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Using complex variable function and wave function expansion, this paper obtains the 

analytical solution to the scattering of steady-state planar SH-wave on a partially 

debonded circular lined tunnel in the overburden, and analyzes the accuracy of the 

solution. By the big circle method, the straight boundary between soil layers was 

converted into an arc boundary. Under continuous boundary conditions, the scattered 

wave field of debonded structure was constructed through Fourier series expansion, 

eliminating the need to process singular points on the edge of the debonded lining. 

According to the boundary conditions, a set of infinite integral equations was established, 

and solved by intercepting finite terms. After that, a numerical example was introduced 

to reveal how the dynamic stress concentration factor (DSCF) of the lining is affected by 

incident frequency, soil layer parameters, lining material, and debonding position. The 

results show that the DSCF of the partially debonded circular lined tunnel was obviously 

amplified by the soft overburden, but shielded by the hard overburden; Judging by the 

distribution and value of outer wall DSCF, rigid lining is affected by debonding more 

significantly than flexible lining. 
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1. INTRODUCTION

In the event of an earthquake, the dynamic stress will 

concentrate around tunnels, as the seismic wave is scattered 

repeatedly by the ground and the tunnels. Then, the local stress 

of the tunnel will bump up, causing damages to tunnel 

structure. Significant loss of life and property will occur, if the 

earthquake damages infrastructure like metro tunnels, heating 

pipelines, drainage pipelines, and oil pipelines. Therefore, the 

dynamic seismic response of underground structures has 

attracted much attention from the academia [1, 2]. 

Wave function expansion has been widely adopted to solve 

the response to seismic waves, after it was coupled by Baron 

with integral transform to obtain the analytical solution to how 

cylindrical cavity scatters compressive pulses [3, 4]. Liu et al. 

[5, 6] introduced complex variable function to the scattering 

problem of two-dimensional (2D) elastic dynamics, and 

solved the scattering of SH-wave by a shallow half space 

structure, using wave function expansion, complex variable 

function, and moving coordinate system. Later, Davis et al. [7] 

and Liang et al. [8] studied the scattering of planar P-wave and 

SV-wave by half space caves and arc-shaped depressions. Qi, 

Yang and Qi [9] and Qi et al. [10] extended the complex 

variable function to half space, half space interface, as well as 

circular cavities and inclusions in half space bidirectional 

medium, and explored the scattering of SH wave by circular 

lining near semi-infinite half space. 

Under the effects of multiple factors (e.g. construction 

techniques, soil settlement, and changing groundwater level), 

the interface between a structure and the surrounding soil 

might separate in local places, forming debonded areas. 

Debonding can be regarded as a kind of cracking that separates 

the contact surfaces. In the 1980s, Coussy [11] studied the 

debonding between cylindrical inclusions and substrate in one 

place. In the 1990s, Yang and Norris [12-13] investigated the 

situation of a single arc crack, and provided the near-field and 

far-field solutions at arbitrary wavelengths. In the 21st century, 

Fang et al. [14] and Coşkun and Dolmaseven [15] explored 

intensively into the scattering problem of lined tunnels, 

yielding fruitful results with engineering significance. 

The above studies mostly simplify the ground into a whole 

elastic half space. However, there is little report on the 

scattering by lined tunnel in the overburden. In reality, the 

ground is not a homogenous whole, but a mixture of various 

rocks or soil layers. The composite soil layer complicates the 

boundary conditions of the scattering problem, making the 

problem difficult to solve. At the end of the 20th century, Cao 

and Lee [16, 17] and Lee and Karl [18] transformed the 

traditional straight boundary problem into a curved boundary 

problem by the big circle method, and gave the analytical 

solutions to the scattering of P- and SV-waves by a single 

circular cavity in half space. Since then, the big circle method 

has been extensively implemented to study elastic waves [19-

21]. With the aid of the big circle method, this paper aims to 

further expand the scattering problem of half space lining, 

under the effect of composite soil layer. 

By the big circle method, this paper converts the straight 

boundary between two soil layers into an arc boundary, and 

constructs the scattered wave field of each soil layer. Then, the 

scattering problem of the model of the overburden was divided 

into the circular cavity scattering in the overburden (Domain 

II) and lining scattering by the circular tunnel (Domain III).

Displacement solutions were constructed in Domains II and III,

respectively, and fitted on the common boundaries between
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the two domains. Under continuous boundary conditions, the 

scattered wave field of debonded structure was constructed 

through Fourier series expansion, creating the analytical 

solution to the scattering problem. After that, the terms to be 

intercepted were identified by checking residual stress, which 

guarantee the accuracy of the numerical calculation. Taking 

C30 concrete and Q345 steel as lining materials, the SH-wave 

was incident to two typical geological combinations. On this 

basis, the authors analyzed how the dynamic stress 

concentration factor (DSCF) of the outer wall of the lining is 

affected by incident frequency, soil layer parameters, lining 

material, and debonding position. 

 

 

2. MODEL CONSTRUCTION AND SOLUTION 

 

DomainⅠ

DomainⅡ

DomainIII
III

 
 

Figure 1. The 2D model of the overburden containing a single circular lined tunnel 

 

The 2D model of the overburden containing a single circular 

lined tunnel is illustrated in Figure 1, where Domain I is the 

lower soil layer, Domain II is the upper overburden, and 

Domain III is the circular lined tunnel (inner diameter a; outer 

diameter b). For Domains I-III, the densities are ρ1, ρ2, and ρ3, 

the shear moduli are μ1, μ2, and μ3, the shear wave velocities 

are c1, c2, and c3, and the SH-wave velocities are k1, k2, and k3, 

respectively. 

Displacement solutions were constructed in Domains II and 

III, respectively, and fitted on the common boundaries 

between the two domains: stress and displacement should be 

continuous on the outer boundary T1 of the tunnel, and the 

stress should be free on the inner boundary T2 of the tunnel. 

The upper boundary, lower boundary, and thickness of the 

overburden are denoted as TU, TD, and h, respectively. The 

distances from TU and TD to the center of the circular tunnel 

are denoted as h1 and h2, respectively. By the big circle method, 

TU and TD were approximated by concentric arcs with 

extremely large radii. Then, TU and TD were converted into 𝑇𝑈⏜ 

and 𝑇𝐷⏜, respectively.  

Then, a rectangular coordinate system X1O1Y1 was 

established with the center of the big arc as the origin O1; 

another rectangular coordinate system X2O2Y2 was established 

with the center of the lined tunnel as the origin O2 and the 

straight line parallel to TU as axis X2, such that axes Y1 and Y2 

are collinear. 

The polar angle of any point in space can be expressed as θ1 

under X1O1Y1, while that of any point on tunnel boundaries can 

be expressed as θ2 under X2O2Y2. If the outer wall of the lining 

is debonded, the starting and ending angles of the debonded 

structure are denoted as θ3 and θ4, respectively (θ4≥θ3). The 

debonded boundary and non-deboned boundary of the outer 

wall can be described as 𝑇1 and T1, respectively. 

Suppose a steady-state SH-wave is incident from Domain I 

at the angle of α0. Then, the complex planes (𝑧1, �̄�1)  and 
(𝑧2, �̄�2)  that correspond to X1O1Y1 and X2O2Y2 can be 

established. On this basis, the relationships between the 

geometric variables can be depicted as: 
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On plane (𝑧1, �̄�1), the displacement field and corresponding 

stresses of the incident wave W(i) in Domain I can be 

respectively expressed as [6]: 
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On plane (𝑧1, �̄�1), the displacement field and corresponding 

stresses of the scattered wave W(S1) produced by 𝑇𝐷⏜ in Domain 

I can be respectively expressed as [6]: 
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On plane (𝑧1, �̄�1), the displacement field and corresponding 

stresses of the scattered wave W(S2) produced by 𝑇𝐷⏜ in Domain 

II can be respectively expressed as [6]: 
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On plane (𝑧2, �̄�2), the displacement field and corresponding 

stresses of the scattered wave W(S2) can be respectively 

expressed as:  
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On plane (𝑧2, �̄�2), the displacement field and corresponding 

stresses of the scattered wave W(S3) produced by T1 in Domain 

II can be respectively expressed as:  
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On plane (𝑧1, �̄�1), the displacement field and corresponding 

stresses of the scattered wave W(S3) can be respectively 

expressed as:  
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On plane (𝑧1, �̄�1), the displacement field and corresponding 

stresses of the scattered wave W(S4) produced by 𝑇𝑈⏜ in Domain 

II can be respectively expressed as:  
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On plane (𝑧2, �̄�2), the displacement field and corresponding 

stresses of the scattered wave W(S4) can be respectively 

expressed as:  
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On complex plane (𝑧2, �̄�2), the scattered waves excited by 

the SH-wave on the outer boundary T1 of the circular lined 

tunnel can be expressed as: 
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On complex plane (𝑧2, �̄�2), the scattered waves excited by 

the SH-wave on the inner boundary T2 of the circular lined 

tunnel can be expressed as: 
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On complex plane (𝑧2, �̄�2), the standing wave generated by 

the SH-wave in Domain III (the circular lined tunnel in the 

overburden) is 𝑊(𝑧2,�̄�2)
(𝑆𝑇)

= 𝑊(𝑧2,�̄�2)
(𝑆𝑇1)
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. 

The scattered wave in the lined tunnel excited by the outer 

boundary T1 and the corresponding stresses can be 

respectively expressed as: 
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The scattered wave in the lined tunnel excited by the inner 

boundary T2 and the corresponding stresses can be 

respectively expressed as: 
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For the debonded structure, the axial stress should be free 

on boundary 𝑇1, and the displacement and axial stress should 

be continuous on boundary T1. In other words, the scattered 

wave in the lined tunnel excited by the outer boundary T1 must 

satisfy the following boundary conditions: 
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The scattered wave in the lined tunnel excited by the inner 

boundary T2 must satisfy the following boundary conditions: 
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where, En and Fn are undetermined coefficients. Expanding 

(38) and (39) on [-π, +π] into Fourier series: 
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where,  
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On complex plane (𝑧2, �̄�2), θ3 and θ4 are the starting and 

ending angles of the debonded structure (θ4≥θ3). 

If |Z2|=b, comparing (40) with (33):  
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If |Z2|=b, comparing (41) with (36): 
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Substituting (43) into (32):  
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The corresponding stresses can be respectively expressed as:  
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Substituting (44) into (35):  
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The corresponding stresses can be respectively expressed as:  
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𝑊(𝑧2,�̄�2)
(𝑆𝑇)

= 𝑊(𝑧2,�̄�2)
(𝑆𝑇1)

+𝑊(𝑧2,�̄�2)
(𝑆𝑇2)

 is the general equation 

ensuring that the stress is free on the debonded boundary and 

continuous on the non-debonded boundary. 

The equation should satisfy the following boundary 

conditions: 

The displacement is continuous on 𝑇𝐷⏜ : 𝑇𝐷(|𝑧1| =

𝑅𝐷):𝑊(𝑧1,�̄�1)
(𝑖) +𝑊(𝑧1,�̄�1)

(𝑆1) = 𝑊(𝑧1,�̄�1)
(𝑆2)

+𝑊(𝑧1,�̄�1)
(𝑆3)

+𝑊(𝑧1,�̄�1)
(𝑆4)

. 

The axial stress is continuous on DT
: 𝑇𝐷(|𝑧1| =

𝑅𝐷): 𝜏𝑧𝜌,(𝑧1,�̄�1)
(𝑖) + 𝜏𝑧𝜌,(𝑧1,�̄�1)

(𝑆1) = 𝜏𝑧𝜌,(𝑧1,�̄�1)
(𝑆2) + 𝜏𝑧𝜌,(𝑧1,�̄�1)

(𝑆3) +

𝜏𝑧𝜌,(𝑧1,�̄�1)
(𝑆4)

. 

The axial stress is free on 𝑇𝑈⏜: 𝑇𝑈(|𝑧1| = 𝑅𝑈): 𝜏𝑧𝜌,(𝑧1,�̄�1)
(𝑆2) +

𝜏𝑧𝜌,(𝑧1,�̄�1)
(𝑆3) + 𝜏𝑧𝜌,(𝑧1,�̄�1)

(𝑆4) = 0. 

The displacement is continuous on 𝑇1⏜ : 𝑇1(|𝑧2| =

𝑏):𝑊(𝑧2,�̄�2)
(𝑆2)

+𝑊(𝑧2,�̄�2)
(𝑆3)

+𝑊(𝑧2,�̄�2)
(𝑆4)

= 𝑊(𝑧2,�̄�2)
(𝑆𝑇1)

+𝑊(𝑧2,�̄�2)
(𝑆𝑇2)

. 

The axial stress is continuous on 𝑇1⏜ : 𝑇1(|𝑧2| =

𝑏): 𝜏𝑧𝜌,(𝑧2,�̄�2)
(𝑆2) + 𝜏𝑧𝜌,(𝑧2,�̄�2)

(𝑆3) + 𝜏𝑧𝜌,(𝑧2,�̄�2)
(𝑆4) = 𝜏𝑧𝜌,(𝑧2,�̄�2)

(𝑆𝑇1) + 𝜏𝑧𝜌,(𝑧2,�̄�2)
(𝑆𝑇2)

. 

The axial stress is free on 𝑇2⏜ : 𝑇2(|𝑧2| = 𝑎): 𝜏𝑧𝜌,(𝑧2,�̄�2)
(𝑆𝑇1) +

𝜏𝑧𝜌,(𝑧2,�̄�2)
(𝑆𝑇2) = 0. 

According to angular variable θ, Fourier series expansion 

was conducted on both sides of the equation, producing a set 

of equations with infinite terms and unknown coefficients. 

Considering the attenuation properties of the scattered wave, 

the finite terms for m and n were intercepted without 

sacrificing accuracy. In this way, the equation set was 

converted into a set of equations with finite terms. Then, the 

coefficients An, Bn, Cn, Dn, En, and Fn were solved. 

The scattering and diffraction of elastic wave have various 

results. One of them is the obvious change to the stress at the 

boundary of defects or obstacles. The change is normally a 

sudden increase of stress. This phenomenon is known as 

dynamic stress concentration. The concentration and change 

of dynamic stress are closely associated with the seismic 

damages of structure, reflecting the stress response of elastic 

media to external loads. Here, the DSCF on the boundary of 

the circular lined tunnel is defined as 𝜏𝑧𝜑,(𝑧2,�̄�2)
∗ =
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|
(𝜏𝑧𝜑,(𝑧2,�̄�2)

(𝑆𝑇1)
+𝜏𝑧𝜑,(𝑧2,�̄�2)

(𝑆𝑇2)
)

(𝑖𝑘3𝜇3𝑊0)
|
|𝑧2|=𝑅

, and abbreviated as 𝐷𝑆𝐶𝐹𝜎𝜃𝑧
∗ . The 

peak DSCF is denoted as 𝐷𝑆𝐶𝐹𝜎𝜃𝑧𝑚𝑎𝑥
∗ . 

 

 

3. NUMERICAL EXAMPLE 

 

The numerical example focuses on the dynamic stress 

concentration on the outer wall of a circular tunnel with 

partially debonded concrete or steel lining in overburden under 

the normally incident SH-wave. Suppose the incident angle of 

SH-wave is α0=90°; the inner diameter, outer diameter, and 

buried depth of the circular lined tunnel are a=1, b=1.3, , and 

h1=1.5a, respectively; the density of Domain I is ρ1=1; the 

shear wave velocity is c1=1. Then, the shear modulus can be 

derived as μ1=1 from 𝑐 = √𝜇/𝜌. For simplicity, all the results 

in the example are dimensionless. 

The following parameter combinations were defined: 

c*=c2/c1, c#=c3/c1, ρ*=ρ2/ρ1, ρ#=ρ3/ρ1, k*=k2/k1, and k#=k3/k1. 

Since k=ω/c, 𝑘∗ =
1

𝑐∗
= √𝜌∗/𝜇∗ , and 𝑘# =

1

𝑐#
= √𝜌#/𝜇# . If 

k*>1, then Domain I is harder than Domain II, that is, the SH-

wave is incident from the hard half space, while the lined 

tunnel lies in the soft overburden. 

The tunnel is lined with two common materials in 

engineering: (1) C30 concrete: density ρ3=2,400 kg/m3, shear 

modulus μ3=12GPa, and shear wave velocity c3=2,240 m/s. (2) 

Q345 steel: density ρ3=7,850 kg/m3, shear modulus μ3=79GPa, 

and shear wave velocity c3=3,160 m/s. 

Two geological conditions are involved in the example: 

Condition A (SH-wave is incident from a harder medium to a 

softer medium) and Condition B (SH-wave is incident from a 

softer medium to a harder medium). 

In Condition A, Domain I is basalt: density ρ1=3,100 kg/m3 

and shear wave velocity c1=4,000 m/s; Domain II (overburden) 

is sandstone: density ρ2=2,800 kg/m3 and shear wave velocity 

c2=2,500 m/s. Then, if ρ1=1, then ρ*=0.9, and k*=1.6. In this 

case, if the lining is C30 concrete, then ρ#≈0.77, and k#≈1.8; if 

the lining is Q345 steel, then ρ#≈2.53, and k#≈1.27. 

In Condition B, Domain I is coal seam: density ρ1=1,500 

kg/m3 and shear wave velocity c1=1,000 m/s; Domain II 

(overburden) is sandstone: density ρ2=2,800 kg/m3 and shear 

wave velocity c2=2,500 m/s. Then, if ρ1=1, then ρ*≈1.87, and 

k*≈0.4. In this case, if the lining is C30 concrete, then ρ#≈1.6, 

and k#≈0.45; if the lining is Q345 steel, then ρ#≈5.2, and k#≈0.3. 

If the media parameters satisfy μ*=k*=ρ*=1, Domains I and 

II have the same parameters. Then, the boundary TD ceases to 

exist, and the two domains merge into one. Next, it is assumed 

that μ#=ρ#=1. Then, Domains II and III merge into one. In this 

case, the problem degenerates into the scattering of SH-wave 

by a circular cavity with a radius of a=1 in half space (Problem 

1). Figure 2 provides the DSCFs around the circular cavity for 

h1=1.5a and h1=12a, respectively, under Rd≥120r, and k1=0.1. 

The results are basically the same as those of Lin and Liu [6]. 

If μ*=k*=1, μ#=μ3/μ1=1/0.31=3.2, k#=0.7, and b/a=1.1, the 

problem degenerates into the scattering of normally incident 

SH-wave by the circular lined tunnel in a half space (Problem 

2). Figure 3 provides the DSCFs of the lining under the 

incident frequencies of k1a=0.1, k1a=1.0, and k1a=2.0, 

respectively. The results are basically the same as those of Qi 

et al. [10]. 

 
 

Figure 2. The DSCFs around the circular cavity in half space 

(Problem 1) 

 

 
 

Figure 3. The DSCFs of the outer wall of the circular lined 

tunnel in half space (Problem 2) 

 

The undetermined constants An, Bn, Cn, Dn, En, and Fn were 

solved by the intercepted equation set that strictly meet the 

boundary conditions. The solved coefficients were substituted 

into the equations to test the convergence of the numerical 

results based on the continuity of boundaries. Dimensionless 

residual stresses were introduced to measure the accuracy of 

series solutions: 

Residual stress on the outer boundary of the lined tunnel: 

𝜏𝑧𝜌
𝑏 =

|
(𝜏𝑧𝜌,(𝑧2,�̄�2)

(𝑆2)
+𝜏𝑧𝜌,(𝑧2,�̄�2)

(𝑆3)
+𝜏𝑧𝜌,(𝑧2,�̄�2)

(𝑆4)
−𝜏𝑧𝜌,(𝑧2,�̄�2)

(𝑆𝑇1)
+𝜏𝑧𝜌,(𝑧2,�̄�2)

(𝑆𝑇2)
)

(𝑖𝑘1𝜇1𝑊0)
|
|𝑧2|=𝑏

; 

Residual stress on the inner boundary of the lined tunnel: 

𝜏𝑧𝜌
𝑏 = |

(𝜏𝑧𝜌,(𝑧2,�̄�2)
(𝑆𝑇1)

+𝜏𝑧𝜌,(𝑧2,�̄�2)
(𝑆𝑇2)

)

(𝑖𝑘1𝜇1𝑊0)
|
|𝑧2|=𝑎

. 

Figures 4 and 5 respectively display the radial residual 

stresses on the inner and outer boundaries of the lined tunnel 

in Problem 2. It can be seen that the radial residual stresses 

belonged to the orders of 10-4~10-7, which are accurate enough 

to solve this problem. 

The above verification shows that the big circle method, 

plus the rational interception of equation terms, can effectively 

solve the SH-wave scattering in half space, laying a solid basis 

for solving our problems. 

Figures 6 and 7 respectively display the variation of 

𝐷𝑆𝐶𝐹𝜎𝜃𝑧𝑚𝑎𝑥
∗  with k1a on the outer wall of the partially 

debonded C30 concrete lining or Q345 steel lined tunnel in the 

sandstone layer under Condition A. In this case, the SH-wave 

is incident from a harder medium to a softer medium.  
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Figure 4. The radial residual stresses on the inner surface in Problem 2 

 

 
 

Figure 5. The radial residual stresses on the outer surface in Problem 2 

 

 
 

Figure 6. The variation of 𝐷𝑆𝐶𝐹𝜎𝜃𝑧𝑚𝑎𝑥
∗  with k1r on the outer wall of the partially debonded C30 concrete lining under Condition 

A 

 

 
 

Figure 7. The variation of 𝐷𝑆𝐶𝐹𝜎𝜃𝑧𝑚𝑎𝑥
∗  with k1r on the outer wall of the partially debonded Q345 steel lining under Condition A 

 

The key of analyzing this case is to find the frequency band 

of concrete or steel lining that is most sensitive to the dynamic 

action of incident wave under Condition A. The findings will 

provide a theoretical basis for damping the effect of dynamic 

stress concentration in engineering design. Besides, the critical 

frequencies could be determined based on the two figures, 

providing a reference for subsequent discussion. 

In both figures, the 𝐷𝑆𝐶𝐹𝜎𝜃𝑧𝑚𝑎𝑥
∗  of the lining increased 

gradually with the rise of k1a, and reached the peak at 

k1a≈0.3~0.4, before entering a fluctuating decline. Therefore, 

the lining damage induced by low-frequency wave is 

noteworthy, when the SH-wave is incident from a harder 

medium to a softer medium.  

The 𝐷𝑆𝐶𝐹𝜎𝜃𝑧𝑚𝑎𝑥
∗  in Figure 6 appeared at k1a≈0.32, greater 

than the 𝐷𝑆𝐶𝐹𝜎𝜃𝑧𝑚𝑎𝑥
∗  in Figure 7, which was observed at 

k1a≈0.35. This means a high lining rigidity helps to reduce 

dynamic stress concentration. The k1a=0.1, 0.32, 1.25 in 

Figure 6 and k1a=0.1, 0.32, 1.25 in Figure 7 were taken as the 

critical frequencies to analyze the DSCF on the outer wall of 

the lined tunnel. 
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Figure 8. The variation of 𝐷𝑆𝐶𝐹𝜎𝜃𝑧𝑚𝑎𝑥
∗  with k1a on the outer wall of the partially debonded C30 concrete lining under Condition 

B 

 
 

Figure 9. The variation of 𝐷𝑆𝐶𝐹𝜎𝜃𝑧𝑚𝑎𝑥
∗  with k1a on the outer wall of the partially debonded Q345 steel lining under Condition B 

 

Figures 8 and 9 respectively display the variation of 

𝐷𝑆𝐶𝐹𝜎𝜃𝑧𝑚𝑎𝑥
∗  with k1a on the outer wall of the partially 

debonded C30 concrete lining or Q345 steel lined tunnel in the 

sandstone layer under Condition B. In this case, the SH-wave 

is incident from a softer medium to a harder medium.  

Compared with Figures 6 and 7, the 𝐷𝑆𝐶𝐹𝜎𝜃𝑧𝑚𝑎𝑥
∗  values in 

Figures 8 and 9 were very small, for the overburden has a 

greater shear modulus than the lower soil layer. In both Figures 

8 and 9, the 𝐷𝑆𝐶𝐹𝜎𝜃𝑧𝑚𝑎𝑥
∗  decreased slightly after reaching the 

peak at k1a≈0.25, but tended to grow after the frequency 

increased. 

From Figures 6-9, the difference from the half space 

problem was summed up as: the rigidity of the overburden has 

a significant effect on the frequency band that corresponds to 

the strongest dynamic stress response of the lining. The hard 

overburden could shield the SH-wave. Then, k1a=0.1, 0.25, 

1.25 were taken from Figures 8 and 9 as the critical frequencies 

to analyze the DSCF on the outer wall of the lined tunnel. 

 

 
 

Figure 10. 𝐷𝑆𝐶𝐹𝜎𝜃𝑧
∗  on the outer wall of the partially debonded C30 concrete lining in the sandstone layer under Condition A 

 

Figure 10 provides the DSCFs on the outer wall of the 

partially debonded C30 concrete lining in the sandstone layer 

under Condition A, when the SH-wave is normally incident 

from the basalt layer to the sandstone layer.  

It can be seen that, under a low incident frequency k1a=0.1, 

the 𝐷𝑆𝐶𝐹𝜎𝜃𝑧𝑚𝑎𝑥
∗  on the outer wall of the lining appeared at 

about 200 ° and 340 °. With the growth in incident frequency, 

the 𝐷𝑆𝐶𝐹𝜎𝜃𝑧
∗  increased significantly. Under a high incident 

frequency k1a=2.0, the 𝐷𝑆𝐶𝐹𝜎𝜃𝑧
∗  became smaller and more 

complex in distribution shape. In this case, the C30 concrete 

lining is more sensitive to the dynamic action of low-

frequency incident wave, that is, the structure resonates with 

the site at the low frequency stage. 

The debonded structure brought major changes to the 

distribution of DSCFs in the 0°-180° area of the lining. 

Debonding pushed up the 𝐷𝑆𝐶𝐹𝜎𝜃𝑧
∗  of the outer wall of the 

lining in varying degrees. At k1a=0.1, the 𝐷𝑆𝐶𝐹𝜎𝜃𝑧
∗  suddenly 

changed on the outer wall of the lining debonded within 

0°~180°. At k1a=1.25, the 𝐷𝑆𝐶𝐹𝜎𝜃𝑧
∗  on the outer wall of the 

lining increased significantly due to debonding. To sum up, 

debonding has varied effects on the distribution shape and 

value of the 𝐷𝑆𝐶𝐹𝜎𝜃𝑧
∗  on the outer wall of the lining. 
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Figure 11. 𝐷𝑆𝐶𝐹𝜎𝜃𝑧
∗  on the outer wall of the partially debonded Q345 steel lining in the sandstone layer under Condition A 

 

Figure 11 provides the DSCFs on the outer wall of the 

partially debonded Q345 steel lining in the sandstone layer 

under Condition A, when the SH-wave is normally incident 

from the basalt layer to the sandstone layer. Because steel has 

much larger density and shear modulus than concrete, the 

tunnel in this case has a hard and rigid lining. 

Compared with Figure 10, the 𝐷𝑆𝐶𝐹𝜎𝜃𝑧
∗  values in Figure 11 

were generally small. A possible reason is that the relatively 

hard steel absorbs fewer energy than concrete, under dynamic 

actions.  

Moreover, debonding exerted a greater impact on the 

𝐷𝑆𝐶𝐹𝜎𝜃𝑧
∗  on the outer wall of Q345 steel lining than that on 

the outer wall of C30 concrete lining: the 𝐷𝑆𝐶𝐹𝜎𝜃𝑧
∗  on the 

outer wall of the steel lining was much greater than that on the 

outer wall of concrete lining, owing to the debonding of the 

lining. As shown in Figure 11, at k1a=0.1, the 𝐷𝑆𝐶𝐹𝜎𝜃𝑧
∗  surged 

up in the debonded area within 0°~180°; at k1a=1.25, the 

𝐷𝑆𝐶𝐹𝜎𝜃𝑧
∗  suddenly changed on the outer wall of the debonded 

lining, and the dynamic stress concentration intensified with 

the scope of debonding. 

 

 
 

Figure 12. 𝐷𝑆𝐶𝐹𝜎𝜃𝑧
∗  on the outer wall of the partially debonded C30 concrete lining in the sandstone layer under Condition B 

 

 
 

Figure 13. 𝐷𝑆𝐶𝐹𝜎𝜃𝑧
∗  on the outer wall of the partially debonded Q345 steel lining in the sandstone layer under Condition B 

 

Figure 12 provides the DSCFs on the outer wall of the 

partially debonded C30 concrete lining in the sandstone layer 

under Condition B, when the SH-wave is normally incident 

from the coal seam to the sandstone layer. In this case, the SH-

wave is incident from a softer medium to a harder medium. 

Compared with Figure 10, the 𝐷𝑆𝐶𝐹𝜎𝜃𝑧
∗  values in Figure 13 

were extremely small. As the shear modulus of overburden 

soil grew, the DSCFs around the lining in the overburden 

decreased across the board. This is probably the result of the 

fact that the hard overburden can reflect and shield the energy 

of the SH-wave transmitted from the lower soft soil layer, 

which in turn mitigates the stress concentration around the 

lining.  

At k1a=0.1, the 𝐷𝑆𝐶𝐹𝜎𝜃𝑧
∗  rose sharply in the debonded area 

within 0°~180°. However, debonding no longer had a 

significant effect on DSCF, with the increase of the incident 

frequency. 

Figure 13 provides the DSCFs on the outer wall of the 
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partially debonded Q345 steel lining in the sandstone layer 

under Condition B, when the SH-wave is normally incident 

from the coal seam to the sandstone layer.  

Similar to Figure 11, the hard overburden in Figure 13 

greatly suppressed the 𝐷𝑆𝐶𝐹𝜎𝜃𝑧
∗  on the outer wall of the lining. 

Compared with Figure 12, the 𝐷𝑆𝐶𝐹𝜎𝜃𝑧
∗  on the outer wall of 

the lining was further reduced by the growing shear modulus 

of the lining.  

In this case, debonding exerted an even greater impact on 

𝐷𝑆𝐶𝐹𝜎𝜃𝑧
∗ . In particular, when the incident frequency was 

k1a=0.25 or k1a=1.45, the intensity of dynamic stress 

concentration increased with the scope of debonding. The 

debonding significantly promoted the 𝐷𝑆𝐶𝐹𝜎𝜃𝑧
∗  on the outer 

wall of the lining, whether the debonding occurred within 

0°~90° or 0°~180°. Therefore, the effect of SH-wave on 

dynamic stress concentration must be highlighted, when the 

steel lining debonded under condition B. 

 

 

4. CONCLUSIONS 

 

(1) The lining in soft overburden is highly sensitive to the 

dynamic action of low- and medium-frequency incident waves, 

i.e. the 𝐷𝑆𝐶𝐹𝜎𝜃𝑧𝑚𝑎𝑥
∗  on the outer wall of the lining is 

significantly affected by low- and medium incident 

frequencies. The lining in hard overburden is highly sensitive 

to the dynamic action of high-frequency incident wave, i.e. the 

𝐷𝑆𝐶𝐹𝜎𝜃𝑧𝑚𝑎𝑥
∗  on the outer wall of the lining is significantly 

affected by high-frequency incident wave. 

(2) The DSCF on the outer wall of the lining is under the 

joint effects of incident frequency, soil layer parameters, lining 

material parameters, and debonding scope. In engineering, the 

structure of the lined tunnel in overburn must be designed in 

the light of all these factors and the local geology. 

(3) 𝐷𝑆𝐶𝐹𝜎𝜃𝑧𝑚𝑎𝑥
∗  was obviously amplified by the soft 

overburden, but reflected and shielded by the hard overburden. 

Let SMD be the shear modulus difference between the lining 

and surrounding soil. The smaller the SMD, the easier it is for 

the lining to absorb energy, and the higher the 𝐷𝑆𝐶𝐹𝜎𝜃𝑧𝑚𝑎𝑥
∗ ; 

the higher the SMD, the weaker the dynamic stress 

concentration. 

(4) For the lining in soft overburden, debonding makes the 

lining more sensitive to the dynamic action of the low-

frequency incident wave, that is, the 𝐷𝑆𝐶𝐹𝜎𝜃𝑧𝑚𝑎𝑥
∗  on the outer 

wall of the lining is affected greater at low incident frequency. 

For the lining in hard overburden, debonding makes the lining 

more sensitive to the dynamic action of the high- frequency 

incident wave, that is, the 𝐷𝑆𝐶𝐹𝜎𝜃𝑧𝑚𝑎𝑥
∗  on the outer wall of 

the lining is affected greater at high incident frequency. Rigid 

lining is affected by debonding more significantly than 

flexible lining. 
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