shows a contour for some fixed parameters. 

By comparing plans a and b we found that when the 

Weissenberg number increases, the power of blood decreases. 

Besides, when the size of stenosis increases the blood flow 

velocity reduces and in the case of aneurysms, the velocity 

increases with increase in the height of aneurysms 

(comparing plans (a) and (c)). Furthermore, this comparison 

shows that in the non-tapered artery (left side) a small vortex 

is formed. In the systole phase the behavior is a little 

different from the diastolic phase. The effect of acceleration 

parameter on the blood flow is visible in the comparison 

view between plans (a) and (e). As said before, the flow 

velocity will increase with an improving acceleration. The 

effect of Reynolds number can be seen in plan (f). Also, 

when the Reynolds number is increased the flow rate on the 

arterial axis allays (the blood flow is reduced near the artery 

walls). 

The two dimensional temperature distributions for some 

specific parameters are shown in Figure 19. The plan (a) has 

been compared to other plans in as a function of  , Br, We 

and sigma. As seen in comparison of plans (a) and (b), the 

temperature reduces when we have an increase the amount of 

stenosis and aneurysm. As another result, the increase in 

Brinkman and Weissenberg numbers leads to some positive 

and negative effects on the temperature values, reflectively 

(plans (a), (c) and (d)). The comparison between plans (a), (e) 

and (f) describes the effects of taper angle (divergent and 

convergent arteries) on the temperature profiles. 
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Figure 19. The contour of temperature of blood flow 

 

 

7. CONCLUSION 

 

In this investigation the blood flow patters and the effects 

of heat transfer between the wall of arteries and the flow on 

the blood characteristics have been studied. The mentioned 

parameters on a cross section area of the arteries in the axial 

direction have been analyzed in different situations. The 

velocity and temperature distributions are investigated as two 

main affective parameters on the blood flow. The Blood flow 

is assumed to have some conditions near the real state such as 

pulsed, nonlinear, layered and unstable and flowing through 

an elastic wall. The comparison between the present 

simulation and previous works shows a good agreement 

which proves the accuracy of the results. We also provided 

some comparisons between our results and those of Lorenzini 

and Casalena [26] who analyzed the blood flow in a coronary 

artery, affected by different stenotic shapes, via a CFD code. 



 

The results prove that when the Prandtl and Brinkman 

numbers increase, the heat transfer between the blood and the 

artery walls and the temperature values on the profiles 

{improve}. By comparing the elastic and the rigid walls, it 

can be seen that the axial velocity of elastic wall is less than 

the axial velocity regarding the rigid wall. Furthermore, when 

the aneurysm size is increased the axial velocity and the flow 

rate will be increased. 
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NOMENCLATURE 

 

Br Brinkman number 

pc  Specific heat 

fp Pulse frequency 

kr Oscillation parameter 

L Finite length of the arterial segment 

0l  Length of the stenosis 

n Power law index 

p pressure 

Pr Prandtl number 

Q Rate of flow 

R(z) Radius of the nonstenotic 

Re Reynolds number 

S Extra stress tensor 

t time 

T Temperature 

u Radial velocity 

0U  Average velocity 

v Axial velocity 

We Weissenberg number 

 

Greek symbols 

 

 

t Time direction 

z Axial direction 

 Radial direction 

s  Wall shear sterss 

  Critical heigh 

µ Viscosity 

  Resistive impedance 
  Phase angle 

 

Subscripts 

 

 

i  

j  

k  

 

 

 


