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A reliable fault-tolerant control model for wind turbines (WTs) is a prominent task to meet 

the control objectives under the presence of the actuator faults. To this aim, the main focus 

of the present article is the design of a new fault-tolerant control scheme to deal with both 

additive and multiplicative faults. The design of the proposed method includes two 

extreme learning machine (ELM) blocks; an ELM-baseline controller to keep the desired 

wind turbine performances, and fault-tolerant ELM-block to eliminate any possible 

actuator faults effect. The design process of the ELM controller and the ELM fault 

estimator are formulated in a way that they only depend on WT input-output data, which 

allows a much faster and more precise fault tolerance. The effectiveness of the ELM fault-

tolerant method is tested and compared to a sliding mode observer-based accommodation 

method using a 5-MW WT benchmark model. Simulation results validate the great 

performances of the proposed method. 
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1. INTRODUCTION

Wind energy is renewable, clean, and inexpensive alter- 

native energy. However, the amount of energy generated by 

wind turbines depends on the available wind speed. So, to 

perfectly benefit from the available wind energy, the wind 

turbine plant become larger and more sophisticated. Within the 

wind turbine systems, the servo pitch subsystem control is of 

paramount importance for mitigating the operational load and 

limiting the power capture under high wind speeds [1]. 

Numerous pitch control strategies developed for wind turbines 

in the literature. These methods usually classified into two 

main categories; Individual pitch control methods (ICP) [2, 3], 

where each pitch position control controller designed 

separately. The collective pitch control methods (CPC) [4, 5], 

where the pitch positions of all blades controlled together 

using the same pitch angle reference. In the CPC framework, 

many strategies have been suggested including, the PID 

control [6], the gain-scheduling control method [7], the Linear 

Parameter-Varying control [8], and the Linear Quadratic 

Gaussian control method [9]. However, the high-performance 

of the pitch control is still a considerable challenge due to the 

nonlinear properties of the wind turbine aerodynamics and the 

strong coupling of the wind turbine subsystems. Besides, in 

real operation, pitch systems may have actuator faults that can 

cause the system to shut down or even to be broken if proper 

measures not held [10]. In this matter, the fault-tolerant control 

method is a potent technique that elaborated over the past 

decades to tolerate faults and maintain an acceptable 

performance level [11, 12]. According to the proposed FTC 

methods, two main categories can be distinguished when 

dealing with faults. Passive FTC methods where a robust 

controller designed so that the system can operate during fault-

free and faulty cases and active fault-tolerant techniques where 

the controller is adjusted based on the available information on 

the fault function. When browsing the passive FTC methods 

[13-15], one can notice that the control low does not require to 

be changed when the fault appears in the system. In other terms, 

this means that the design steps of the controller need to 

calculate the parameters for the most severe case that the 

system can handle, which is disadvantageous because it 

increases the complexity of the controller. Moreover, the worst 

fault scenario can be different for each wind turbine on 

account of varying factors as for the external environment and 

the WT technology been used. 

On the other hand, the active FTC method has become a 

new focus [16-18]. The fact that the controller can benefit from 

the fault information obtained based on the changes of the 

system state variables when aroused by faults has the 

advantage of fast fault compensation, which can optimally 

recover the nominal operation status. However, the system 

state variables not always available, thus a state estimator is to 

be included in the design process, which degrade the control 

performances due to the estimation error, the neglected 

dynamics, and the reduced model used to describe the wind 

turbine system. Moreover, as in the study [19], the designed 

controller is usually based on a linearized WT model around a 

fixed operating point, which may not provide identical 

performance when the operating point or the WT parameters 

deviate significantly. Furthermore, the significant attention of 

the proposed studies on the FTC of WT concentrates on 

additive faults, thus only a few efforts made on multiplicative 

actuator faults. 

The main objectives of this paper are to examine the 

following practical requirements: (i) design a robust ELM- 

controller with fast and reduced fluctuation in the full load 

region. (ii) estimate the changes in the control performances 

caused by actuator faults (iii) apply FTC to recover the 
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nominal pitch performance. In specific, two ELM models built 

for this reason. An ELM-baseline controller formulated to 

depends only on the available WT outputs and a fast ELM fault 

estimator where the representation form for multiplicative 

faults written so that those faults estimated from the input-

output information. 

The rest of this work is as follows. Section 2 presents the 

WT system with concerned actuator faults, along with a de- 

tailed introduction to the ELM method. Section 3 details the 

processes of considered FTC control method. The efficiency 

of the ELM-based FTC method investigated in Section 4. 

Finally, the conclusion provided in Section 5. 

 

 

2. PROBLEM FORMULATION  
 

2.1 Wind turbine modeling and faults 
 

As detailed in Figure 1, the entire wind turbine system is the 

interconnection between several subsystems: aerodynamics, 

the pitch subsystem, the generator unit, and the mechanical 

subsystem, which comprises two blocks, i.e., the drive-train 

dynamics, and the support structure [20]. 

 

 
 

Figure 1. Connection between the wind turbine subsystems 
 

In this work, we only focus on faults affecting the pitch 

actuator. Therefore, only the pitch control system and the 

dynamics used to introduce the ELM controller described in 

this section. However, in the simulation section, the complete 

FAST wind turbine model is employed to test the proposed 

ELM-FTC method. Moreover, since the wind turbine has tree 

individual pitch actuators, it is assumed that these actuators 

have the same dynamic structure and the same control input. 

The equations of motion describing the dynamics of each pitch 

actuator and the rotational speeds are defined as follows. 

 

( )c

d   = − +  (1) 

 

( )r r s r g s s aJ b d T   + − + =  (2) 

 

( )g g s r g s s gJ b d T   − − − = −  (3) 

 

where, , 
c 

d are the actual pitch and the desired control 

command, αβ is the constant related to the pitch system. ωr, ωg 

symbolize the angular velocities of the rotor and the generator, 

Jr, Jg denote the corresponding inertias. As for ϕs, ds and bs 

they indicate the torsional angle, stiffness and damping 

coefficient respectively, and Tg indicates the electrical torque. 

The aerodynamic torque Ta acting on the blades is modeled by  

3 21
( , )

2
a pT R C v  


=  (4) 

 

where, Cp is the turbine power-coefficient, R is the radius of 

the blades,  express the density of the air, and λ=ωrR/v is 

called the speed ratio.  

As each of the tree pitch systems can be subject to faults 

triggered as a change in the actuator dynamics (as an offset in 

the value of αβ), the faulty actuator is modeled in the following 

form: 

 

0 0

c

d f      = − + +  (5) 

 

where, f=(,f-0)(
c 

d -) is the fault function in which αβ0 is 

the nominal value of αβ, and αβ,f is the value when fault appear 

in the actuator. To respect the physical constraints of actuators 

as a rate limiter is implemented to the controller as illustrated 

in Figure 2. 

 

 
 

Figure 2. The pitch actuator model 
 

2.2 The ELM algorithm 

 

The extreme learning machine algorithm is a kind of neural 

networks with only one hidden layer that is developed to 

estimate complex nonlinear dynamics from the available input 

samples [21-23]. The central idea of the ELM algorithm is that 

the input weights vector that connects the input nodes with the 

hidden layer are randomly attributed if the activation function 

allocated to the hidden layer is chosen infinitely differentiable. 

Hence, when the weight vector is fixed, the ELM can be seen 

as a linear system, and the output weight vector can be 

computed using the generalized inverse operation. From 

mathematical perspective, for L arbitrary different samples (xi, 

ti) where xip and tiq the ELM network with M hidden 

nodes and activation function w(x) can be expressed as 

 

1 1

( ) ( ) 1, ,
M M

i j i i j i j

i i

w w b j L 
= =

= + = = x a x y  (6) 

 

where, aip is the input weight vector, θi is the output weight 

vector and bi is the bias. Given the training data (xi, ti) if the 

ELM output is equal to desired target then there exist a weight 

vectors θi, ai and bi satisfies the following statement: 

 

1

( )
M

i i i j j j

i

w b
=

+ = a x t  (7) 

 

which can be rewritten in the matrix form as  

 

=θW T  (8) 

 

To extract the output weight, a special solution of the system 

(8) is calculated by  
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†=θ W T  (9) 

 

where,
†

W and T denote the generalized inverse of W, and the 

target vector given by 

 

1 1 1 1

1 1

( ) ( )

( ) ( )

M M

L M L M

w a x b w a x b

w a x b w a x b

+ + 
 

=  
 + + 

W , 

1

T

T

M





 
 

=  
 
 

θ  

and 

1

T

T

L

t

t

 
 

=  
 
 

T . 

 

 

Lemma 1 [22]: Given a scalar γ>0 and any differentiable 

activation function :w R R→ , there exist M<L such that for 

L arbitrary different samples (xi,ti), for any random wight input 

vector (ai,bi) chosen according to any continuous probability 

the following statement holds: − Wθ T .  

 

 

3. ELM-BASED FTC METHOD 

 

In this section, the ELM baseline controller is proposed first 

to maintain constant power generation under the high wind 

speed. Then, the FTC strategy is developed for each pitch 

actuator to recover the nominal dynamic behaviour when fault 

affects one of the actuators (see Figure 3). 

 

3.1 ELM-baseline controller 

 

The baseline controller for the pitch system only activated 

in the high operating zones of the wind speed. The concept is 

that the controller needs to acts on the system to change the 

pitch angle in order to limit the aerodynamic force acting on 

the blades to keep the generator rotational speed at the desired 

value, which thus reduces the load fatigue and prevent severe 

damages on the system. In respect, let assume that the wind 

turbine operates at the desired generator speed ωg,nom, then, the 

torque is set as Tg=Pg,d/ωg,nom and the governing equation 

modeling the rotational speed of the generator dynamics is 

given by:  

 

,2 3

,

1 1
( ( , ) )
2

g d

g p

r g g g nom

P
R C v

J J
   

 
= −

+
 (10) 

where, Pg,d is the wind turbine nominal power. As can be 

observed from (10) the rotational speed can be simply 

rewritten as  

 

( , , )g gf v  =  (11) 

 

As we can see also from (10), the pitch input is an implicit 

function in this equation. Let consider the following change: 

 
*( , , )g gf v   = =  (12) 

 

where, 
* * *

,( , , )g nomu f v   = =  is the ideal control function. 

Then, using the approximation theorem of the ELM algorithm, 

the controller 
*u  is described as 

 
* * *( , , ) ( )gu v       = + = +W W x  (13) 

 

where, θ* is the weight vectors of the optimal and the ELM 

controller, W(x) is the processed ELM hidden matrix, and εβ 

is a small bounded approximation error (    ). Therefore, 

ELM network depicted in Figure 4 can be set to approximate 

the optimal pitch command 
*u  as follows: 

 

( )u = W x  (14) 

 

3.1.1 Closed loop stability analysis 

Let define the tracking error e=ωg-ωg,nom. Hence, the 

dynamic of the error is obtained as:  

 

, ,( , , )g g nom g g nome f u v   = − = −  (15) 

 

Let define the pseudo control η as  

 

, 1g nom k e = −  (16) 

 

Given that η is not a function of the input uβ but it only a 

state-dependent function it follows that in a neighborhood of 

each ωg, uβ, v, it results that 

 
*( , ( , , ), ) 0g gf f v v   − =  (17) 

 

 

 
 

Figure 3. The ELM-based FTC schemes 

267



 
 

Figure 4. The ELM baseline controller 

 

Hence, using the mean value theorem, the dynamics of the 

error rewritten as 

 
* *

,
*

,

( , , ) ( )

( )
g g nom

g nom

e f v u

u
 

 

    

   

= + − −

= + − −
 (18) 

 

where, 
( , , )gf v



 





=


 with (1 )   = + −  and 

(0,1)  . Let consider the following assumption 

 

1 2

( , , )
0

( )

gf v
f f

d
N

dt

 







−   − 








 (19) 

 

where, 1 2,f f  and N are positive constants. Then, the 

following Lyapunov function is considered: 

 
2

1

1

2 2

Te
V



 
 

= +  (20) 

 

where, *  = −  is the weight error and μ is a positive scalar. 

Based on (16) and (18) the time derivative of V1 yields: 

 

21

1 2

1 1
( )

2

T Tk
V e e e 

 

  
 

   
= + + − + +    

  

W x  (21) 

 

To ensure the robustness of the output weight, the e-

modification is considered to update the output weights 

 

( ( ) )T e e   = −W x  (22) 

 

where, τ >0 and μ is the learning rate, using assumption (19) 

we obtain: 

 

21

1 2

1 2

1
( )

2

T Tk N
V e e e

f f
  



   
  − + + + − +     

W x  (23) 

 

( )

21

1 2

1 22

T

T

k N
V e e e

f f

K e e





   

  

 
  − + + −
 
 

 − + −

 

 

which is equivalent to: 

 

( )*

1

T TV K e e     − + + −   

 

Hence, if 
2( ) 4e K K  + or 

22 2      + + implies that 
1 0V  , and that the 

closed loop system is uniformly bounded. 

 

3.2 FE and FTC design 

 

As outlined in Figure 3 beside the ELM baseline controller, 

the ELM-FTC scheme includes a fault estimation block along 

with a fault corrector to compensate the fault effects. 

In regards to the fault estimator, as we can conclude from 

(5), the nonlinear actuator fault function fβ depends on the 

measured pitch output β=βm and the baseline controller uβ. 

Thus, the problem of estimating fβ can be also formulated using 

the ELM theorem as follows: 

 
* *( , ) ( )f m f f f f ff u e e    = + = +W W x  (24) 

 

where, 
*

f  is the ideal output weight vector of the fault, and ef 

is the approximation error. According to lemma 1 the fault fβ 

can be also estimated using The ELM as follows: 

 

ˆ ( )f ff = W x θ  (25) 

 

which can be seen as to find the weight vector θf so that the 

tracking error ˆ
fe f f = − converge to a small set 

fe with 

f fe e . Wf is the fault estimator hidden matrix. 

Finally, to achieve the fault tolerance, given that actuator 

faults modeled as additive faults, a simple fault compensation 

method is adopted as follows: 

 

,0

1 ˆ
corru u f 


= −  (26) 

 

such that when applying ucorr, the actual system becomes 

 

,0 ,0

,0

1 ˆ( )u f f    



   


= − + − +  (27) 

 

which correspond to the original fault free case when 0fe → . 

 

3.2.1 Closed loop stability analysis 

Let consider the Lyapunov function given as  

 

2

1

1

2
fV V e= +  (28) 
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According to lemma 1 the fault estimation error ef bounded 

( f fe  ) let assume fe  . Using (23), the time 

derivative of V becomes: 

 

( )T

f fV K e e e e   − + − +  (29) 

 

Let 
f f K  =  then if 

2( ) 4e K K   + +  or 

22 2      + +  then the Lyapunov function 0V   

and the closed-loop system is uniformly bounded. 

 

 

4. SIMULATION RESULTS  

 

To illustrate the effectiveness of the proposed ELM-FTC 

scheme, we consider a 5 MW wind turbine whose parameters 

are given in the appendix. 

 

 
 

Figure 5. The wind speed profile 

 

During simulation we assume that the WT operate with a 

typical wind speed in the range between v= [11.2 25] m/s as 

depicted in Figure 5. 

The control objective is to limit the generated power at the 

rated value by considering the physical system constraints, 

nonlinearities, and the presence of actuator faults. To this end, 

simulations performed for two cases. (i) the nominal case by 

implementing the proposed ELM-baseline controller without 

any actuator fault occurrence. (ii) the faulty case under the 

effect of actuator faults on the pitch actuator.  

 

4.1 Case 1: Fault free 

 

In this case, the ELM-baseline controller is tested using the 

wind sequence in Figure 5. The ELM controller parameters are 

set as follows; the activation function w(x) is a sigmoid 

function, 

 

( )

1
( )

1 ax b
w x

e− +
=

+
 (30) 

 

while the number of hidden nodes is chosen so that the training 

error is close to zero, as indicated in Figure 6. 

Next, to investigate the controller, robustness Figure 7 

illustrates the ELM controller with different parameters setup 

where the input weight vector is chosen randomly in the 

interval [-1 1]. 

 
 

Figure 6. Baseline controller training error 

 

 
 

Figure 7. ELM controller with different parameters 

 

 
 

Figure 8. The rotor speed output 

 

 
 

Figure 9. The generator speed output 
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Figure 10. The control effort 

 

From Figure 7, we can observe that the ELM controller can 

achieve acceptable tracking performance with a small number 

of neurons in the hidden layer.  

In the following, to further asses the performance of the 

method, the LQR control method [9] is employed as a 

comparative study. Figures 8-10. shows the angular velocities 

of the rotor, generator and the control effort made by both 

controllers. 

From these plots it can be seen that the ELM controller 

produces robust responses compared to the LQR controller 

which clearly manifest in term of the reduced fluctuation 

generated by the ELM controller compared to the LQR 

controller, and in the fast convergence to the desired value. 

 

4.2 Case 2: Faulty actuator 

 

Next, to check the fault tolerance performance of the ELM 

method, two actuator faults have been considered for the pitch 

actuators. A multiplicative fault represented as a 20% loss in 

the capacity of the actuator between the time 100s and 130s 

(uf(t)=0.8uβ(t)). And an offset actuator fault represented as an 

additive fault of fa2=0.5rad/s at the time t=50s. 

In a similar way to the baseline ELM controller, the design 

parameters of the ELM estimator are set using 100 hidden 

nodes and processed using the sigmoid function. In Figures 

11-12, the performance of fault estimation is compared with 

the sliding mode observer [9] using the ELM baseline 

controller. 

 

 
 

Figure 11. Estimation of the multiplicative actuator fault fa1 

 
 

Figure 12. Estimation of the offset actuator fault fa2 

 

 
 

Figure 13. Tracking of reference rotor speed with FTC in 

actuator fault fa1 

 

 
 

Figure 14. Tracking of reference pitch position with FTC in 

actuator fault fa1 

 

As shown in Figures 11 and 12, it can be seen that both the 

ELM estimator and the sliding mode observer produces 

accurate estimates of the actuator fault offset. However, for the 

multiplicative fault, the ELM method outperforms the SMO 

technique in terms of accuracy, which manifests when 

applying the FTC to eliminate the fault effect. Figures 13-16 

shows the actual and the faulty rotor speed and the pitch 

position outputs when applying the tolerant control low (26) 

based on the estimate provided by both methods. 
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From the plots 13-16, it can be seen that the FTC based on 

the SMO does not converge to the desired quantities in the case 

of the fault fa2, and this is due to the poor estimation accuracy 

of the SMO when facing nonlinear distribution fault function 

as in fa1. On the other hand, when using the ELM-FTC scheme, 

the wind turbine outputs converge to the nominal values with 

excellent performance. 

 

 
 

Figure 15. Tracking of reference rotor speed with FTC in 

actuator fault fa2 

 

 
 

Figure 16. Tracking of reference pitch position with FTC in 

actuator fault fa2 

 

 

5. CONCLUSIONS 

 

In this work, an ELM-based FTC method has been designed 

to achieve the desired control performance in the high wind 

speed operating zone and to eliminate any possible actuator 

fault in the pitch system. The method included two ELM 

models, one to provide the optimal control command in the 

fault-free case, and the second to approximate the actuator 

fault affecting the WT system. Using the information of the 

ELM estimation model, an active fault-tolerant compensator 

is presented and tested by numerical simulation. The 

performed simulation demonstrates that the ELM-FTC can 

recover the standard actuation, guarantee the WT stability, and 

ensure better control performance. For future research, it is 

essential to extend the method developed to manage sensor 

faults and tested it in several power resources. 
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APPENDIX 

 

The wind turbine nominal parameters 

 

, 5 ,g dP MW= 31.225 /Kg m = 238759227rJ Kgm= ,

25025347gJ Kgm= , 63R m= , 
, 1173.7g nom rpm = , 

867637000sb Nm= , the gear box ratio 97gn = ,

6215000sd Nms= , 
0

1
0.1s






= = ,  
0

0 90  .
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