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 Governing Principle of Dissipative Processes proposed by Gyarmati for non-equilibrium 

thermodynamics has been employed to obtain the variational solution of steady, laminar, 

magnetohydrodynamic stagnation flow of a nanofluid over a non-isothermal stretching sheet 

with Brownian motion and thermophoresis effects when the flow is controlled by 

suction/injection. The velocity, temperature and concentration fields inside their boundary layers 

are approximated by polynomial functions which are satisfied by the boundary conditions. The 

variational principle is formulated, and Euler-Lagrange equations of the principle are reduced to 

simple polynomial equations in terms of momentum, thermal and concentration boundary layer 

thicknesses. The temperature, concentration profiles, skin friction, heat and mass transfer effects 

are analyzed for various values of velocity ratio parameter , suction/injection parameter H, 

magnetic parameter , Prandtl number Pr, wall temperature parameter n, Lewis number Le, 

Brownian motion parameter Nb and thermophoresis parameter Nt. The obtained results are 

compared with numerical solutions, and the order of accuracy is remarkable. 
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1. INTRODUCTION 

 

In this study, the primary objective is to analyze the heat 

transfer enhancement in stagnation point flow towards a 

stretching sheet which is a combination of pioneer Hiemenz [1] 

and Sakiadis [2] problems. 

The practical applications of this issue are in several 

industries where the engineering processes such as extrusion, 

continuous casting exist. In particular, glass blowing, drawing 

of metal wires, plastic films, polymer sheets and spinning of 

fibers, etc. In these processes, the quality of the final product 

solely depends on the rate of heat transfer to the stretching 

sheet. Hence, it is important that the analysis of heat transfer 

in such processes. 

Crane [3] found a closed form exact solution for Sakiadis 

problem with the extension that of the consideration of the 

stretching sheet velocity is proportional to the distance from 

the slit.  

Bhattacharya [4] has obtained variational solutions for 

laminar stagnation flow using Gyarmati’s principle. The effect 

of magnetic field on stagnation point flow was investigated by 

Ariel [5]. The variational solution in analytical form for 

axisymmetric stagnation point flow using Gyarmati’s 

principle was obtained by Antony Raj [6]. The analysis of heat 

transfer in stagnation flow over a stretching sheet was 

presented by Mahapatra and Gupta [7] and Ishak et al. [8]. 

In recent decades, nanofluid which is a mixture of nano-

sized solid particles with high thermal conductivity suspended 

in a conventional fluid is used to enhance the heat transfer rate 

in the systems involving fluid flow. Choi [9] gave the 

theoretical investigation about the potential benefits of 

nanofluids. The explanation for the abnormal convective heat 

transfer enhancement of nanofluid, when compared to 

conventional fluid was observed by Buongiorno [10]. 

Unsteady stagnation flow of conventional fluid past a 

stretching sheet was solved numerically by Sharma et al. [11] 

using finite difference scheme. 

Bachok et al. [12] presented an analysis for laminar 

stagnation point flow over a stretching/shrinking sheet in a 

nanofluid. Ibrahim et al. [13], Ibrahim and Rizwan [14] 

numerically solved MHD stagnation point flow of a nanofluid 

past a stretching sheet with various boundary conditions. The 

boundary layer solution for stagnation point flow towards a 

stretching sheet with heat generation/ absorption and 

suction/injection effects was studied by Hamad and Ferdows 

[15]. The influence of radiation and Brownian motion, 

thermophoresis effects on nanofluid flow over a vertical plate 

is considered by Reddy [16] 

By considering all the above facts and as suggested in 

Buongiorno model the two critical slip mechanisms Brownian 

motion and thermophoresis effects have been carried out in 

this boundary layer stagnation flow over a non-isothermal 

stretching sheet through moving water based nanofluid in the 

presence of suction/injection and constant magnetic flux 

density.  

Gyarmati’s variational principle has been employed and the 

results are presented for temperature profile, concentration 

profile, the coefficient of skin friction (shear stress), the local 

Nusselt number (heat transfer) and the local Sherwood number 

(mass transfer) for various values of velocity ratio parameter 

ε , suction/injection parameter H, magnetic parameter ξ , 

Prandtl number Pr, wall temperature parameter n, Lewis 

number Le and the slip parameters Nb (Brownian effect), Nt 

(thermophoresis effect). The present results are compared with 

numerical results, and the comparison shows in good 

agreement. The intention of this study is to establish the fact 

that Gyarmati’s variational principle is one of the exact and 

most general variational techniques in solving boundary layer 

flow, heat and mass transfer problems. 
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2. THE GOVERNING BOUNDARY LAYER 

EQUATIONS OF THE SYSTEM 
 

The stretching sheet is assumed to lie along the x-axis and 

infinitely extended downstream with y-axis normal to it. The 

stagnation point of the sheet is at x = y = 0. The free stream 

impinges normal to the stretching sheet with velocity U∞ and 

flows away in the x-direction. The sheet stretched with 

velocity U0 by applying two equal and opposite forces along 

the x-axis at the stagnation point as shown in Figure 1. In this 

study, it is assumed that stretching sheet velocity U0 and 

ambient free stream velocity U∞ are proportional to the 

distance from the stagnation point. That is, U0 = ax and U∞ =bx, 

where a and b are non-zero positive constants. 

 

 
 

Figure 1. Schematic diagram 

 

The non-isothermal sheet temperature T0 is greater than the 

ambient temperature T∞. The concentration of the nanofluid 

near the stretching sheet C0 and ambient concentration C∞ are 

considered as constants.  

A uniform magnetic field of strength B0 is applied normal 

to the x-axis and assumed that the induced magnetic field, the 

imposed electric field intensity and the electric field due to the 

polarization of charges are negligible. 

By Oberbeck-Boussinesq boundary layer approximations, 

the momentum equation has been linearized by neglecting the 

terms proportional to the product of concentration (C) and 

temperature (T). This assumption is valid in the case of small 

temperature gradients in a dilute suspension of nanoparticles. 

Hence, the continuity, momentum, thermal and 

concentration boundary layer equations for steady, two 

dimensional, incompressible, laminar stagnation point flow of 

a nanofluid towards a non-isothermal permeable stretching 

sheet are 
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subject to the boundary conditions 
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Here u, v, v0, T, C are the velocity of the fluid in the x-

direction, the velocity of the fluid in the y-direction, 

suction/injection speed, the temperature of the nanofluid and 

concentration of the nanofluid respectively, and A is a constant. 

The symbols , , B0, f, ,  , DB and DT are respectively 

kinematic viscosity, electric conductivity, externally imposed 

magnetic field in the y-direction, density and thermal 

diffusivity of the fluid,  = (c)p/(c)f is the ratio of 

nanoparticle heat capacity and base fluid heat capacity, 

Brownian diffusion coefficient and thermophoresis diffusion 

coefficient. 

 

 

3. VARIATIONAL FORMULATION 

 

By irreversible thermodynamics, Gyarmati [17, 18] 

developed a variational principle known as “Governing 

Principle of Dissipative Processes” (GPDP) which is given in 

its universal form 
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The principle (6) describes the evaluation of linear, quasi 

linear and some nonlinear irreversible processes at any instant 

of time and space under constraints that the balance equations 
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are satisfied. In Eq. (6),  is the variational symbol,  is the 

entropy production,  and  are dissipation potentials and V 

is the total volume of the thermodynamic system. In Eq. (7),  

is the mass density and 𝑎̇𝑖, Ji, i are respectively substantial 

variation, flux and source density of the ith extensive transport 

quantity ai. The entropy production  per unit volume and unit 

time can always be written in the bi-linear form 
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where Ji and Xi are fluxes and forces respectively. According 

to Onsager’s linear theory [19, 20], the fluxes are linear 

functions of forces, that is 
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The constants Lik and Rik are conductivities and resistances 

respectively, satisfying the reciprocal relations [19, 20]. 
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The matrices of Lik and Rik are mutually reciprocals, and 

they are symmetric, that is 
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where ik is the Kronecker delta. 

The local dissipation potentials  and  are defined [19, 

20] as, 
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In the case of transport processes, the forces Xi can be 

generated as gradients of certain “” variables and can be 

written as 

 

Xi  = i               (15) 

 

The principle (6) with the help of Eqs (8), (13), (14) and 

(15), takes the form 
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This variational principle has been already applied for 

various dissipative systems and was established as the most 

general and exact variational principle of macroscopic 

continuum physics. Many other variational principles have 

already been shown as partial forms of Gyarmati’s principle. 

The balance equations of the system play a central role in 

the formulation of Gyarmati’s variational principle and hence 

the governing boundary layer Equations (1 - 4) are written in 

the balance form as 
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These equations represent the mass, momentum, energy and 

concentration balances respectively. Here i and j being unit 

vectors in the directions of x and y axes respectively. In Eq 

(18) P  denotes the pressure tensor which can be decomposed 

[17] as 

 
o

vsPpP +=  ,                                      (21)  

 

where p is the hydrostatic pressure,  is the unit tensor and 
o

vs
P  is the symmetrical part of the second order viscous 

pressure tensor of trace zero. In Eq (19) Jq denotes heat current 

density which can be written as Jq = -LT. In Eq (20) Jc 

represents mass current density and is defined as Jc = -LcC. 

In the study of thermo hydrodynamics problems, the energy 

picture of Governing Principle of Dissipative Processes is 

always advantageous over entropy picture. Therefore, the 

energy dissipation T is used instead of entropy production . 

The energy dissipation for the present system is given [17] by, 
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In energy picture, the actual variable is lnT instead of T. 

Here P12 is the only component of momentum flux 

o
vs

P , Jq 

is the heat flux, and Jc is the mass flux, satisfy the constitutive 

relations connecting the independent fluxes and forces as 
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where Ls=, L=T and Lc=pDB, where ,  and DB are 

viscosity, thermal conductivity and partial diffusion 

coefficient respectively. With the help of Eq (23), the 

dissipation potentials in energy picture are found as follows 
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Using Equations (22 - 25), Gyarmati’s variational principle 

(6) in energy picture is formulated in the following form 
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in which l is the typical length of the surface. 

 

 

4. METHOD OF SOLUTION  

 

It is assumed that the trial functions for velocity, 

temperature and concentration fields inside the respective 

boundary layers are as follows 
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where d1, d2, d3 are the velocity, temperature and concentration 

boundary layer thicknesses which are to be determined from 

the variational procedure, and  (=U/U0) is the velocity ratio.  

The trial functions (27) satisfy the following boundary 

conditions, 
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the velocity, temperature and concentration profiles are 

negligibly small at the wall due to no pressure gradient and 

turn large in the immediate neighborhood of the wall, then 

asymptotically decay to zero so that the curvatures are 

continuous at their respective edges of the boundary layer. 

Using the boundary conditions (28), the transverse velocity 

component v is obtained from the mass balance equation (17) 

as 
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The velocity, temperature and concentration functions (27) 

and the boundary conditions (28) are used in the governing 

boundary layer equations (17 - 20). And on direct integration 

on y with the help of their corresponding smooth fit conditions 

uy = 0, Ty = 0 and Cy = 0, the momentum flux P12, energy flux 

Jq and mass flux Jc are obtained with the assumption that 

Prandtl number Pr ≥ 1, that is d1 ≥ d2. 

Using the expressions of P12, Jq, and Jc together with the 

velocity, temperature and concentration functions (27), the 

variational principle (26) is formulated. After performing the 

integration on y, one can obtain the variational principle in the 

following forms, 
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where L is the Lagrangian density of the principle. The prime 

indicates differentiation with respect to x. The variation is 

carried out on the independent parameters d1, d2 and d3. The 

Euler-Lagrange equations corresponding to this variational 

principle are 
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These Eqs (31) - (33) are second order ordinary differential 

equations in terms of d1, d2 and d3. 

The procedure for solving Eqs (31), (32) and (33) can be 

considerably simplified by introducing the non-dimensional 

boundary layer thicknesses d1
*, d2

* and d3
* which are given by 
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The variational principle (30) is subject to the 

transformations (34) and the resulting Euler-Lagrange 

equations are obtained as simple polynomial equations, 

 

0
*
1

=





d

L
            (35) 
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)Pr1(,0
*
2

=





d

L
          (36) 

 

0
*
3

=





d

L
            (37) 

 

The coefficients of these Eqs (35), (36) and (37) dependent 

on the independent parameters , H, , Pr, n, Le, Nb and Nt, 

where 

0

U

U
 =  (velocity ratio parameter), 

0
0 U

f

x
vH


=  

(suction/injection parameter), 
0

0

2
0

U
v

xB





=  (magnetic 

parameter), 
f

f
Pr




= (Prandtl number), wall temperature 

parameter n, 
BD

Le


= (Lewis number), 



 )( 0 −
=

CCD
Nb B

 (Brownian motion parameter) and 



−
=

T

TTD
Nt T



 )( 0
(thermophoresis parameter). 

In the present analysis, the suction and injection are 

represented respectively, by H < 0 and H > 0. Eqs (35), (36) 

and (37) are simple coupled polynomial equations and it can 

be solved for any values of , H, , Pr, n, Le, Nb and Nt and it 

is obtained as simultaneous solution of d1
*, d2

* and d3
*. After 

getting the values of d1
*, d2

* and d3
* for given , H, , Pr, n, 

Le, Nb and Nt, the values of temperature, concentration 

profiles, skin friction (shear stress), heat transfer (Nusselt 

number) and mass transfer (Sherwood number) are calculated 

with the help of the following expressions, 

 

x

U
y


 0=             (38) 
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0
2)

0
(
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
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
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


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=

yc
L
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J
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x
lSh
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In terms of non-dimensional parameters, the dimensionless 

forms of skin friction and rate of heat and mass transfer 

expressions are respectively obtained as, 

 

w   = 479d1
*/1800 - 7H/10 + 91d1

*/900 + 7d1
*/30 - /d1

*  

  - 6612d1
*/1800 + 1/d1

* + 7H/10 - 7d1
*/30                  (42) 

 

Nul = 3Prd2
*/10 – PrH + 3Prd2

*n/10 - 2PrNt/d2
*   

+ 6PrNtd3
*2/d2

*3 - 4PrNtd3
*3/d2

* 4 + LePrHNb  

- LePrNbd3
*/4+2Prd2

*2( - 1)/15d1
* - 3Prd2

*4( - 1)/140d1
*3 

+ Prd2
*5( - 1)/180d1

*4 + 2Prd2
*2n( - 1)/15d1

*  

- 3Prd2
*4n( - 1)/140d1

*3 + Prd2
*5n( - 1)/180d1

*4  

+ LePrNbd2
*2/5d3

* - LePrNbd2
*3/7d3

*2 

+ 9LePrNbd2
*4/280d3

*3 + 2LePrHNbd2
*2/5d3

*2 

- LePrHNbd2
*3/14d3

*3 - LePrNbd3
*2( - 1)/10d1

* 

+LePrNbd3
*4( - 1)/70d1

*3-LePrNbd3
*5( - 1)/280d1

*4 

- 9LePrHNbd2
*10d3

* + LePrNbd2
*3( - 1)/14d1

*d3
* 

- 9LePrNbd2
*4( - 1)/140d1

*d3
*2 

+ LePrNbd2
*5( - 1)/60d1

*d3*3 

- LePrNbd2
*5( - 1)/120d1

*3d3
* 

+ LePrNbd2
*6( - 1)/105d1

*3d3
*2 

+ LePrNbd2
*6( - 1)/525d1

*4d3
* 

- 9LePrNbd2
*7(  - 1)/3080d1

*3d3
*3 

- 9LePrNbd2
*7( - 1)/3850d1

*4d3
*2 

+ LePrNbd2
*8(  - 1)/1320d1

*4d3
*3          (43) 

 

Shl = Led3
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* - 3PrNtd3
*2/5d2

*3  

+ PrNtd3
*3/5d2

*4 + Led3
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-  Led3
*4( - 1)/70d1

*3+ Led3
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*4 
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5. RESULTS AND DISCUSSION 

 

To justify the accuracy of the present variational technique, 

the obtained results are compared with available numerical 

solutions in the literature. 

 

Table 1. Skin friction for various values of  when  = H = 0 

 

 

Present Results 

 

w 

Ibrahim et al. [13] 

 

w 

Mahapatra and 

Gupta [7] 

w 

0.01 

0.1 

0.2 

0.5 

2.0 

3.0 

1.064118317 

1.023414638 

0.962050351 

0.690246302 

-2.050841819 

-4.791630607 

0.9980 

0.9694 

0.9181 

0.6673 

-2.0175 

-4.7292 

- 

0.9694 

0.9181 

0.6673 

-2.0175 

-4.7293 

 

Table 1 displays the skin friction values for different values 

of velocity ratio parameter , when  = H = 0. From this table, 

the comparison of the present skin friction values with the 
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results of Ibrahim et al. [13] and Mahapatra and Gupta [7] is 

in good agreement. And it is observed that skin friction 

decreases with increase in velocity ratio parameter . 

 

Table 2. Local Nusselt number for various values of Pr and  

when H =  = n = Nb = Nt = 0 

 

Pr 
 Present 

Results 

Nul 

Ibrahim et 

al. [13] 

Nul 

Mahapatra and 

Gupta [7] 

Nul 

1 

 

 

1.5 

 

 

0.1 

0.2 

0.5 

0.1 

0.2 

0.5 

0.590485143 

0.617039895 

0.690363927 
0.773217299 

0.795416232 
0.864975099 

0.6022 

0.6245 

0.6924 

0.7768 

0.7971 

0.8648 

0.603 

0.625 

0.692 

0.777 

0.797 

0.863 

 

Table 2 exhibits the heat transfer values of conventional 

fluid for various values of velocity ratio parameter , and 

Prandtl number Pr, when  = H = n =0. From this table, it is 

evidently clear that the comparison of the present heat transfer 

rates obtained by the present variational technique with other 

numerical methods by Ibrahim et al. [13] and Mahapatra and 

Gupta [7] is excellent with a higher order of accuracy. 

Further, Prasad and Vajravelu [21] gave the numerical 

solution for non-dimensional skin friction value as 

1.00029111 in the absence of magnetic field for impermeable 

stretching sheet whereas the computed present value is 

1.067727442 when  =  = H = 0. 

In this study, the physical quantities of practical interest skin 

friction, temperature, concentration profiles, heat and mass 

transfer rates are obtained for the cases of suction and injection 

and these cases are compared with the impermeable case. 

Further, the investigation has been carried out for water based 

nanofluid at a fixed Prandtl number, Pr = 6.2. 

Figure 2, presents the effects of shear stress as a function of 

 for various values of velocity ratio parameter . From these 

illustrations, it is observed that the skin friction is an increasing 

function of  for  < 1 but it decreases with the increasing 

values of  when  > 1 while the values of skin friction 

independent upon  when  = 1. Also, it is observed that values 

of skin friction are negative when  > 1 due to the drag force 

exerted by the fluid of high free stream velocity compared to 

sheet velocity. Further, it is observed that suction increases and 

injection decreases the absolute value of skin friction when 

compared to the impermeable sheet. 

In Figure 3, the influence of diffusion parameters on 

temperature profile for suction, injection, and impermeable 

cases are presented. From these illustrations, it is clear that the 

temperature is an increasing function of Brownian motion and 

thermophoresis parameters. Since these diffusion parameters 

increase the thermal boundary layer thickness, the temperature 

profile is fuller for higher values of Nb and Nt. It is observed 

from these figures that the temperature decreases rapidly in the 

case of suction because the suction decreases the boundary 

layer thickness and hence increases the heat transfer. 

Figure 4 illustrates the variation of temperature profile on 

velocity ratio parameter  for permeable and impermeable 

cases. The observation depicts that the temperature 

distribution increases as velocity ratio parameter  decreases 

and this increase is not at a significant level when suction 

controls the boundary layer. Also, it is noted that when U 

>U0, the temperature profile rapidly attains the ambient 

temperature. 

 

 
 

 
 

 
 

Figure 2. Skin friction values as a function of  for different 

values of  when (a) H=-0.5 (suction), (b) H=0.0 and  

(c) H=0.5 (injection) 
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Figure 3. Temperature profile for Pr=6.2, Le=10, n==1, 

=0.5 and  Nb=Nt= 0.1, 0.3, 0.5 when (a) H=-0.5 (suction), 

(b) H=0.0 and (c) H=0.5 (injection) 

 

 
 

 
 

 
 

Figure 4. Temperature profile for Pr=6.2, Le=10, n==1, 

Nb=Nt= 0.5 and =0.5, 1, 2 when (a) H=-0.5 (suction),  

(b) H=0.0 and (c) H=0.5 (injection) 
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Figure 5. Concentration profile for Pr=6.2, Le=10, n==1, 

Nb=Nt= 0.5 and =0.5, 1, 2 when (a) H=-0.5 (suction),  

(b) H=0.0 and (c) H=0.5 (injection) 

 

Figure 5 demonstrates the effects of velocity ratio parameter 

 on concentration distribution. Increasing values of  

decreases the concentration profile due to the fact that as  

increases the concentration boundary layer thickness 

decreases. Also, it is evidently clear that, since suction 

decreases and injection increase the concentration boundary 

layer thickness, concentration profile are decreasing and 

increasing respectively for suction and injection when 

compared to the impermeable case. 

 
 

 
 

 
 

Figure 6. Variation of local Nusselt number as a function of 

Nt for Pr=6.2, Le=10, n==1, =0.5 and Nb=0.1, 0.3, 0.5 

when (a) H=-0.5 (suction), (b) H=0.0 and (c) H=0.5 

(injection) 

 

Figure 6 illustrates the behavior of heat transfer rates for 

various values of Nb, Nt, H when Pr = 6.2, Le = 10, n =  = 1 

and  = 0.5. It is found that Nusselt number decreases when 

Nb and Nt increases. This observation is important because 

these parameters are directly influenced by the thermal 

enhancing factors. The influence of suction/injection 
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parameter H on local Nusselt number depicts that suction 

increases the heat transfer while injection decreases it when 

compared to the impermeable sheet. Further, it is worth 

mentioning to note that the trend is reversed in the case of 

suction for higher values of Brownian motion parameter Nb. 

This circumstance happens due to the dominant effect of Nb. 

 

 
 

 
 

 
 

Figure 7. Variation of local Sherwood number as a function 

of Nt for Pr=6.2, Le=10, n==1, =0.5 and Nb=0.1, 0.3, 0.5 

when (a) H=-0.5 (suction), (b) H=0.0 and (c) H=0.5 

(injection) 

 

The variation of mass transfer rates on diffusion parameters 

(Nb, Nt) and suction/injection parameter H when Pr = 6.2, 

Le=10, n =  = 1 and  = 0.5 are shown in Figure 7. From these 

figures, it is clear that local Sherwood number increases with 

increasing Brownian motion parameter Nb but decreases as the 

thermophoresis parameter Nt increases. Consequently, suction 

increases and injection decreases the Sherwood number when 

compared to the case of impermeable sheet. 

 

 

7. CONCLUSIONS 

 

This paper presents the effects of velocity ratio, transverse 

magnetic field, suction/ injection, Brownian motion and 

thermophoresis on skin friction, temperature and 

concentration distributions, local Nusselt number and local 

Sherwood number in stagnation point flow towards a 

stretching sheet. The governing boundary layer equations of 

the problem are transformed into simple polynomial equations 

with the coefficients of independent parameters , , H, Pr, n, 

Le, Nb, and Nt. The results of the present study using GPDP is 

quite close to known numerical results. The advantage 

involved in the present variational technique is that the 

solution to the current problem is obtained with remarkable 

ease when compared to the tedious task of solving the 

governing boundary layer equations by other conventional 

methods. Also, one can note that the amount of calculation 

involved in the contemporary approach certainly less than that 

of other numerical procedures. Hence, the Governing Principle 

of Dissipative Processes, based on the sound physical 

reasoning is a powerful tool for obtaining a rapid solution to 

boundary layer flow, heat and mass transfer problems. 
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NOMENCLATURE 

 

a, b, A proportionality constants 

ia  substantial variation of ith extensive 

transport quantity ai 

B0 externally imposed a magnetic field 

cf 

cp 

C 

C0 

 

C 

d1, d2, d3 

 

d1
*, d2

*, d3
* 

 

 

DB 

DT 

H 

i, j 

Jc 

Jq 

Jc 

Ji, Jk 

Jq 

l 

L 

Le 

Lc, Ls, L, Lik 

n 

Nb 

Nt 

Nul 

P 

P12 

P  
o

vs
P  

Pr 

Rc, Rs, R, Rik 

Shl 

T 

T0 

T∞ 

u 

U0 

U∞ 

v 

v0 

V 

V 

heat capacity of the base fluid 

heat capacity of the nano particle 

concentration of the nanofluid 

concentration of the nanofluid near the 

stretching sheet 

ambient concentration 

momentum, thermal and concentration 

boundary layer thicknesses respectively 

non dimensional momentum, thermal and 

concentration boundary layer thicknesses 

respectively 

Brownian diffusion coefficient 

thermal diffusion coefficient 

suction/injection parameter 

unit vector along x and y axes 

mass flux 

heat flux 

mass current density 

fluxes in general 

heat current density 

representative length of the surface 

Lagrangian 

Lewis number 

Conductivities 

wall temperature parameter 

Brownian motion parameter 

thermophoresis parameter 

Nusselt number 

hydro static pressure 

momentum flux 

pressure tensor 

symmetrical part of second order viscous 

pressure tensor of trace zero 

Prandtl number 

Resistances 

Sherwood number 

temperature of the nanofluid 

non isothermal sheet temperature 

ambient temperature 

velocity of the fluid in x direction 

stretching sheet velocity 

free stream velocity 

velocity of the fluid in y direction 

suction/injection velocity 

total volume 

velocity vector 

X 

Xi 

y 

 

coordinate along the plate 

forces in general 

coordinate normal to the plate 

 

Greek symbols 

 

 

f 

 

ik 

  

thermal diffusivity of the fluid 

thermal diffusivity of the base fluid 

variational symbol 

Kronecker delta 

unit tensor 

 

 

 

 

 

 

velocity ratio parameter 

non dimensional concentration 

non dimensional coordinate normal to the 

plate 

electric conductivity 

thermal conductivity 
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 

 

 

 

 

i 

 

 

 

w 

dynamic viscosity 

kinematic viscosity 

non dimensional temperature 

mass density 

entropy production 

source density of the ith extensive 

transport quantity ai 

ratio of nano particle heat capacity and 

base fluid heat capacity 

skin friction 

 

, 

 

magnetic parameter 

local dissipation potentials 

state variable 

Subscripts 

 

p Nanoparticle 

f fluid (pure water) 
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