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Numerical studies were performed to examine the MHD mixed convection flow through 
an impulsively stretched permeable vertical plate with diffusion-thermo and thermal-
diffusion effects. This study was conducted to address the cooling problem of boundary 
layer fluid flow. Numerical solutions for the velocity fields, concentration distributions, 
as well as temperature distribution, were obtained for different values of the associated 
parameters using the finite difference numerical method. The obtained results were 
discussed with the help of graphs to observe the effects of these several parameters 
entering into the problem on the velocity and temperature fields and the concentration 
distribution. 
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1. INTRODUCTION

The effect of thermal diffusion on MHD heat and mass
transfer fluid flow past on a continuously moving surface has 
great importance to the engineering community and the 
investigators dealing with the problems in many industrial 
processes and many technological fields. The free convection 
process involved in combined heat and mass transfer 
mechanism of a porous medium has attracted great 
consideration in the last decades, due to its high importance in 
industrial applications and many engineering, geophysical and 
chemical engineering systems. In recent years, the study of 
free convective heat transfer flow along with mass transfer 
effects has become the object of extensive research due to its 
usage in the design of steel rolling and nuclear power plants, 
and many other engineering applications. The engineering 
applications of these studies include rocket nozzles, cooling of 
nuclear reactors, high sinks in turbine blades, high speed 
aircrafts and their atmospheric re-entry, chemical devices and 
process equipment, cooling of electronic systems, thermal and 
insulating engineering, chemical catalytic reactors and 
filtration process in chemical engineering, aerodynamic heat 
shielding with transpiration cooling etc. The convection 
problem in porous medium also has other applications in 
geothermal reservoirs and geothermal energy extractions. A 
comprehensive review of the convective heat transfer 
mechanism through porous media has been made by Bejan et 
al. [1], Inham et al. [2], Vafai [3], and Nield and Bejan [4]. 
Moreover, extensive attention has been paid to the study of 
MHD heat and mass transfer flow because of their applications 
in geophysics, aeronautics, and chemical engineering. Palani 
and Srikanth [5] studied the MHD flow of an electrically 
conducting fluid over a semi-infinite vertical plate under the 
impact of the transversely applied magnetic field. Makinde [6] 
investigated the MHD boundary layer flow with heat and mass 
transfer over a moving vertical plate in the existence of 
magnetic field and convective heat exchange at the surface. 

Additionally, Duwairi [7] analyzed viscous and Joule-heating 
effects on forced convection flow from radiative isothermal 
surfaces. The effect of viscous dissipation is generally 
characterized by the Eckert number which plays a vital role in 
geophysical flow and nuclear engineering [8]. The effects of 
suction or injection on boundary layer flow also play an 
important role in various processes of engineering applications. 
Raptis [9] studied the analysis of the two-dimensional steady 
free convective flow of a conducting fluid in the existence of 
a magnetic field and a foreign mass past an infinite vertical 
porous and unmoving surface. He has found that when the heat 
flux is constant at the limiting surface and the magnetic 
Reynolds number of the fluid flow is not small. Assuming 
constant suction at the surface, approximate solutions of the 
coupled nonlinear equations were derived for the velocity field, 
the temperature field, the magnetic field, and their related 
quantities. Agrawal et al. [10] considered the steady laminar 
free convection flow with mass transfer of an electrically 
conducting liquid along a plane wall with periodic suction. 
Sattar [11] investigated the effect of free and forced 
convection boundary layer flow through a porous medium 
with large suction. The effects of similarity solution for MHD 
flow through vertical porous plate with suction have been 
studied by Mohammed et al. [12]. Mansour et al. [13] 
described the influence of chemical reaction and viscous 
dissipation on MHD natural convection flow. Khaleque and 
Samad [14] described the effects of radiation, heat generation, 
and viscous dissipation on MHD free convection flow along a 
stretching sheet. The numerous types of MHD fluid flow 
through a vertical plate has been studied by several authors 
[15-16]  

Uwanta [17] studied the effects of chemical reaction and 
radiation on heat and mass transfer flow past a semi-infinite 
vertical permeable plate with constant mass flux and 
dissipation. Govardhan et al. [18] studied a theoretical study 
on the effect of radiation on a time-dependent free convection 
heat and mass transfer above an isothermal stretching area in 
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the existence of a uniform magnetic field with viscous 
dissipation effect. Jai [19] investigated the study of viscous 
dissipation and chemical reaction effects on flow past a 
stretching porous surface in a porous medium. Also, detailed 
mathematical research on the mutual effects of mass transfer 
and radiation over a time-independent MHD two-dimensional 
Marangoni convection flow over a smooth surface in the 
presence of joule-heating and viscous dissipation under the 
influence of suction and injection is studied by Ibrahim [20].  

When heat and mass transfer occur at the same time in a 
moving fluid affecting each other causes a cross-diffusion 
effect, the mass transfer caused by temperature gradient is 
termed as the Soret effect, while the heat transfer affected by 
concentration effect is Dufour effect. Soret and Dufour effects 
are significant phenomena in areas such as hydrology, 
petrology, and geosciences. The Soret effect, for instance, has 
been operated for separation of the isotope in a mixture 
between gases with very light molecular weight (He, H2) and 
of medium molecular weight (N2, air). The DuFour 
consequence was recently found to be of order of large 
magnitude so that it cannot be neglected [21]. Several 
researchers studied Soret and Dufour effects: for example, 
Kafousiasis and Williaims [22] examined Soret and Dufour 
effects on mixed free-forced convective and mass transfer 
boundary layer fluid flow with temperature-dependent 
viscosity. Uwanta et al. [23] have analyzed MHD fluid flow 
over a vertical plate with Dufour and Soret effects. Postelnicu 
[24] examined the impact of Soret and Dufour on heat and 
mass transfer. Later, Usman and Uwanta [25] have considered 
the consequence of thermal conductivity on MHD heat and 
mass transfer flow past an infinite perpendicular plate with 
Soret and Dufour effects. Recently, Sarada and Shankar [26] 
have investigated the impact of Soret and Dufour on an 
unsteady MHD free convection flow past a perpendicular 
permeable plate in the presence of suction or injection. Most 
recently, using implicit finite difference scheme of Crank-
Nicolson, Uwatana and Usman [27] investigated the mutual 
impacts of Soret and Dufour on free convective mass and heat 
transmission on the time-independent boundary layer flow 
over a perpendicular channel in the existence of viscous 
dissipation and constant suction.  

Hence, the aim of this computational investigation was to 
extend the work of Usman and Uwanta [25]. The problem has 
been solved by the finite difference method. The governing 
equations involved in this problem were transformed into non-
similar coupled partial differential equations by usual 
transformations. Finally, the results were presented 
graphically. 

 
 
2. MATHEMATICAL MODEL OF THE FLOW 

 
An unsteady mixed convective heat and mass transfer flow 

of an electrically conducting incompressible viscous fluid 
through a porous medium along electrically nonconducting 
isothermal infinite impulsively stretched vertical porous plate 
with thermal diffusion and diffusion thermo effects have been 
considered. The positive x coordinate is measured along with 
the plate in the direction of fluid motion and the positive y axis 
is measured normal to the plate. Initially, considering that the 
plate, as well as the fluid, is at the same temperature 𝑇𝑇�= 𝑇𝑇∞� 
and concentration 𝐶𝐶�= 𝐶𝐶∞� . Also, it is supposed that the 
liquid and the plate are at rest, and then the plate is to be 
moving with a velocity U∞ in its own plane. At time t>0, the 

temperature of the plate and spices concentration is raised to 
Tw�> T∞� and 𝐶𝐶𝑤𝑤�> 𝐶𝐶∞� respectively, which are thereafter 
maintained constant, where 𝑇𝑇𝑤𝑤, 𝐶𝐶𝑤𝑤 are temperature and spices 
concentration at the wall and 𝑇𝑇∞, 𝐶𝐶∞ are the temperature and 
concentration of the types outside the plate respectively. The 
physical structure of the problem is furnished in Figure1. The 
imposed uniform magnetic field B0 is taken as (0, B0, 0). The 
magnetic Reynolds number of the liquid is taken to be small 
enough so that the included magnetic field is negligible in 
comparison with applied magnetic field. 
 

 
 

Figure 1. Physical configuration and coordinate system 
 
The magnetic lines are fixed relative to the fluid. Using the 

relation 0∇⋅ =J  for the current density J=(Jx, Jy, Jz)where 
Jy=constant. Since the plate is non conducting, Jy=0 at the plate 
and hence zero everywhere. The liquid is assumed to have 
constant properties except that the influence of the density 
variations with temperature and concentration, which are 
considered only in the body force term. 

Within the outline of the above-stated assumptions, the 
equations relevant to the two-dimensional problem, the 
physical variables are functions of y and t only. Assuming that 
the Boussinesq and boundary-layer approximations hold and 
using the Darcy-Forchheimer model, the equations governing 
the problem are [28] directed by the following system of 
coupled non-linear partial differential equations: 
 
Continuity equation 
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Energy equation 
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(4) 

 
The corresponding initial and boundary conditions are 

recommended as follows:  
 

0, 0, , ,t u C C T T for all y∞∞≤ = → →  (5) 
 

00, , , 0WWt u U C C T T at y> = → → =  

0, ,u C C T T as y∞∞→ → → →∞  
(6) 

 
Here x, y are Cartesian coordinate system; u and v are the 

velocity components along and normal to the plate, υ  is the 
kinematic viscosity, μ is the fluid viscosity, k1 is the 
permeability of the porous medium, g is the acceleration owed 
to gravity, βT is the thermal expansion coefficient, βC and the 
concentration expansion coefficient, ρ is the density, D is the 
coefficient of mass diffusivity, kt is the thermal diffusion ratio 
and Tm is the mean fluid temperature, Cp is the specific heat at 
the constant pressure, Cs is the concentration susceptibility and 
𝐾𝐾(𝑇𝑇) = 𝐾𝐾0�1 + 𝛾𝛾1�𝑇𝑇 − 𝑇𝑇∞��  [25], K0 is the thermal 
conductivity of the ambient fluid. 

 
 

3. MATHEMATICAL FORMULATION 
 
Since the solutions of the governing (2) to (4) under the 

initial conditions (5) and boundary conditions (6) will be based 
on the Finite Difference Method it is required to make the 
equations dimensionless. For this purpose, we now introduce 
the following non-dimensional quantities: 
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Using these relations, into the equations (2)-(4) together 

with the initial conditions (5) and boundary conditions (6) the 
following nonlinear-coupled partial differential equations in 
terms of dimensionless variables are obtained  
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(9) 

 
with the resultant initial and boundary conditions are 
 

0,τ =  
0, 0, 0 values ofU C T for all Y= = =  

(10) 

 
1, 1, 1 0, 0U C T at y τ= = = = >  
0, 0, 0 , 0U C T as y τ= → → →∞ >  

(11) 

 
where, τ represents the dimensionless time, Y is the 
dimensionless Cartesian coordinate, U is the dimensionless 
primary velocity, T  is the dimensionless temperature, C is the 
dimensionless concentration, 𝜆𝜆 = 𝑣𝑣0

𝑈𝑈0
 (Suction Parameter), 

𝐺𝐺𝑟𝑟 = 𝑔𝑔𝛽𝛽𝑇𝑇�𝑇𝑇𝑊𝑊−𝑇𝑇∞�𝜐𝜐
𝑈𝑈0
3  (Grashof Number), 𝐺𝐺𝑚𝑚 = 𝑔𝑔𝛽𝛽𝐶𝐶�𝐶𝐶𝑊𝑊−𝐶𝐶∞�𝜐𝜐
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(Schmidt Number), and 𝑆𝑆𝑟𝑟 = 𝐷𝐷𝑘𝑘𝑇𝑇
𝜐𝜐𝑇𝑇𝑚𝑚

(�̄�𝑇𝑤𝑤−�̄�𝑇∞)
(�̄�𝐶𝑤𝑤−�̄�𝐶∞)

 (Soret Number), 

𝑃𝑃𝑟𝑟 = 𝜌𝜌𝑐𝑐𝑝𝑝𝜐𝜐
𝐾𝐾0

 (Prandtl Number), 𝜎𝜎 = 𝛾𝛾1(�̄�𝑇𝑤𝑤 − �̄�𝑇∞)  (Variable 

thermal conductivity) [23], 𝐷𝐷𝑢𝑢 = 𝐷𝐷𝑘𝑘𝑡𝑡�𝐶𝐶𝑊𝑊−𝐶𝐶∞�
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(Schmidt Number). 
 
 
4. NUMERICAL SOLUTIONS 

 
For solving the non-dimensional system by the finite 

difference technique, it is required a set of finite difference 
equations. In this case, the region within on the boundary layer 
is divided by some perpendicular lines of Y-axis, where Y -axis 
is normal to the medium as shown in Figure 2. 

 

 
 

Figure 2. Implicit finite difference system grid 
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It is assumed that the maximum length of the boundary layer 
is Ymax=(25) as corresponds to Y→∞ i.e. Y varies from 0 to 25 
and the number of grid spacing in Y directions is �̄�𝑝=(400), 
hence the uniform mesh size along Y axis becomes ΔY=0.0625 
(0≤Y≤25) with a smaller time-step Δt=0.001.  

Let 𝑈𝑈�̄�𝑛,𝐶𝐶�̄�𝑛 and 𝑇𝑇�̄�𝑛 denote the values of U, C and T at the 
end of a time-step, respectively. Using the finite difference 
approximation, the system of partial differential equations (7)-
(9), the initial conditions (10), and the boundary conditions 
(11), we obtain an appropriate set of the following finite 
difference equations; 

 
1

1 1 1
2

2
( )

n n n n n n n
k k k k k k kU U U U U U U

Y Y
λ

τ

+
+ + −− − − +

− =
∆ ∆ ∆
n n n n
k k r k m kMU U G T G Cγ− − + +  

1
1 1 1

2
1 2

( )

n n n n n n n
k k k k k k k

c

C C C C C C C
Y S Y

λ
τ

+
+ + −− − − +

− =
∆ ∆ ∆

1 1
2

2
( )

n n n
k k k

r
T T TS

Y
+ −− +

+
∆

 

(12) 

 
1

1 1 1
2

1 2
( )

n n n n n n n
k k k k k k k

c

C C C C C C C
Y S Y

λ
τ

+
+ + −− − − +

− =
∆ ∆ ∆

1 1
2

2
( )

n n n
k k k

r
T T TS

Y
+ −− +

+
∆

1
1

n n n n
k k k kT T T T

Y
λ

τ

+
+− −

− =
∆ ∆

( )
2

1 1 1
2

21 1
( )

n n n n n
k k k ki k

r

T T T T T
P Y Y

σ σ+ + −
  − − +
 + + ∆ ∆   

 

(13) 

 

( )21 1
2

2
( )

n n n
nk k k

u c k
C C CD ME U

Y
+ −− +

+ +
∆

2

1
n n
k k

c
U UE

Y
+ −

+  ∆ 
 

(14) 

 
with the resultant initial and boundary conditions are 
 

0 0 0
0 0 00, 0, 0U C T= = =  (15) 

 

0 0 01, 1, 1n n nU C T= = =  
0, 0, 0n n n

L L LU C T= = = where L →∞  
(16) 

 
Here the subscript k designates the grid points with Y 

coordinate, and the superscript �̄�𝑛 represents a value of time, 
𝜏𝜏 = �̄�𝑛𝛥𝛥𝜏𝜏. where �̄�𝑛 = 0,1,2, . ... The velocity (U), concentration 
(C) and temperature (T) distributions at all interior nodal 
points may be computed by successive applications of the 
above finite difference equations. The obtained values are 
realistically shown in Figures 3-28. 
 
 
5. NUMERICAL RESULTS AND DISCUSSION 

 
To obtain the steady-state solutions, the computations have 

been carried out up to dimensionless time τ=50. Figure 3 
represents the velocity profiles at several times. The area 
enclosed by a curve with both axes represents as: 

 
25

0
U UdYA = ∫  (17) 

 
Similarly, for concentration and temperature profile it can 

be written as: 
 

25

0
C UdYA = ∫  (18) 
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0
T TdYA = ∫  (19) 

 

 
 

Figure 3. Velocity profiles for several values of 
dimensionless time, τ 

 
 

Figure 4. Areas vs. dimensionless time, τ 
 
Figure 4 shows the effects of the areas vs. time. In this figure 

it can be concluded that the results of the calculations show 
little changes in the quantities mentioned above after 
dimensionless time, τ=20 Thus the solutions for dimensionless 
time τ=20 are essentially steady-state solutions. To observe 
the physical condition of the problem, the steady-state 
solutions have been illustrated in Figures 5-28. The influence 
of Grashof number Gr on the velocity and temperature 
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distributions are presented in Figures 5-6. It is observed that 
velocity and temperature profiles are increasing with the 
increase of Gr. The effect of Modified Grashof number Gm on 
the velocity and temperature distributions are described in 
Figures 7-8. It is observed that velocity and temperature 
profiles are increasing with the rise of Gm. The consequence of 
Prandtl number Pr on the velocity and temperature 
distributions are presented in Figures 9-10. It is shown that 
velocity and temperature profiles are decreasing with the 
increase of Pr. The impact of Dufour number Du on the 
velocity and temperature distributions are discussed in Figures 
11-12. It is observed that velocity and temperature profiles 
show increasing effect with the increase of Du. The effect of 
Schmidt number Sc on the velocity and concentration 
distributions are presented in Figures 13-14. It is observed that 
velocity and concentration profiles are decreased with the 
increase of Sc. 

The influence of Soret number Sr on the velocity, 
temperature distributions, and concentration distributions are 
discussed in Figures 15-17. It is observed that velocity, 
temperature, and concentration profiles show an increasing 
effect with the increase of Sr. The effect of Magnetic parameter 
M on the velocity and temperature distributions are presented 
in Figures 18-19. It is observed that velocity and temperature 
profiles show a decreasing effect with the rise of M. It is 
clearly seen from Figure 18 that the effects of increasing the 
magnetic field strength on the momentum boundary layer 
thickness lead to a decrease in the velocity width is because 
the magnetic field results in a damping effect on the velocity 
by creating a drug force that opposes the field motion. 

 

 
 

Figure 5. Velocity profiles for several values of Grashof 
number, Gr 

 

 
 

Figure 6. Temperature profiles for several values of Grashof 
number, Gr 

 
 

Figure 7. Velocity profiles for several values of Modified 
Grashof number, Gm 

 

 
 

Figure 8. Temperature profiles for several values of 
Modified Grashof number, Gm 

 

 
 

Figure 9. Velocity profiles for several values of Prandtl 
number, Pr 

 
 

Figure 10. Temperature profiles for several values of Prandtl 
number, Pr 
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Figure 11. Velocity profiles for several values of Dufour 
number, Du 

 
 

Figure 12. Temperature profiles for several values of Dufour 
number, Du 

 

 
 

Figure 13. Velocity profiles for several values of Schmidt 
number, Sc 

 
 

Figure 14: Concentration profiles for various values of 
Schmidt number, Sc 

 
 

Figure 15. Velocity profiles for several values of Soret 
Number, Sr 

 
 

Figure 16. Temperature profiles for several values of Soret 
Number, Sr 

 
 

Figure 17. Concentration profiles for various values of Soret 
Number, Sr  

 
 

Figure 18. Velocity profiles for several values of Magnetic 
parameter, M 
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The influence of the Permeability of the porous medium γ 
on the velocity and temperature distributions are presented in 
Figures 20-21. It is shown that velocity and temperature 
profiles are increasing with the increase of γ. The influence of 
Suction parameter, γ on the velocity, temperature distributions 
and concentration distribution are described in Figures 22-24. 
It is observed that velocity, temperature, and concentration 
profiles are decreased with the increase of λ. The effect of 
Eckert number Ec on the velocity and temperature are 
presented in Figures 25-26. It is observed that velocity and 
temperature profiles are increased with the increase of Ec. The 
influence of adjustable thermal conductivity, σ on the velocity 
and temperature distributions are described in Figures 27-28. 
It is observed that velocity and temperature profiles are 
increased with the increase of σ. 

 
Figure 19. Temperature profiles for several values of 

Magneticparameter, M 

 
 

Figure 20. Velocity profiles for several values of 
Permeability of the porous medium, γ 

 

 
 

Figure 21. Temperature profiles for several values of 
Permeability of the porous medium, γ  

 
Figure 22. Velocity profiles for several values of Suction 

Parameter, λ 
 

 
 

Figure 23. Temperature profiles for several values ofSuction 
Parameter, λ 

 

 
Figure 24. Concentration profiles for several values 

ofSuction Parameter, λ 
 

 
 

Figure 25. Velocity profiles for several values of Eckert 
number, Ec 
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Figure 26. Temperature profiles for several values of Eckert 
number, Ec 

 

 
 

Figure 27. Velocity profiles for several values of Electrical 
conductivity, σ 

 
 

Figure 28. Temperature profiles for several values of 
Electrical conductivity, σ 

 
 

6. CONCLUSIONS 
 
The finite-difference solution of MHD mixed convection 

flow through an impulsively stretched porous vertical plate 
with diffusion-thermo and thermal-diffusion effects have been 
investigated.  

Some significant findings of this investigation are listed 
below; 

(1) The fluid velocity increases with the increase of 
Grashof Number, Modified Grashof Number, Dufour Number, 
Soret Number, Eckert Number, and Variable thermal 
conductivity Parameter. 

(2)  Reverse effects are observed with the increase of 
Prandtl Number, Schmidt Number, Magnetic Parameter, 
Permeability of the porous medium, and Suction Parameter. 

(3) The fluid temperature increases with the increase of 
Grashof Number, Modified Grashof Number, Dufour Number, 
Soret Number, Eckert Number, and Variable thermal 
conductivity parameter. 

(4) Opposite effects with the increase of Prandtl Number, 
Magnetic Parameter, Permeability of the porous medium and 
Suction Parameter. 

(5) The fluid concentration increases with the increase of 
Soret Number and opposites effects with the increase of 
Schmidt Number and Suction Parameter. 

As the basis for many engineering and scientific 
applications, for study more complex problems involving the 
MHD flow, it is hoped that the findings of this investigation 
may be useful for research of movement oil or gas and water 
through the reservoir of an oil or gas field, in the movement of 
underground water or oil as well as in the filtration and water 
purification processes, the findings may be useful for study of 
flow of oil or gas and water through the reservoir of an oil or 
gas field. These results may also be helpful for plasma studies 
as well as in power engineering, geothermal energy extractions, 
geophysics, and astrophysics. 
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