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An experimental study is carried out in order to determine the thermal performances of a 

water-cooled heat pipe cooling system. An experiment rig is designed, fabricated and fully 

instrumented to test the cooling system prototype. The results show that the maximum heat 

transport capacity of the heat pipe increase with the water-cooling temperature; however, its 

overall thermal resistance decreases. Correlations for heat transfer in the evaporator and 

condenser sections are proposed. A model is also developed in order to determine the 

capillary limit as well as the heat transfer in the heat pipe. The model can predict the 

experimental results within -1.7 % and +7.9 % when estimating the capillary limit and 

underestimates the heat pipe overall thermal resistance within -17.8 % and -9.7 %; however, 

it overestimates the evaporator temperature within 4.4 % and 9.5 %. 
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1. INTRODUCTION

Power conversion modules include semiconductor 

components that insure the control of the energy transfer. 

Components such as IGBT enable to increase the frequency of 

the converter operation. Because of the high commutative 

power levels and high operating frequencies, and since the 

power modules tend to become more and more compact, the 

power densities dissipated from such components are very 

high, which causes a reduction in their lifetime and could lead 

to their damage. Hence, it is necessary to use effective cooling 

systems capable to evacuate the heat generated and maintain 

the junction temperature of the electronic component at values 

allowing safe operation.  

An efficient classic cooling system is composed by cold 

plates that insure the cooling underneath the IGBT by fluid 

circulation. This solution presents drawbacks since the 

electrical operation can fail due to fluid leakage. A solution to 

this problem is to remove the heat by a heat pipe system placed 

underneath the IGBT. The heat is rejected by a cold plate, 

which is cooled by liquid circulation (Figure 1). This solution 

could be as efficient as the classic one if the heat pipe thermal 

resistance is very low. 

The thermal performances of the heat pipes depend on 

several parameters among them we can distinguish: (i) the 

geometrical characteristics, (ii) the operating conditions such 

as the heat input power, the heat sink temperature, and the 

external field forces (gravity, accelerations, vibrations, 

magneto-hydrodynamic, and electrohydrodynamic), (iii) the 

characteristics of the capillary structures (grooves, sintered 

powder, screen meshes, metal wires or a mixture of them), and 

(iv) the working fluid.

The grooved cylindrical heat pipes are commonly used in

standard electronics cooling applications because their thermal 

resistances are lower than those including other capillary 

structures; however, their thermal performances can be altered 

when considering special operating conditions, especially 

including gravity and acceleration.  

Previous studies on grooved cylindrical heat pipes have 

reported thermal performances in either steady state or 

transient regime [1-13]. Tests on transient state regime have 

been paid a special attention since it is important to identify 

the thermal behavior of the heat pipes in these conditions as 

the electronic components are working in the most of time in 

transient conditions [9, 10].  

Figure 1. Heat pipe-based cooling system 

Although the experimental studies dealing with steady-state 

conditions are numerous; however, they do not propose 

generalized laws in order to identify the heat transfer in the 

evaporation and condensation zones. As a generalized 

correlation is important for the calculation of the evaporator 

and the condenser thermal resistances that are useful in 

theoretical models for the prediction of the heat pipe thermal 

behavior in steady state or transient regimes, this study 

addresses this issue. Hence, in the first part on this work, an 

experimental study is carried out to determine the thermal 

performances of a based-heat pipe cooling system. Since the 

heat pipe plays an important role in such systems, tests are 

carried out on a water-filled copper cylindrical heat pipe 

including helicoidally and trapezoidal capillary grooves. A test 

rig is developed in order to determine the thermal performance 
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of the heat pipe, which is positioned horizontally, for different 

heat sink temperatures. In the second part of this study, a 

theoretical model is developed to determine the capillary limit 

and the heat transfer within the heat pipe for various operating 

conditions. Finally, a comparison between the simulated 

results and those obtained experimentally is realized. 

 

 

2. EXPERIMENTAL STUDY 
 

2.1 Description of the heat pipe 
 

A water-filled cylindrical copper heat pipe is used (Figure 

2). The capillary structure is composed of 75 helicoidally and 

trapezoidal grooves (Figure 3). The main geometrical 

characteristics of the heat pipe are listed in Table 1.  

 

 
Figure 2. Cross-section of the heat pipe showing the grooves 

 

 
 

Figure 3. Geometrical characteristics of the grooves 

 

Table 1. Geometrical characteristics of the heat pipe 

 
Parameters Values 

Heat Pipe 

Heat pipe length, Lt 190 mm 

Evaporator length, Lev 60 mm 

Condenser length, Lc 60 mm 

Outer diameter, Do 15.87 mm 

Wall thickness, tw 0.58 mm 

Grooves 

Number of grooves, Ng 75 

Groove depth, Dg 0.3 mm 

Groove width at the bottom of the groove, Wgb 0.266 mm 

Groove width at the top of the groove, Wgt 0.599 mm 

Angle between the groove and the heat pipe 

axis,  (Figure 2) 

20 ° 

Angle  (Figure 2) 29 ° 

 

2.2 Test rig and experimental procedures 

 

An experimental set-up was built up in order to determine 

the thermal performance of the cooling system for different 

positions at various heat input powers, Q, and heat sink 

temperatures, Ths. It is composed by two aluminum blocks. 

The first block is equipped with four electrical and cylindrical 

heaters dissipating 250 W each. This heating block (60 × 60 × 

60 mm3) plays the role of the heat source (Figure 4a). The 

second block (cold plate), which has the same dimensions as 

the heating block, is cooled by water circulation that is insured 

by means of a pump (Figure 4b). The temperature of the water 

at the inlet of the cooling block is controlled by a refrigerated 

circulation bath. The heating and cooling blocks are mounted 

on a rotating support in order to study the thermal 

performances of the system as a function of the orientation 

(Figure 5). A thermal paste is used to improve the thermal 

contact between the heat pipe and the aluminum blocks. A HP 

34970 data acquisition unit is used in order to monitor and 

record all the temperatures (Figure 6). Ten T-type 

thermocouples are placed along the heat pipe in order to 

measure the temperature distribution and its evolution in time 

(Figure 7). 

 

 
(a) Heating block (evaporator) 

 
(b) Cooling block (condenser) 

 

Figure 4. Sketches of the heating and cooling blocks 

 

 
 

Figure 5. View of the experimental set-up (without thermal 

insulation) 

 

 
 

Figure 6. Test rig arrangement 
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Figure 7. Thermocouple location along the heat pipe 

 

The experimental procedures consist of positioning the 

cooling system in the proper orientation. Then, the heat sink 

temperature is fixed by adjusting the water temperature at the 

cooling block inlet. Then, the power is adjusted to the desired 

value and the system can reach the steady-state regime. The 

temperature readings from all thermocouples are recorded. 

After the steady-state regime is reached, the power to the 

evaporator is turned off. This cycle of experiments is repeated 

with higher input heat powers until the maximum heat power 

(capillary limit) is reached. This is characterized by a sudden 

and steady rise of the evaporator temperature. 

 

2.3 Data reduction and uncertainty analysis 

 

The overall thermal resistance of the heat pipe is determined 

by the following equation 
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Rthev, Rthad, and Rthc are the thermal resistances of the 

evaporator, adiabatic and condenser zones, respectively, and 

Q is the heat input power. 𝑇̄𝑒𝑣  and 𝑇̄𝑐 are the average wall 

temperature of the evaporator and the condenser, respectively. 

𝛥𝑇̄ℎ𝑝 is the temperature difference 𝑇̄𝑒𝑣 − 𝑇̄𝑐. 

The evaporator and condenser thermal resistances are 

calculated according to 
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Rthwev and Rthwc are the thermal resistances due to thermal 

conduction through the evaporator and the condenser walls, 

respectively. tw and w are the thickness and the thermal 

conductivity of the wall, respectively. Aev and Ac are the inner 

evaporator and condenser areas, respectively. In Eqns. (2) and 

(3), the conductive thermal resistances of the heat pipe wall 

are calculated by assuming that the wall thickness is negligible 

when compared to the heat pipe diameter. Hence, under this 

assumption, the expression of the thermal resistance for a 

cylindrical wall is similar to that for a flat one. 

From Eqns. (2) and (3), the heat transfer coefficients for the 

evaporation and condensation phenomena are calculated 

according to the following expressions 
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qev and qc are the heat fluxes calculated on the basis the 

evaporator and condenser heat transfer areas, Aev and Ac. evT

and 𝛥𝑇̄𝑐  are the temperature differences 𝑇̄𝑒𝑣 − 𝑇̄𝑎𝑑 and 𝑇̄𝑎𝑑 −
𝑇̄𝑐, respectively.  

The uncertainty for the thermal resistance, URth, is given by 

the root sum square of the uncertainties of the bias contribution 

to the uncertainty of Rth, BRth, and the precision contribution to 

the uncertainty of Rth, PRth, according to [14] 
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The precision and bias limits contributions can be 

determined separately in terms of the sensitivity coefficients 

of the thermal resistance, Rth, according to the following 

expressions [14] 
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where B'Tc and B'Tev are the portions of BTc and BTev, that arise 

from identical error source and they are therefore presumed to 

be perfectly correlated. 

By considering the expression of Rth, the precision and bias 

limits contributions can be expressed as 
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If we suppose that the bias errors in the different 

temperatures are totally correlated, the last term on the right 

side of Eq. (10) would cancel the first and the second terms, 
and the bias limit in thermal resistance measurements, Rth, is 

simplified as follows [14] 
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We suppose that the precision errors for the temperatures 

are also totally correlated. Hence, Eq. (9) becomes 
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From Eq. (6), the precision for the thermal resistance can be 

calculated according to 
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The values PQ/Q and BQ/Q are equal to 1 % and the values 

of the precision limit of the temperature are equal to 0.5 °C, in 

our uncertainty estimation. 

The same reasoning can be followed for the determination 

of the relative uncertainty for calculating the thermal 

resistances of evaporation and condensation, Rthev and Rthc, and 

the following expressions are obtained 
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The relative uncertainties for calculating the heat transfer 

coefficients, hev and hc, are expressed as 

 
2

ev

A
2

Q
2

Q
2

ev

T

ev

h

A

P

Q

B

Q

P

T

P
2

h

U
evev














+














+














+













=



 (16) 

 
2

c

A
2

Q
2

Q
2

c

T

c

h

A

P

Q

B

Q

P

T

P
2

h

U
cc














+














+














+













=



 (17) 

 

PAev/Aev and PAc/Ac are the precisions of the determination 

of the evaporator and condenser areas, Aev and Ac.  

 

Table 2. Relative uncertainties for the calculation of Rth 

 
URth/Rth 

Q Ths= 10 °C Ths= 25 °C Ths= 35°C Ths= 45 °C 

30 5.8 % 10.0 % 13.5 % 20.0 % 

60 4.7 % 6.7 % 7.9 % 9.5 % 

80 4.1 % 5.6 % 6.4 % 7.4 % 

100 3.4 % 8.7 % 5.1 % 6.0 % 

120 2.5 % 7.7 % 4.3 % 5.0 % 

150 1.9 % 5.3 % 3.4 % 3.8 % 

180 1.6 % 3.6 % 2.7 % 3.0 % 

200 1.5 % 3.1 % 2.5 % 2.5 % 

 

Table 2 shows the values of the relative uncertainties for the 

calculation of the heat pipe thermal resistance as a function of 

the heat input power, for different heat sink temperatures, 

when the heat pipe is oriented horizontally. For a given heat 

sink temperature, the uncertainty for the thermal resistance 

decreases rapidly as the heat input power increases. For a 

given heat input power, the uncertainty for the thermal 

resistance increases with the heat sink temperature. Tables 3 

and 4 list the relative uncertainties for the calculations of Rthev 

and Rthc. As for Rth, for a given heat sink temperature, the 

relative uncertainty decreases as the heat input increases; 

however, it increases with the heat sink temperature. These 

results can be explained by the fact that the temperature 

differences 𝛥𝑇̄𝑒𝑣 and 𝛥𝑇̄𝑐 are small at low heat input powers 

and high heat sink temperatures. This contributes to the 

decrease of the precision of the thermal resistance 

measurements. Hence, in this case, the relative uncertainties 

are high. 

 

Table 3. Relative uncertainties for the calculation of Rthev 

 
URthev/Rthev 

Q Ths= 10 °C Ths= 25 °C Ths= 35°C Ths= 45 °C 

30 19.8 % 24.3 % 35.6 % 38.6 % 

60 18.1 % 19.2 % 21.6 % 27.5 % 

80 12.0 % 15.6 % 16.7 % 19.6 % 

100 7.4 % 11.3 % 11.3 % 14.7 % 

120 3.8 % 8.9 % 8.7 % 11.4 % 

150 2.1 % 5.4 % 7.3 % 7.4 % 

180 1.7 % 2.8 % 4.0 % 4.7 % 

200 1.6 % 2.3 % 3.8 % 3.8 % 

 

Table 4. Relative uncertainties for the calculation of Rthc 

 
URthc/Rthc 

Q Ths= 10 °C Ths= 25 °C Ths= 35°C Ths= 45 °C 

30 6.8 % 11.2 % 17.8 % 24.5 % 

60 6.1 % 8.6 % 12.2 % 14.2 % 

80 5.8 % 7.7 % 10.1 % 11.7 % 

100 5.5 % 7.1 % 8.8 % 9.8 % 

120 5.1 % 6.8 % 7.9 % 8.4 % 

150 5.5 % 5.3 % 5.8 % 7.1 % 

180 5.2 % 5.3 % 6.0 % 6.3 % 

200 5.0 % 5.5 % 5.1 % 5.4 % 

 

 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

 

The axial temperature distribution along the heat pipe, for 

different input powers are illustrated in Figure 8. The heat pipe 

is horizontally oriented and the heat sink temperature, Ths, is 

set to 10 °C, 25 °C, 35 °C, and 45 °C, respectively. For a given 

power, we distinguish three types of the axial wall temperature 

evolution. Along the zone of evaporation, the wall temperature 

is the highest and remains nearly constant. From the 

evaporator to the adiabatic zone, the axial temperature 

decreases and remains practically constant along the adiabatic 

zone. From the adiabatic zone to the condenser, the axial 

temperature also decreases and stabilizes in a constant value 

along the condensation zone. The temperature gradient along 

the heat pipe illustrates the ability of the heat pipe to transfer 

heat in different areas. The axial distribution of the 

temperature depends on the heat input power and on the heat 

sink temperature, Ths. Note that for input powers exceeding 

100 W, the evaporator temperature is no longer constant. 

Similarly, there is a very significant increase in the evaporator 

temperature indicating that the capillary limit is exceeded, and 

the evaporator starts to dry out. The profile of the evaporator 

temperature becomes parabolic indicating that the heat transfer 

is carried out by thermal conduction. 

In order to highlight the effectiveness of the heat pipe for 

this cooling solution, we have carried out experiments on the 

same cooling system including a cylindrical copper rod instead 

of a heat pipe. The axial wall temperature distributions along 

the copper rod are depicted in Figure 9 for a heat sink 

temperature Ths = 25 °C. As it can be noticed, the evaporator 

temperatures are higher than those obtained with a heat pipe. 

Indeed, for a heat input power, Q = 30 W, the evaporator 

temperature is nearly 150 °C which is obtained for the copper 
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rod-based cooling system; against nearly 34 °C which is 

obtained with the heat pipe-based cooling system. 

 

 

 
 

Figure 8. Axial wall temperature variations for different heat 

sink temperatures: (a) 10 °C, (b) 25 °C, (c) 35 °C, (d) 45 °C 

 

The variations of the evaporator, adiabatic and condenser 

temperatures are depicted in Figure 10. It is observed that 

evaporator temperature increases sharply for heat input powers 

higher than 100 W and 120 W when operating at heat sink 

temperatures equal to 10 °C and 25 °C, respectively (Figure 

10a). This indicates that dry-out occurs at the evaporator 

section. For heat sink temperatures equal to 35 °C and 45 °C, 

the evaporator temperature increases monotonously without a 

sharp increase. The adiabatic and condenser temperatures 

increase monotonously with both the heat input power and the 

heat sink temperature. It can be noticed that the condenser 

temperature is higher than the heat sink temperature because 

of the thermal resistance between the condenser wall and the 

cooling water. 

 

 
 

Figure 9. Axial wall temperature variations for a copper rod-

based cooling system (Ths = 25 °C) 

 

 

 
 

Figure 10. Variations of the (a) evaporator, (b) adiabatic, and 

(c) condenser temperatures as a function of the heat input 

power for different heat sink temperatures 

 

The variations of the overall thermal resistance of the heat 

pipe with the heat input power for different heat sink 

temperatures are plotted in Figure 11. For a given heat sink 

temperature, the heat pipe thermal resistance decreases rapidly 

to a minimum value as the heat input power increases. This 

minimum value corresponds to the capillary limit. It 

corresponds to the maximum heat input power that the heat 
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pipe can transport before dry-out in the evaporator starts. The 

capillary limit depends on the heat sink temperature. Indeed, 

for Ths = 10 °C, the maximum heat flux rate that the heat pipe 

can transport is approximately 80 W. However, the capillary 

limit is equal nearly to 100 W, 110 W, and 120 W for Ths = 

25 °C, Ths = 35 °C, and Ths = 45 °C, respectively. This shows 

that the heat transfer is enhanced when the heat sink 

temperature increases. This is also demonstrated by the 

decrease of the heat pipe thermal resistance. For heat input 

powers exceeding the capillary limit, the thermal resistance 

starts to increase showing heat transfer degradation. This is 

due mainly to the beginning of the dry-out in the evaporator 

and flooding in the condenser. 

 

 

 
 

Figure 11. Overall thermal resistance variations vs. heat 

input, for different heat sink temperatures: (a) 10 °C, (b) 

25 °C, (c) 35 °C, and (d) 45 °C 

 

Figure 12 illustrates the variations of the evaporator and 

condenser thermal resistances as a function of the heat input 

power, for different heat sink temperatures. They are 

calculated by Eqns. (2) and (3). For a given heat sink 

temperature, the evaporator thermal resistance increases with 

the heat input (Figure 12a). The degradation of the evaporation 

process is caused by the fact that the evaporator becomes 

starved of liquid since the capillary pumping pressure becomes 

insufficient to overcome the liquid and vapor pressure losses 

when the heat input increases. For given heat input, the 

evaporator thermal resistance decreases as the heat sink 

temperature increases. This is because augmenting the heat 

sink temperature causes an increase of the saturation 

temperature and pressure. Hence, the evaporation process is 

enhanced. The condenser thermal resistance decreases with 

the heat input power (Figure 12b). Indeed, increasing the heat 

input power causes an augmentation of the liquid mass flow 

rate along the condenser, and the condensation process is 

enhanced. These results clearly indicate that the heat pipe is 

correctly filled, and the flooding zone can be considered as 

negligible. For a given heat input power, the condenser 

thermal resistance decreases when the heat sink temperature 

increases. Hence, the condensation process is enhanced. 

 

 
 

Figure 12. Variations of the evaporator and condenser 

thermal resistances as a function of the heat input power, for 

different heat sink temperatures: (a) evaporator thermal 

resistance, (b) condenser thermal resistance 

 

In order to highlight the effectiveness of the heat pipe heat 

transfer capacity, we have proceeded in calculating the ratio of 

its effective thermal conductivity by that of a copper rod ( = 

380 W/m.K). Figure 13 shows the variations of this ratio as a 

function of the heat input power for different heat sink 

temperatures. The curves present maxima corresponding to the 

capillary limit. Maximum effective thermal conductivity up to 

21 times that of the copper are obtained for a heat sink 

temperature equal to 45 °C. For a heat sink temperature equal 

to 10 °C, the effective thermal conductivities are lower than 

those obtained for Ths = 45 °C, and the maximum effective 

thermal conductivity is nearly 11 times that of the copper. 
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Figure 13. Variations of the ratio of the heat pipe effective 

thermal conductivity to that of a copper rod as a function of 

the heat input power for different heat sink temperatures 

 

 

4. HEAT TRANSFER CORRELATIONS 

 

In order to quantify the heat transfer mechanisms in the 

evaporator and condenser zones, we have processed the 

experimental data in dimensionless numbers in order to obtain 

heat transfer laws. The dimensionless analysis is carried out 

based on Vaschy-Buckingham theorem (or  theorem) [15]. 

The heat transfer coefficients in the evaporator and condenser 

zones are calculated according to Eqs(4) and (5). The 

following dimensionless numbers are evidenced from the  

analysis: 

(i) the Reynolds number which is defined by 

 

vol h D  

Q
   Re


=  (18) 

 

l is the liquid dynamic viscosity, and  hv is the latent heat 

of vaporization. Do is the heat pipe outer diameter, and Q is the 

heat flux rate. 

(ii) thePrandtl number 

 

l

pl l c
  Pr




=  (19) 

 

cpl is the liquid specific heat, and l is the liquid thermal 

conductivity. 

(iii) the Nusselt number 

 

 
Lh

  Nu
l

 


=  (20) 

 

h is the heat transfer coefficient for evaporation or 

condensation, and L is a reference length which is expressed 

as  

For evaporation  

 

( )g 
  L
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For condensation 
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 is the liquid surface tension. l and v are the liquid and 

vapor densities, respectively. l is the kinematic viscosity, and 

g is the gravity acceleration. 

(iv) the modified Jackob number 

 

v

satpl

v

l

h

T c
   *Ja




=

 (23) 

 

Tsat is the saturation temperature.  

 

(v) the Kutateladze number 

 



(ev)sat
p

L P
  K =  (24) 

 

Hence, the heat transfer coefficients can be calculated by 

the following correlation 

 

4321 m
p

mmm
K*Ja Pr Re A  Nu =                                     (25) 

 

A, m1, m2, and m3 are constants, which are determined from 

the experimental results. For the evaporation heat transfer, the 

dimensionless numbers are determined by calculating the 

liquid physical properties at the saturation temperature and the 

vapor physical properties at the film temperature (Tf = (Tsat+ 

Tw)/2). For the condensation heat transfer, the liquid and vapor 

physical properties are determined by considering the film and 

saturation temperatures, respectively. 

The constants of Eq. (25) are determined by a linear 

regression analysis, for the evaporation and the condensation 

phenomena. The experimental results are well correlated when 

considering A = 339.3, m1 = -0.978, m2 = -0.968, m3 = 0.205, 

and m4 = 1.586, for the evaporation phenomenon, and A = 

10.1, m1 = 0.384, m2 = - 1.738, m3 = - 1.099, and m4 = 0, for 

the condensation phenomenon. The variations of the 

calculated Nusselt number as a function of the Nusselt number 

obtained experimentally are depicted in Figure 14. As it can 

be seen, the experimental Nusselt number for the heat transfer 

by evaporation and condensation are well correlated by Eq. 

(25). The deviations from the experimental results are 35% 

and  30 % for the evaporation and condensation heat transfer, 

respectively. The validity of Eq. (25) is insured for the 

dimensionless numbers ranging in the intervals listed in Table 

6. 

 

Table 6. Range of the dimensionless numbers in Eq. (25) 

 
Evaporation Condensation 

1 ≤ Re ≤ 16 0.24≤ Re ≤ 3.6 

2.7 ≤Pr≤ 6.6 2.9 ≤Pr≤ 7.5 

1 ≤Kp≤ 16 1.4 ≤Kp≤ 7.5 

127 ≤Ja* ≤ 11,628  
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Figure 14. Variations of the Nusselt number obtained from 

the experimental results and that calculated by Eq. (25): (a) 

case of the evaporation, and (b) case of the condensation 

 

 

5. MODELING THE CAPILLARY LIMIT AND THE 

HEAT TRANSFER WITHIN THE HEAT PIPE 

 

5.1 Modeling of the capillary limit 

 

The proper operation of the heat pipe is insured when the 

capillary pumping, Pc, is capable to overcome the pressure 

losses in the liquid and vapor phases, Pl and Pv, as well as 

the hydrostatic pressure, Pg, according to  

 

gvlc PPP P  ++  
(26) 

 

The driving capillary pressure can be expressed by 
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(27) 

 

 is the surface tension and  is the contact angle. rce and rcc 

are the minimum and the maximum capillary radii in the 

evaporator and condenser sections, respectively. They are 

given by the following expressions 

 

( ) ++
=

sin1

D
r

g
ce  

(28) 

 

( )

( )



+

+
=

cos

W 5.0tanD
r

gbg
cc

 
(29) 

 

The pressure losses in the liquid and vapor phases are 

written as [16] 

 

 Q LF = P effvv  (30) 

 

 Q LF = P effll  (31) 

 

Leff is the effective length which is equal to La + 0.5 (Le + Lc) 

where Le, La, and Lc are the lengths of the evaporation, 

adiabatic and condensation zones, respectively. Fv and Fl are 

the friction coefficients in the vapor and liquid phases, and Q is 

the heat input power. 

The axial and radial hydrostatic pressures are expressed as 

follows [16] 

 

( )   sinL g  = P tlaxial,g  
(32) 

 

( )  cos D g  = P vlradial,g  
(33) 

 

 is the tilt angle with the respect to the horizontal, and Dv 

is the vapor diameter (Dv = Do – 2 Dg). 

Hence, referring to Eq(26), the capillary limit can be 

expressed as 
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( ) effvl

axial,gradial,gc
max

L FF

P PP
  Q

+

−
=
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 (34) 

 

The sign (+) in the numerator of Eq. (34) corresponds to the 

thermosyphon position for which the condenser is above the 

evaporator, and the sign (-) corresponds to the anti-gravity 

position for which the evaporator is elevated above the 

condenser. 

The vapor friction coefficient, Fv is expressed as [16] 

 

   
 h  A K

 = F
vvvv

v
v





 

(35) 

 

vA is the mean vapor cross-section, and Kv is the 

permeability for the vapor flow [16] 
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Dhv is the hydraulic diameter of the vapor phase, and Pov is 

the Poiseuille number which is equal to 16 since the vapor flow 

is assumed to be circular. pv is the perimeter wetted by the 

vapor phase. 

The liquid friction coefficient, Fl, is given by [16] 

 

   
 h  A K

 = F
vllg

l
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 (37) 

 

Ng is the number of grooves. lA is the mean liquid cross-

section, and Kg is the groove permeability which is given by 

the following relation [16] 
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Dhl is the hydraulic diameter of the liquid phase, and pl is the 

          w    d  y       q  d. φg is the groove porosity which 

is given by 
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The Poiseuille number for the liquid flow, Pol, is calculated 

as follows [17] 
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The cross-sectional areas of the liquid and the vapor phases 

depend on the curvature radius of the meniscus. In Eqns. (35)-

(38), the mean values of Al and Av are considered. These 

values are determined by integrating the local cross-sectional 

areas along the FMHP, assuming a linear variation of the 

curvature radius between the value taken in the evaporator 

section (rce) and that taken in the condenser section (rcc). 

Hence, lA and vA are expressed as 
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The perimeters pv and pl are expressed by 
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5.2 Modeling of the heat transfer 

 

The heat exchanges in a heat pipe are of various natures 

and they can be represented by the thermal resistance network 

shown in Figure 15. We can distinguish the thermal 

resistances, R1 and R7, due to the radial conduction through 

the evaporator and the condenser walls, the thermal resistance, 

R8, due to the axial conduction along the heat pipe wall, the 

thermal resistances, R2 and R6, due to the evaporation and 

condensation, the thermal resistances R3 and R5 due to the 

heat exchanges by phase change at the liquid-vapor interfaces, 

and the thermal resistance R4 due to the exchanges by 

convection between the vapor and the heat pipe wall. 

 

 
 

Figure 15. Thermal resistance network representing the heat 

exchanges in the heat pipe 

 

By supposing that the thermal resistance, R8, due to the 

axial conduction along the heat pipe is high, the heat pipe 

overall thermal resistance, Rtht can be expressed by 

 


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The thermal resistances R3 and R5 are expressed by [16] 
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ac is the accommodation coefficient and r is the gas 

constant. 

The thermal resistance R4 is given by [16] 
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The wall thermal resistances, R1,7, are given by 
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Do et Di are the outer and inner diameters, respectively. w 

is the wall thermal conductivity. R1and R7 are calculated by 

taking eL  = and cL  =
, 

respectively. 

R2 and R6 are calculated according to 

 

evev
2

A h

1
  R =  (54) 

 

cc
6

A h

1
  R =  (55) 

 

hev and hc are the heat transfer coefficient of evaporation 

and condensation, respectively. They are determined from Eq. 

(25). Aev and Ac are the evaporator and condensation heat 

transfer areas, respectively. 
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5.3 Calculation procedure  

 

The calculation procedure is as follows: 

 

1. Fixing and calculating the main geometrical 

characteristics of the heat pipe (overall length, 

lengths of the different zones, effective length, outer 

diameter, thickness, inner diameter at the top of the 

grooves, and the inner diameter at the bottom of the 

grooves), 

2. Fixing the main geometrical characteristics of the 

grooves (groove depth, Dg, width at the groove top, 

w d              v        ,        α   d ), 

3. F x                  , ψ,   d                  , θ, 

4. Fixing an arbitrary saturation temperature, Tsatinitial,  

5. Fixing the external wall temperature of the condenser 

(boundary condition), 

6. Calculating the thermophysical properties at the 

saturation and film temperatures, 

7. Calculating the capillary pressure according to Eq. 

(27), 

8. Calculating the liquid and vapor pressure losses 

according to Eqns. (30) and (31), 

9. Calculation the axial and radial hydrostatic pressures 

according to Eqns. (32)-(33), 

10. Calculating the capillary limit according to Eq. (34), 

11. Calculating the thermal resistances according to Eqns. 

(50)-(55), 

12. Calculating the new saturation temperature according 

to the following expression 

 

( ) max765wctedsatcalcula Q RRRT T +++=
 

(56) 

 

13. Comparing Tsatcalculated to Tsatinitial and steps 4-13 are 

repeated until a convergence on Tsat is insured, 

14. Calculating the evaporator wall temperature 

according to the following equation 

 

( ) max321satev Q RRRT T +++=
 

(57)

  

15. Editing all the results: capillary pressure, pressure 

losses, capillary limit, thermal resistances, saturation 

temperature, and evaporator wall temperature. 

 

5.4 Comparison between the model results and the 

experimental data 

 

The variations of the capillary limit, Qmax, obtained 

experimentally and that obtained theoretically from the model 

are depicted in Figure 16. The capillary limit increases with 

the heat sink temperature. This is mainly due to the decrease 

of the liquid pressure drop with the temperature (the vapor 

pressure drop is very negligible compared to the liquid one). 

The relative discrepancy between the experimental data and 

the calculated ones ranges between -1.7 % and +7.9 % 

indicating a very good agreement if we take into 

consideration the uncertainty on the experimental results. 

Note that this agreement depends on the value of the contact 

angle that is considered in the model. The value of the contact 

angle, which gives the best agreement, is 40 °.  

The variations of the overall heat pipe thermal resistance, 

Rtht, corresponding to the capillary limit, Qmax, are plotted in 

Figure 17. A good agreement is obtained between the 

experimental results and those determined from the model. 

Hence, the relative discrepancy between the experimental 

results and those issued from the model ranges between -

1.7 % and + 7.9 %. 

 

 
 

Figure 16. Variations of Qmax as a function of Ths 

 

The variations of the evaporator wall temperature, Twev, are 

depicted in Figure 18. Twev increases with Ths and a good 

agreement is obtained between the experimental results and 

those calculated from the model. The relative discrepancy 

ranges between +4.4 % and 9.5 % indicating that the model 

overestimates slightly the experimental results. 

 

 
 

Figure 17. Variations of Rtht as a function of Ths 

 

 
 

Figure 18. Variations of Twev as a function of Ths 

 

 

6. CONCLUSIONS 

 

In this study, a copper-water cylindrical heat pipe was 

manufactured and tested in order to determine its thermal 

performance for different heat sink temperatures and the heat 
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input powers. For a given heat sink temperature, it is 

demonstrated that the evaporation process is altered when the 

heat input power increases. However, the condensation 

process is enhanced when the heat input power increases. 

Furthermore, both the evaporation and condensation 

processes are enhanced when the heat sink temperature 

increases whatever the heat input power. Heat transfer laws 

are proposed based on a dimensionless analysis of the 

evaporation and condensation phenomena. A model is 

developed in order to determine the capillary limit as well the 

heat transfer within the heat pipe. The model can predict the 

experimental results within -1.7 % and +7.9 % when 

estimating the capillary limit and underestimates the heat pipe 

overall thermal resistance within -17.8 % and -9.7 % and 

overestimates the evaporator temperature within 4.4 % and 

9.5 %. 
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NOMENCLATURE 

 

a parameter defined in Eqns. (40) and (41) 

A constant in Eq. (25) 

ac accommodation coefficient 

Ac inner area of the condenser section, m² 

Aev inner area of the evaporator section, m² 

As aspect ratio 

al parameter defined by Eq. (44) 

av Parameter defined by Eq. (46) 

vA

 
mean vapor cross-section, m² 

lA

 

mean liquid cross-section, m² 

b parameter defined by Eqns. (40) and (41) 

B bias limit contribution 

bl parameter defined by Eq. (45) 

bv parameter defined by Eq. (45) 

c parameter defined by Eqns. (40) and (41) 

cp specific heat, J. kg-1. K-1 

Do outer diameter, m 

Dg groove depth, m 

DHL hydraulic diameter of the liquid phase, m 

Dhv hydraulic diameter of the vapor phase, m 

Dv vapor diameter, m 

F friction factor, Pa/W.m 

g gravitational acceleration, m/s² 

hc heat transfer coefficient of condensation, 

W/m².K 

hev heat transfer coefficient of evaporation, W/m².K 

Ja* modified Jackob number 

K permeability, m2 
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Kp Kutateladze number 

L reference length, m 

Lc condenser length, m 

Le evaporator length, m 

Leff effective length, m 

Lt overall length of the heat pipe, m 

m1, m2, 

m3, m4 

constants in Eq. (25) 

Ng number of grooves 

Nu Nusselt number  

p perimeter, m 

P precision limit contribution 

Po Poiseuille number 

Psat saturation temperature, Pa 

Q heat input power, W 

qc heat flux at the condenser section, W/m² 

qev heat flux at the evaporator section, W/m² 

r gaz constant, J/kg.K 

R1 thermal resistance due to thermal conduction 

through the evaporator wall, K/W 

R2 thermal resistance due to evaporation, K/W 

R3 liquid-vapor interfacial thermal resistance, K/W 

R4 thermal resistance due to the exchanges between 

the vapor and the heat pipe wall, K/W 

R5 liquid-vapor interfacial thermal resistance, K/W 

R6 thermal resistance due to condensation, K/W 

R7 thermal resistance due to thermal conduction 

through the condensation wall, K/W 

R8 thermal resistance due thermal conduction along 

the heat pipe, K/W 

rc capillary radius, m 

Re Reynolds number 

Rth heat pipe overall thermal resistance, K/W 

Rtha thermal resistance of the adiabatic zone, K/W 

Rthc condenser thermal resistance, K/W 

Rthcond thermal resistance of condensation, K/W 

Rthev evaporator thermal resistance, K/W 

Rthevap thermal resistance of evaporation, K/W 

Rthwallc thermal resistance of the condenser wall, K/W 

Rthwallev thermal resistance of the evaporator wall, K/W 

Sg groove spacing, m 

adT  average temperature of the adiabatic zone, °C 

cT  average temperature of the condenser, °C 

evT  average temperature of the evaporator, °C 

Tf film temperature, °C 

Ths heat sink temperature, °C 

Tw wall temperature, °C 

Tsat saturation temperature, °C 

tw wall thickness, m 

Wgb width at the base of the groove, m 

Wgt width at the top of the groove, m 

xo constant defined by Eqns. (40) and (41) 

  

Greek symbols 

 

 angle defined in Figure 2, ° 

 angle defined in Figure 2, ° 

vh  latent heat of vaporization, J/kg 

cP  capillary pressure, Pa 

gP  hydrostatic pressure, Pa 

lP  liquid pressure loss, Pa 

vP  vapor pressure loss, Pa 

cT  average temperature difference between the 

condenser and the adiabatic sections, K 

evT  average temperature difference between the 

evaporator and adiabatic sections, K 

hpT  
average temperature difference between the 

evaporator and condenser sections, K 

 angle defined in Figure 3, ° 

θ contact angle, ° 

λ thermal conductivity, W/m.K 

µ dynamic viscosity, kg. m-1.s-1 

ν kinematic viscosity, m/s² 

ρ density, kg/m3 

σ surface tension, N/m 

φ porosity 

  

Subscripts  

  

ad adiabatic 

c condenser, condensation 

cond condensation 

e evaporator 

ev evaporator, evaporation 

evap evaporation 

g groove, hydrostatic 

gb groove bottom 

gt groove top 

hp heat pipe 

hs heat sink 

i inner 

l liquid 

max maximum 

o outer 

sat saturation 

t overall 

v vapor 

w wall 
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