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 The direction of arrival (DOA) is traditionally estimated by subspace algorithms. However, 

the computation of subspace algorithms is complicated by eigenvalue decomposition (EVD) 

or singular value decomposition (SVD). To simplify subspace algorithms, this paper 

proposes a fast one-dimensional (1D) DOA estimation algorithm for double parallel linear 

array (DPLA). In our algorithm, the equivalent noise subspace is constructed by processing 

the first column elements of the joint cross-covariance matrix (JCCM), and the DOA is 

estimated, using the root-multiple signal classification (MUSIC) algorithm. The algorithm 

effectively simplifies and speeds up the computation by eliminating EVD or SVD. 

Simulation results confirm that our algorithm can improve the accuracy and reduce the time 

of DOA estimation. The research results have great application potential in DOA estimation 

tasks. 
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1. INTRODUCTION 

 

Direction of arrival (DOA) estimation, a key issue in array 

signal processing, is common in various fields, namely, radar 

[1-3], sonar [4, 5], communications [6, 7], seismic survey [8], 

and radio astronomy [9]. Array antennas have been adopted in 

many methods to estimate the DOA, including autoregressive-

moving average (ARMA) spectral analysis, maximum 

likelihood method, entropy spectral analysis, and eigenvalue 

decomposition.  

Two subspace algorithms have been developed based on 

eigenvalue decomposition (EVD). In 1979, Schmidt proposed 

the multiple signal classification (MUSIC) algorithm [10-12], 

marking a breakthrough in DOA estimation theories. In 1986, 

Roy put forward the estimation of signal parameters via 

rotational invariance techniques (ESPRIT) algorithm [13, 14]. 

Based on rotational invariance of subspaces, ESPRIT 

algorithm eliminates the need of global search and thus 

reduces the computing load. The key of subspace algorithms 

is to obtain signal subspace or noise subspace through EVD or 

singular value decomposition (SVD). Either EVD or SVD 

incurs a huge computing load, especially in massive multiple-

input and multiple-output (MIMO) systems.  

To simplify subspace algorithms, many excellent methods 

have been designed in recent years. For example, T.A.H. 

Bressner et al. [15] created the single snapshot algorithm for 

large arrays, which divides a large array into multiple 

subarrays for DOA estimation. Through low-rank matrix 

reconstruction and Vandermonde decomposition, Tian et al. 

[16] designed a gridless two-dimensional (2D) DOA 

estimation method that improves the running speed by 

avoiding EVD or SVD. But the applicable scope of this 

method is limited to uniform and sparse rectangular arrays. For 

2D DOA estimation with L-shaped array, Nie and Li [17] 

proposed a computationally efficient subspace algorithm 

(CESA), which estimates 2D DOA efficiently with three 

vectors made from the elements in the first column, first row 

and diagonal of the covariance matrix, respectively. Since the 

two axes of the L-shaped array are composed of uniform linear 

arrays (ULAs), Yan et al. [18] established a CESA-based joint 

cross-covariance matrix (JCCM) algorithm for one-

dimensional (1D) DOA estimation with ULA. Eliminating 

subspace decomposition, the JCCM algorithm sets up a JCCM 

based on the forward and backward cross-covariance matrices 

of input data, reconstructs the equivalent signal subspace, and 

estimates the DOA by solving polynomials 

Drawing on ESPRIT algorithm [19], CESA algorithm, and 

JCCM algorithm, this paper proposes a 1D DOA estimation 

algorithm with double parallel linear array (DPLA). The 

DPLA [20] consists of two parallel ULAs with a known 

spacing. The DPLA can be viewed as an array of array 

elements pairs, each of which contains two sensors with 

identical response features. In the proposed algorithm, the 

noise subspace is constructed by processing the first column 

elements of the JCCM, and the DOA of signal is obtained by 

solving polynomials. 

The remainder of this paper is organized as follows: Section 

II introduces the structure and model of the DPLA; Section III 

explains the DPLA algorithm and analyzes its performance; 

Section IV compares the DPLA algorithm with others through 

MATLAB simulation; Section V puts forward the conclusions. 

 

 

2. SYSTEM MODEL 

 

As shown in Figure 1, the DPLA contains M array element 

pairs, each of which has two sensors with identical response 

features. The DPLA can also be considered as the combination 

of two ULAs with the spacing of Δ. It is assumed that K≤M 

independent, far-field and narrowband signals 

𝑠1(𝑡), 𝑠2(𝑡), . . . , 𝑠𝑘(𝑡)  are incident on the DPLA 

simultaneously as planar waves, and the arrival of signals is a 
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zero-mean random process. Then, the signal sources can be 

differentiated by the DOA. 

 

 
 

Figure 1. The structure of the DPLA 

 

Suppose the arrival of signals on all array elements is a 

white Gaussian random process (mean: zero; variance: σ2) 

independent of signals. The DPLA was divided into subarray 

1 and subarray 2, both of which are ULAs. The element 

spacing in each subarray is denoted as d. Then, the signals 

outputted by the i-th element of subarrays 1 and 2 can be 

respectively expressed as [21]: 
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where, 𝑎𝑖(𝜃𝑘) is the response of the i-th element pair to the k-

th source signal; 𝑛1𝑖(𝑡)  and 𝑛2𝑖(𝑡)  are the additive white 

Gaussian noises on the i-th element of subarrays 1 and 2, 

respectively; 𝜆 is the wavelength of the source signals.  

The vectors of the signals outputted from the i-th element of 

subarrays 1 and 2 can be respectively expressed as: 

 

( ) ( ) ( )1 1x t As t n t= +  (3) 

 

( ) ( ) ( )2 2x t A s t n t= +  (4) 

 

where, 𝑥1(𝑡) = [𝑥11(𝑡) 𝑥12(𝑡) . . . 𝑥1𝑀(𝑡)]𝑇 ; 𝑥2(𝑡) =
[𝑥21(𝑡) 𝑥22(𝑡) . . . 𝑥2𝑀(𝑡)]𝑇 ; 𝐴(𝜃) =
[𝑎(𝜃1) 𝑎(𝜃2) . . . 𝑎(𝜃𝐾)] is an array manifold matrix of 

all K steering vectors 𝑎(𝜃𝑘) =
[𝑎1(𝜃𝑘) 𝑎2(𝜃𝑘) . . . 𝑎𝑀(𝜃𝐾)]𝑇 ; 𝑠(𝑡) =
[𝑠1(𝑡) 𝑠2(𝑡) . . . 𝑠𝐾(𝑡)]𝑇  is a K×1-dimensional signal 

vector; 𝑛1(𝑡) = [𝑛11(𝑡) 𝑛12(𝑡) . . . 𝑛1𝑀(𝑡)]𝑇 and𝑛2(𝑡) =
[𝑛21(𝑡) 𝑛22(𝑡) . . . 𝑛2𝑀(𝑡)]𝑇  are the additive white 

Gaussian noises on subarrays 1 and 2, respectively. Assuming 

that the signals are uncorrelated, the arrival of the noises is a 

zero-mean random process. 

Then, a 𝐾 × 𝐾 diagonal matrix 𝜓 can be established with 

the phase delays between the two subarrays as its diagonal 

elements: 
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(5) 

 

where, 𝜇𝑘 =
2𝜋𝛥 𝑠𝑖𝑛 𝜃𝑘

𝜆
 𝑘 = 1,2, . . . , 𝐾. 

Matrix 𝜓  is an operator that associates the outputs of 

subarray 1 with those of subarray 2. Since the two subarrays 

are shift invariant, the signals of them must be rotational 

invariant. That is, the input signal of subarray 2 in formula (4) 

is equivalent to the input signal of subarray 1 multiplied by a 

rotation factor 𝜓. 

 

 

3. ALGORITHM DESIGN 

 

3.1 DOA estimation 

 

To mitigate the effect of additive noise, the JCCM between 

signal vectors 𝑥1(𝑡) can be defined as: 
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(6) 

 

Similarly, the JCCM between signal vectors 𝑥1(𝑡)  and 

𝑥2(𝑡) can be defined as: 
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 (7) 

 

Since 𝑛1(𝑡) and 𝑛2(𝑡) are spatially independent and 𝑠𝑘(𝑡) 

𝑘 = 1,2, … , 𝐾  are uncorrelated, we have 𝐸{𝑛1(𝑡)𝑛2
𝐻(𝑡)} =

𝐸{𝑛2(𝑡)𝑛1
𝐻(𝑡)} = 0 , 𝑅𝑠 = 𝐸{𝑠(𝑡)𝑠𝐻(𝑡)}  and 𝑅𝑠 =

𝑑𝑖𝑎𝑔(𝑝1 𝑝2 . . . 𝑝𝐾) , with 𝑝𝑖(𝑖 = 1,2, . . . , 𝐾)  being the 

power of the k-th source signal. The power of every source 

signal is a real number. Then, we have ∀𝑝𝑖 > 0 and 𝑅𝑠 = 𝑅𝑠
∗.  

According to the theory on matrix conjugation, 𝑅21 is the 

conjugate of 𝑅12. Then, matrix 𝑅 can be defined as: 
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where, 𝛼𝑖 = 𝑝𝑖(𝑒−𝑗𝜇𝑖 + 𝑒𝑗𝜇𝑖), (𝑖 = 1,2, . . . , 𝐾); ∀𝛼𝑖 > 0; 𝛬 =
𝛬∗. Substituting formula (9) into formula (8), we have: 

 

( ) ( )HR A A =   (10) 

 

Since the first column elements of 𝐴𝐻(𝜃) are all ones, the 

𝑀 × 1 vectors 𝑟(: ,1) for the first column elements of R  can 

be expressed as 𝑟(: ,1) = 𝐴(𝜃)𝛬1 , where 1  is a 𝐾 × 1  -

dimensional full 1 column vector. Based on 𝑟(: ,1) , a new 

column vector can be defined as 𝑟𝑛(: ,1) = 𝐽𝑟∗(: ,1), where 
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Then, a 2𝑀 × 1 vector r  can be constructed from 𝑟(: ,1) 

and 𝑟𝑛(: ,1): 
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Since the first row elements of 𝐴(𝜃) are all ones, the last 

row elements of 𝐽𝐴∗(𝜃) must be all ones. Removing the first 

row of 𝐴(𝜃) or the last row of 𝐽𝐴∗(𝜃), a (2𝑀 − 1) × 1 vector 

𝑟𝑛𝑒𝑤  can be obtained: 
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where, 
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Obviously, 𝑟𝑛𝑒𝑤  is the data received by 2𝑀 − 1 elements 

through a single snapshot. On this basis, a (2𝑀 − 𝐾) × 𝐾 

matrix 𝑆 can be constructed: 

 

 1 2 kS r r r=  (14) 

 

where, 𝑟𝑖 = 𝑟𝑛𝑒𝑤(𝑖: 2𝑀 − 𝐾 − 1 + 𝑖), (𝑖 = 1,2, . . . , 𝐾) , 

𝑟𝑛𝑒𝑤(𝑢: 𝑣) is the column vector of the 𝑢th-𝑣th row of 𝑟𝑛𝑒𝑤 . 

According to formulas (13) and (14), matrix S can be rewritten 

as 

 

S G Q=   (15) 
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The relevant definitions are provided as follows [22]: 

➢ If 𝐴 = [𝛼1, 𝛼2, ⋯ , 𝛼𝑛] ∈ 𝐶𝑚×𝑛  is a complex matrix, 

then the subspace 𝐶𝑜𝑙(𝐴) of all linear combinations of column 

vectors is called the column space or column span of matrix 𝐴: 

1 2

1

( ) { , , , } { : : }
n

m

n j j j

j

Col A Span y C y x x C   
=

= =  =   

The column space matrix 𝐴  is often represented by 

𝑆𝑝𝑎𝑛{𝐴}: Col(A)=Span(A)=Span{a1, a2,…, an} 

➢ If 𝐴  is a complex matrix, the range of 𝐴  can be 

defined as 𝑅𝑎𝑛𝑔𝑒(𝐴) = {𝑦 ∈ 𝐶𝑚: 𝐴𝑥 = 𝑦, 𝑥 ∈ 𝐶𝑛}. 

If 𝐴 = [𝛼1, 𝛼2, ⋯ , 𝛼𝑛]  is a column of 𝐴 , and if 𝑥 =
[𝑥1, 𝑥2, ⋯ , 𝑥𝑛]𝑇, then 𝐴𝑥 = ∑ 𝑥𝑗𝛼𝑗

𝑛
𝑗=1 . Thus, we have: 

1 2

1

( ) { : : } { , , , }
n

m

j j j n

j

Range A y C y x x C Span a a a
=

=  =  =  

This means the range of matrix 𝐴 is the column space of 𝐴: 

Range(A)=Col(A)=Span{a1, a2,…, an} 

For matrix 𝐴𝑚×𝑛 , the rank of 𝐴  has the following 

correlation with its column space and range: 

rank(A)=dim[Col(A)] =dim[Range(A)]  

Obviously, G and Q are Vandermonde matrices, and the 

source signals are uncorrelated. Therefore, the ranks of G, Q 

and 𝛬 are all equal to the source number K. Then, we have 

𝑟𝑎𝑛𝑘(𝐺) = 𝑟𝑎𝑛𝑘(𝑆) = 𝐾 . Thus, G and S have K linear 

independent columns, span the same K-dimensional space, 

and cover the same range: 𝑅𝑎𝑛𝑔𝑒(𝐺) = 𝑅𝑎𝑛𝑔𝑒(𝑆) . 

According to the relationship between column space and range, 

we have 𝑆𝑝𝑎𝑛{𝐺} = 𝑆𝑝𝑎𝑛{𝑆}. 

As a result, matrix S contains all DOA information of source 

signals. Then, 𝑆  can be obtained through Schmidt 

orthogonalization of the column vector of 𝑆.  

Inspired by the root-MUSIC algorithm [23], it is assumed 

that 𝑧 = 𝑒𝑗𝑤. Then, a polynomial can be constructed as: 

 

( ) ( ) ( )2= N K H

Nf z z p z U p z−
 (16) 

 

where, 𝑝(𝑧) = [1 𝑧 ⋯ 𝑧2𝑁−𝐾−1]𝑇; 𝑈𝑁 = 𝐼2𝑁−𝐾 − 𝑆𝑆
𝐻

. 

Solving the polynomial, the K  roots closest to the unit 

circle can be obtained. Then, the DOA of the signal can be 

calculated by: 
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In actual applications, the theoretical covariance matrices 

can be replaced with sample covariance matrices: 
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12 21=R R R+  (20) 
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where, 𝑋1 = [𝑥1(1) 𝑥1(2) ⋯ 𝑥1(𝑁)]  and 𝑋2 =
[𝑥2(1) 𝑥2(2) ⋯ 𝑥2(𝑁)] are 𝑁  snapshots of the signals 

outputted from subarrays 1 and 2, respectively. 

Since only the first column of matrix R is involved, the 

DPLA algorithm can be further simplified to reduce 

computing load. According to formula (20), the first column 

of �̑� equals the sum of the first column �̑�12(: ,1) of �̑�12 and 

the first column �̑�21(: ,1) of �̑�21: 

 

( ) ( )( )12 1 2:,1 1,:HR X X N=  (21) 

 

( ) ( )( )12 1 2:,1 1,:HR X X N=  (22) 

 

Similarly, 𝑋2
𝐻(1, : )  and 𝑋1

𝐻(1, : ) are the conjugate 

transposes of the first rows of 𝑋2 and 𝑋1, respectively. Then, 

�̑�(: ,1) can be written as: 

 

( ) ( ) ( )12 21:,1 = :,1 :,1R R R+  (23) 

 

where, �̑�(: ,1)  is the first column of R. Thus, �̑�(: ,1)  and 

�̑�𝑛(: ,1) can be respectively expressed as: 

 

( ) ( ) ( ) ( )12 21:,1 = :,1 = :,1 :,1r R R R+  (24) 

 

( ) ( ):,1 :,1nr Jr=  (25) 

 

To sum up, the DPLA algorithm can be implemented in the 

following steps: 

Step 1. Derive �̑�12(: ,1) and �̑�21(: ,1) from formulas (21) 

and (22). 

Step 2. Obtain �̑�(: ,1) from formula (24). 

Step 3. Obtain new vector from formula (25). 

Step 4. Remove the same row in �̑�𝑛(: ,1)  and �̑�(: ,1)  to 

construct the column vector 𝑟new. 

Step 5. Obtain matrix S by formula (14) and obtain matrix 

𝑆 through Schmidt orthogonalization. 

Step 6. Construct polynomial 𝑓(𝑧)  by formula (16), and 

solve the polynomial to find the 𝐾  roots closest to the unit 

circle; calculate the DOA of the signals by formula (17). 

 

3.2 Computing complexity analysis 

 

The DPLA algorithm assumes that the signals are rotational 

invariant, due to the shift invariance of the DPLA, and derives 

the noise subspace from column vectors. Compared with 

traditional subspace algorithms, the DPLA algorithm 

eliminates the complex EVD or SVD, without sacrificing 

estimation accuracy. Hence, the algorithm could effectively 

simplify the computation, and shorten the estimation time. 

The DPLA algorithm has 2M array elements, N snapshots, 

and K signal sources. The computing complexity of the 

algorithm mainly arises from �̑�(: ,1)  acquisition, Schmidt 

orthogonalization, and polynomial rooting. The computing 

complexities of these three operations are 𝑂(4𝑀𝑁), 𝑂(𝐾(𝐾 +
1)(2𝑀 − 𝐾)/2), and 𝑂((2𝑀 − 𝐾)3), respectively. 

For comparison, the computing complexity of the MUSIC 

algorithm with ULA comes from EVD, the estimation of 

covariance matrix, and the search for spectral peak. When the 

spectral peak is searched for at 500 equally spaced intervals as 

in our research, the computing complexities of the three 

operations in the MUSIC algorithm are 𝑂((2𝑀)3), 𝑂(4𝑀2𝑁), 

and 𝑂((2𝑀 − 𝐾)1500), respectively. 

In actual applications, 𝑁 ≫ 𝑀 > 𝐾. Therefore, the DPLA 

algorithm enjoys a much lower computing complexity than the 

MUSIC algorithm. 

 

 

4. SIMULATION AND ANALYSIS 

 

The effectiveness of the DPLA algorithm was verified 

through MATLAB simulation, in comparison with JCCM 

algorithm, CESA algorithm, and MUSIC algorithm.  

 

4.1 Simulation analysis based on root mean square error 

(RMSE) 

 

The performance of each algorithm was measured by the 

RMSE: 

 

( )
2

1 1

1 T K

ik ik

i k

RMSE
TK

 
= =

= −  (26) 

 

where, T is the number of Monte-Carlo (MC) cycles;�̑�𝑖𝑘 is the 

estimated value of the k-th signal in i-th simulation. The unit 

of RMSE was set to °. 

(1) RMSEs at different signal-to-noise ratios (SNR) 

Figure 2 shows the variation in the RMSEs of the four 

algorithms with the SNRs of the input signals, while the other 

parameters were configured as: element spacing =
half wavelength ; number of array elements 2𝑀 = 16 ; 

arrival angles = −23°, 42° ; subarray spacing 𝛥=0.1 ; 

number of snapshots 𝑁 = 500; number of M-C cycles=500. 

 

 
 

Figure 2. RMSE-SNR curves 

 

As shown in Figure 2, the DPLA algorithm always 

outperformed CESA algorithm and JCCM algorithm. The 

estimation accuracy of our algorithm was better than the 

JCCM algorithm, mainly because the signals are rotational 

invariant, which is guaranteed by the shift invariance of the 

DPLA. The signals of the two subarrays are linked by a 

rotational factor, reducing the array aperture loss. By contrast, 

the array partitioning in the JCCM algorithm results in a high 

array aperture loss. 

Besides, the DPLA algorithm outshined MUSIC algorithm 

at the SNR>-5dB, but performed poorer than the latter at the 

SNR<-5dB. The reason is that the DPLA algorithm, which 
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only uses the first column of the JCCM, has an inevitable data 

loss, especially at a low SNR; but the accuracy of our 

algorithm was in the acceptable range. 

(2) RMSEs at different number of snapshots 

Figure 3 shows the variation in the RMSEs of the four 

algorithms with the number of snapshots, while the other 

parameters were configured as: element spacing =
half wavelength ; number of array elements 2𝑀 = 16 ; 

arrival angles = −23°, 42° ; subarray spacing 𝛥=0.1 ; 

number of M-C cycles=500; SNR=15dB. 

 

 
 

Figure 3. RMSE-snapshot number curves 

 

 
 

Figure 4. RMSE-array element number curves 

 

As shown in Figure 3, the DPLA algorithm still 

outperformed CESA algorithm and JCCM algorithm, 

regardless of the number of snapshots. When the number of 

snapshots was smaller than 1,000, the DPLA algorithm was 

outshined by the MUSIC algorithm; after that number 

surpassed 1,000, our algorithm exhibited superior effect over 

the MUSIC algorithm. This is attributable to the small amount 

of data loss in our algorithm; but the accuracy of our algorithm 

was in the acceptable range. 

(3) RMSEs at different number of array elements 

Figure 4 shows the variation in the RMSEs of the four 

algorithms with the number of array elements, while the other 

parameters were configured as: element spacing =
half wavelength ; number of snapshots 𝑁 = 500 ; 

arrival angles = −23°, 42° ; subarray spacing 𝛥=0.1 ; 

number of M-C cycles=500; SNR=15dB. 

As shown in Figure 4, the DPLA algorithm outperformed 

CESA algorithm and JCCM algorithm, regardless of the 

number of array elements. When there were a few array 

elements, the DPLA algorithm was overshadowed by the 

MUSIC algorithm; when there were many array elements, the 

performance of our algorithm surpassed that of the MUSIC 

algorithm. The reason for these phenomena is still the small 

amount of data loss in our algorithm; but the accuracy of our 

algorithm was in the acceptable range. 

 

4.2 Simulation analysis based on estimation time 

 

The algorithm efficiency can be measured by the estimation 

time. Figures 5 and 6 show the estimation time of the four 

contrastive algorithms in MATLAB simulation, in which the 

parameters were configured as: element spacing =
half wavelength ; number of array elements 2𝑀 = 16 ; 

number of snapshots 𝑁 = 500; arrival angles = −23°, 42°; 

subarray spacing 𝛥=0.1 ; number of M-C cycles=500; 

SNR=15dB. 

 

 
 

Figure 5. Estimation time of JCCM, DPLA and CESA 

algorithms 

 

 
 

Figure 6. Estimation time of MUSIC algorithm 

 

Obviously, our algorithm spent slightly shorter time than 

CESA algorithm, comparable time as JCCM algorithm, and 

much shorter time than MUSIC algorithm in DOA estimation. 

Our algorithm and JCCM algorithm boast good time 

performance, because they only need to process the first 

column of the JCCM to estimate the DOA. The CESA 
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consumed a slightly longer time, as it needs to process the 

elements in the first row, first column, and the diagonal of the 

covariance matrix. The high time consumption of MUSIC 

algorithm stems from the complex operations like EVD and 

spectral peak search. 

 

 

5. CONCLUSIONS 

 

This paper puts forward a novel DPLA algorithm for DOA 

estimation, and verifies its superiority over traditional 

algorithms through MATLAB simulation. There are two 

major innovations in our algorithm: First, the rotational 

invariance of the two subarray signals was guaranteed by the 

shift invariance of the two subarrays, which eliminates the 

effect of array aperture and improves estimation accuracy. 

Secondly, our algorithm rearranges the first column elements 

of the JCCM into the noise subspace, and thus greatly reducing 

the computing load. The research results have great 

application potential in DOA estimation tasks. 
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