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The Numerical study for the unsteady electro magneto-hydrodynamic (EMHD) Couette 
flow of Bingham fluid through a porous parallel Riga plates with the consideration of 
thermal radiation has been carried out. The Couette flow is considered where the upper 
Riga plate moves with a uniform velocity U0 and the lower Riga plate is stationary. An 
external uniform magnetic field is applied perpendicular to the plates. Both the upper and 
lower Riga plates are kept at different but constant temperatures T1 and T2. respectively, 
where T2>T1. The governing equations have been transformed into dimensionless non-
linear partial differential equations by using usual transformations. The obtained 
equations have been solved numerically by the explicit finite difference method (FDM) 
under the stability and convergence analysis. The effects of some important parameters 
on shear stress, Nusselt number including velocity and temperature distributions have 
been discussed graphically by MATLAB R2015a.  
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1. INTRODUCTION

The flow of non-Newtonian fluids in the presence of heat
transfer is an important research area due to its wide use in 
food processing, power engineering and petroleum production 
and in many industries for example polymers melt and 
polymer solutions employed in the plastic processing. A 
special class of non-Newtonian viscoplastic fluid that exhibit 
a linear behavior of shear stress versus shear rate once the fluid 
begins to flow is known as Bingham fluid. It behaves as a rigid 
body at low stress but flows as a viscous fluid at high stress. A 
common example is toothpaste, which will not be extruded 
until a certain pressure is applied to the tube. The MHD 
Bingham fluid flow is used in many geological and industry 
materials as a common mathematical model of mud flow in 
drilling engineering, and in the handling of slurries, lava, 
cement etc. Bingham fluid is named after Eugene C. Bingham 
[1] who mentioned its mathematical form.

In this consequence, the physical and chemical properties of
the Bingham fluid have been described by Bingham [2]. Darby 
and Melson [3] developed an experimental formulation to 
prophesy the friction factor for a flow of Bingham plastics. 
Vola et al. [4] also studied a numerical strategy and some 
benchmark results of laminar unsteady flows of Bingham 
fluids. The numerical simulation of Taylor Couette flow of 
Bingham fluids has been investigated by Jeng and Zhu [5]. 
Sreekala and Kesavareddy [6] investigated the Hall effects on 
unsteady MHD flow of a Non-Newtonian fluid through a 
Porous medium with uniform suction and injection. Parvin, et 
al. [7] studied the unsteady MHD viscous incompressible 
Couette flow of Bingham fluid with hall current. Tlili et al. [8] 
considered the first- and second-law analyses of MHD 

Couette–Poiseuille flow of water-based nanofluids in a 
rotating permeable channel by Buongiorno model and the 
impacts of Hall current, radiation, variable viscosity, 
thermophoresis, including Brownian motion. Mollah et al. [9] 
studied the Hall and Ion-slip effects on unsteady MHD 
Bingham fluid flow with suction. 

Riga plate is the termed as an electromagnetic actuator 
which is formed by the combination of permanent magnets and 
a span wise aligned array of alternating electrodes mounted on 
a plane surface. It is numerously used for the radiation of an 
efficient agent, skin friction and pressure drag of submarines 
by avoiding the boundary layer separation. In this regard, the 
laminar fluid flow along Riga plate has been investigated in 
various physical aspects. 

The Riga plate is considered by Gailitis and Lielausis [10] 
to build an applied magnetic and electric fields which 
consequently generates Lorentz force parallel to the wall due 
to control the flow of fluid. The EMHD free-convection 
boundary-layer flow from a Riga-plate has been investigated 
by Pantokratoras and Magyari [11]. Ahmad et al. [12] studied 
the flow of nanofluid past a Riga plate. The squeezing flow 
past a Riga plate with chemical reaction and convective 
conditions has been considered by Hayat et al. [13]. Iqbal, et 
al. [14] considered the numerical investigation of nanofluidic 
transport of gyrotactic microorganisms submerged in the water 
towards Riga plate. A numerical approach for the radiative 
Williamson nanofluid flow over a convectively heated Riga 
plate with chemical reaction has been investigated by Ramzan 
et al. [15]. Ramesh and Gireesha [16] studied the non-linear 
Radiative flow of nanofluid past a moving or stationary Riga 
plate. The analytical investigation of third grade nanofluidic 
flow over a Riga plate using Cattaneo-Christov model has 
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been considered by Naseem et al. [17]. Anjum et al. [18] 
investigated the influence of thermal stratification and slip 
conditions on stagnation point flow towards variable thick 
Riga plate. 

Along with the above studies, the present study focuses 
on unsteady EMHD Couette flow of Bingham fluid through a 
porous parallel Riga plates with the consideration of thermal 
radiation. The study concerned with the Lorentz force along 
the X-axis which is thereafter advances into an exponential 
function according to the Grinberg term. The pressure gradient, 
thermal radiation and porous medium are also considered. The 
explicit finite difference technique has been used to solve the 
dimensionless non-linear partial differential equations. The 
obtained results have been shown graphically. 

 
 

2. MATHEMATICAL FORMULATION 
 
The viscous incompressible Bingham fluid is assumed to be 

flowing between two infinite horizontal non-conducting 
porous Riga plates which are placed at y=±h planes and extend 
from x=0 to ∞ and from z=0 to ∞. The Couette flow is 
considered where, the lower Riga plate is taken to be stationary 
while the upper Riga plate is moving with uniform velocity U0. 
Both the lower and upper plates are taken at two constant 
temperatures T1 and T2 respectively, where T2>T1. In the X-
direction, a constant pressure gradient 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 is applied along the 

fluid flow. Here, the fluid velocity vector is given as follows: 
 

u v= +q i j    
 
For the Riga plate the volume density of a Lorentz force can 

be written in vector product form as ∧F = J B ; where, the 
current density by means of Ohm’s law can be written as 
follows: 

 

( )σ= ∧J E + q B  
 
Since the Bingham fluid is weakly conducting (𝜎𝜎=106 S/m 

or very small) then the current density 𝜎𝜎(𝒒𝒒� ∧ 𝑩𝑩)is small. So 
that the term 𝜎𝜎(𝒒𝒒� ∧ 𝑩𝑩) in the above equation, can be neglected. 
Thus, to obtain the EMHD flow, the extrinsic magnetic field 
is used which is the Lorentz force along the X-axis and can be 
written as follows: 

 

( )σ= ∧ ≈ ∧F J B E B  
 
According to the Grinberg term �𝑭𝑭

𝜌𝜌
� , the density force 

F=Fex, averaged over a span wise coordinate along Z-axis, 
which advances into an exponential function of y, can be 
expressed as follows: 

 

0 0 exp
8

F J M y
a

π π = − 
 

 

 
where, J0 (A/m2) is the applied current density in the electrodes, 
M0 (Tesla) is the magnetization of the permanent magnets and 
a is the width of magnets and electrodes.  

The Rosse land approximation for thermal radiation can be 
written as follows: 

 
* 4

*

4
3r

TQ
k y
σ  ∂

= −  ∂ 
 

 
where, mean absorption coefficient (k*), radiative heat flux (Qr) 
and Stefan-Boltzmann constant (𝜎𝜎∗). The Taylor series for T4 
about 𝑇𝑇∞ implies 𝑇𝑇4 ≅ 4𝑇𝑇∞3 − 3𝑇𝑇∞4, which gives the following 
form for thermal radiation:  

 
*

3
*

16
3r

TQ T
k y
σ

∞

∂
= −

∂
 

 

 
 

Figure 1. Schematic physical configuration of the problem 
 
Within the framework of the above assumptions, the 

unsteady model for the EMHD Couette flow of Bingham fluid 
through a porous parallel Riga plates with the consideration of 
thermal radiation is governed by the continuity, momentum 
and energy equations under the boundary-layer 
approximations, which can be written as follows:  
 

0u v
x y
∂ ∂

+ =
∂ ∂
 

 (1) 

 

0 0
1 1 exp

8 '

u u uu v
t x y

dp u J M y u
dx y y a k

π π υµ
ρ ρ ρ

∂ ∂ ∂
+ +

∂ ∂ ∂

 ∂ ∂  = − + + − −   ∂ ∂   

  

 



 

 
(2) 

 

22 * 2
3

22 * 2

1 16
3p p p

T T Tu v
t x y

T u TT
c y c y c k y
κ µ σ
ρ ρ ρ

∂ ∂ ∂
+ +

∂ ∂ ∂

   ∂ ∂ ∂
= + +   ∂ ∂ ∂  

  

 

 

 

 (3) 

 
where,  

 
0K
u
y

τµ = +
 ∂
 ∂ 





 
(4) 

 
and the corresponding initial and boundary conditions for the 
problem are: 
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10,      0,    t u T T≤ = =  everywhere (5) 

 

1

1

0 2

0, at =0
0,   0, at

,    at

u T T x
t u T T y h

u U T T y h

= =

> = = = −

= = =













 (6) 

 
It is required to transform the equations (1) to (4) into 

dimensionless form, as the solution of these equations with the 
initial conditions and boundary conditions (5) and (6) will be 
based on the FDM for numerical solution. The dimensionless 
quantities that have used are given as follows:   

 

0

0
2

0 0

1

2 1
2

0
0

, , ,

, , ,

and  ,

where, , ,

x y uX Y U
h L U

tUv pV P
V U h

T T
K T T

U L aV h L
a

τ
ρ

µµ θ

υπ
υ π

= = =

= = =

−
= =

−

= = =









 (7) 

 
The obtained dimensionless differential equations are 

presented as follows: 
 

0U V
X Y
∂ ∂

+ =
∂ ∂

 (8) 

 

0
1 Y

e

U U UU V
X Y

dP U Ze k U
dX R Y Y

τ

µ −

∂ ∂ ∂
+ +

∂ ∂ ∂
∂ ∂ = − + + − ∂ ∂ 

 (9) 

 
22

2

1 4
3 D c

r

UU V R E
X Y P Y Y

θ θ θ θ µ
τ

 ∂ ∂ ∂ ∂ ∂ + + = + +   ∂ ∂ ∂ ∂ ∂  
 (10) 

 

1 D

U
Y

τµ = +
∂ 

 ∂ 

 
(11) 

 
and the dimensionless conditions are mentioned as follows: 

 
0,   0,      0Uτ θ≤ = =  everywhere    (12) 

 
  0,       0    at =0

0,    0,       0    at 1
  1,       1     at 1

U X
U Y
U Y

θ
τ θ

θ

= =
> = = = −

= = =

 (13) 

 
The non-dimensional parameters are given as follows: 

𝑅𝑅𝑒𝑒 = 𝜌𝜌𝑉𝑉0𝐿𝐿
𝐾𝐾

 (Reynolds number); 𝑃𝑃𝑟𝑟 = 𝜌𝜌𝑐𝑐𝑝𝑝𝑈𝑈0𝐿𝐿2

𝑘𝑘ℎ
 (Prandtl 

number); 𝑍𝑍 = 𝐽𝐽0𝑀𝑀0𝑎𝑎2

8𝜋𝜋𝜌𝜌𝑈𝑈0𝜐𝜐
 (Modified Hartmann number); 𝐸𝐸𝐶𝐶 =

𝑈𝑈0𝐾𝐾ℎ
𝜌𝜌𝑐𝑐𝑝𝑝𝐿𝐿2(𝑇𝑇2−𝑇𝑇1)

 (Eckert number); 𝑅𝑅𝐷𝐷 = 4𝜎𝜎∗𝑇𝑇2
3

𝑘𝑘𝜅𝜅∗
 (Radiation 

parameter), Permeability of porous medium, 𝑘𝑘0 = 𝜐𝜐2

𝑘𝑘𝑈𝑈02
 and 

𝜏𝜏𝐷𝐷 = 𝜏𝜏0ℎ
𝐾𝐾𝑈𝑈0

 (Bingham number or dimensionless yield stress). 
 
 

3. SHEAR STRESS AND NUSSELT NUMBER 
 
The effects of various parameters on shear stress have been 

studied from the velocity profile. The local shear stress in X- 
direction for upper (moving) wall is 𝜏𝜏𝐿𝐿 ≡ 𝜇𝜇 �𝜕𝜕𝑈𝑈

𝜕𝜕𝜕𝜕
�
𝜕𝜕=1

.  
Also, the effects of various parameters on Nusselt number 

have been studied from the temperature profile. The local 
Nusselt number in X- direction for upper (moving) wall is 

𝑁𝑁𝑢𝑢𝐿𝐿 ≡
�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�𝜕𝜕=1
−(𝑇𝑇𝑚𝑚−1)

, where Tm is the dimensionless mean fluid 

temperature and is given by 𝑇𝑇𝑚𝑚 = ∫ 𝑈𝑈𝑈𝑈𝑑𝑑𝜕𝜕1
−1
∫ 𝑈𝑈𝑑𝑑𝜕𝜕1
−1

.  

 
 

4. NUMERICAL PROCEDURE 
 
A set of finite difference approach is required to solve the 

dimensionless non-linear partial differential equations (8) to 
(11) by the explicit FDM subjected to boundary conditions. 
Therefore, the region interior to the boundary layer is 
distributed into a grid of lines perpendicular to Y-axis. 

Here it is considered that the height of the plate Xmax (=40) 
i.e. X changes from 0 to 40 and regard Ymax (=2) as 
corresponding to Y→∞ i.e. Y changes from 0 to 2. Also m=40 
and n=40 mesh spacing are considered in the X and Y 
directions respectively as shown in Figure 2. 

It is assumed that ΔX, ΔY are constant mesh sizes along X 
and Y directions respectively and taken as follows: 
ΔX=1.0(0≤x≤40), ΔY=0.05(0≤y≤2) with the smaller time-

step, Δτ=0.0001.  
 

 
 

Figure 2. Finite difference space grid 
 
Let U' and θ' represents the magnitudes of U and 𝜃𝜃 at the 

final time-step respectively. With the help of the explicit 
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FDM approach the suitable set of finite difference equations 
are obtained as follows: 

 

, 1, , , 1 0i j i j i j i jU U V V
X Y

− −− −
+ =

∆ ∆
 (14) 

 

( )

, , , 1,
,

, , 1
, 0 ,

, , 1 , , 1 , 1 , , 1
, 2

21

i j i j i j i j
i j

i j i j Y
i j i j

i j i j i j i j i j i j i j
i j

e

U U U U
U

X
U U dPV Ze k U

Y dX

U U U U U
R Y Y Y

τ

µ µ
µ

−

− −

− − + −

′ − −
+

∆ ∆
−

+ = − + −
∆

  − − − +  
 + +      ∆ ∆ ∆      

 

(15) 

 

( )

( )

, , , 1, , , 1
, ,

, 1 , , 1
2

2
, , 1

,

'

21 4
3

i j i j i j i j i j i j
i j i j

i j i j i j
D

r

i j i j
c i j

U V
X Y

R
P Y

U U
E

Y

θ θ θ θ θ θ
τ

θ θ θ

µ

− −

+ −

−

− − −
+ +

∆ ∆ ∆
− + 

= + 
∆ 

− 
+  ∆ 

 
(16) 

 

,
, , 1

1 D
i j

i j i jU U
Y

τµ
−

= +
− 

 ∆ 

 
(17) 

 
and the boundary conditions with FDM are: 
 

, , ,

, , ,

0, 0, 0 at 1
0, 0, 1 at 1

i L i L i L

i L i L i L

U W L
U W L

θ
θ

= = = = −

= = = =
 

 
 

5. STABILITY  
 
Excluding the stability and convergence criteria of the finite 

difference method, the analysis will remain incomplete since 
an explicit procedure is being used. For the considered 
problem the stability and convergence criteria finally can be 
expressed as follows: 

 

( )2
0

41 2 1
3 2

D

r

V RU
X Y P kY

ττ τ τ∆  ∆ ∆ ∆
− + + + ≤ ∆ ∆ ∆ 

 

 
Using ΔY=0.05, Δτ=0.0001 and the initial condition, the 

above equations gives Pr≥0.09 when RD≤1.00 and k0≤5.00.  
 
 

6. OUTCOMES WITH EXPLANATION  
 
Due to investigate the physical situation of the developed 

mathematical model, the steady-state numerical values have 
been computed for the non-dimensional velocity (U) and 
temperature (θ) within the boundary layer. Firstly, the mesh 
sensitivity has been discussed to obtain the appropriate grid 
spacing for the numerical calculation. Secondly, the time 
sensitivity has been explained to obtain the steady-state 
solution. Thirdly, the effect of Reynolds number (Re) and 
modified Hartmann number (Z) on the velocity (U) and 

temperature (θ) distributions as well as on the local shear 
stress at the upper plate (τL) and local Nusselt number at the 
upper plate (NuL) are discussed graphically. Furthermore, for 
brevity, the effect of other parameters such as Prandtl number 
(Pr), Eckert number (Ec), Radiation parameter (RD), 
Permeability of porous medium (k0) and Bingham number (τD) 
are shown in tabular form. At last, the present result has been 
compared with several published results. 

 
6.1 Examine mesh sensitivity 

 
To find out the appropriate mesh for m and n, the 

computations have been carried out for three different mesh 
such as m=20, n=20; m=40, n=40 and m=50, n=50 as shown 
in Figures 3 and 4; where, Re=2.00, Z=1.50, RD=0.05, Ec=0.10, 
Pr=1.50, k0=0.10 and τD=0.001. The obtained curves are 
smooth for all mesh and shows a negligible change among 
these curves. For m=40, n=40 and m=50, n=50, the curves are 
quite same.  Thus, m=40 and n=40 can be chosen as the 
appropriate mesh size.  

 

 
 

Figure 3. Illustration of mesh sensitivity for Velocity 
Profiles 

 

 
 

Figure 4. Illustration of mesh sensitivity for Temperature 
Profiles 

 
6.2 Time sensitivity test 

 
To complete the time sensitivity test of the developed 

mathematical model, the computations for U and θ have 
been continued for different dimensionless time step sizes 
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such as τ=0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50 and 4.00 
where, Re=2.00, Z=1.50, RD=0.05, Ec=0.10, Pr=1.50, k0=0.10 
and τD=0.001. It is observed that, the result of computations 
for different profiles, however shows little changes after 
τ=2.50 and shows negligible changes up to τ=4.00. Thus, the 
solutions of all variables for τ=4.00 are taken essentially as the 
steady-state solutions. The time sensitivity for U and θ are 
shown in Figures 5 and 6. 

 

 
 

Figure 5. Illustration of time sensitivity for Velocity 
Profiles 

 

 
 

Figure 6. Illustration of time sensitivity for Temperature 
Profiles 

 
It is seen from Figures. 5 and 6 that both velocity and 

temperature profiles reach their steady state monotonically. It 
also should be mentioned that the temperature profile reaches 
the steady state faster than the velocity profile. 

 
6.3 Effect of parameters 

 
In order to achieved the clear concept of physical properties 

of the developed model, the effects of two parameters such as 
Re and Z, in the presence of RD=0.05, Ec=0.10, Pr=1.50, 
k0=0.10 and τD=0.001 at the steady-state dimensionless time 
τ=4.00 are presented graphically through Figures 7-14. For 
brevity, the effect of the other parameters is shown in tabular 
form (Table 1).  

The effects of Reynolds number (Re) on U and θ 
distributions as well as τL and NuL are presented in Figures 7-
10. Here, curves are plotted for the three different values of Re 
such as 1.00, 1.50 and 2.00 at the steady-state dimensionless 
time τ=4.00. From Figures 7 and 8 it is observed that, both the 
velocity and temperature distributions increase with the 
increase of Re. It is seen from Figures. 9 and 10 that, both the 
local shear stress and local Nusselt number at upper plate 
decrease with the rise of Re. 

Furthermore, the effects of modified Hartmann number (Z) 
on U and θ distributions as well as τL and NuL are presented 
in Figures. 11-14. Here, curves are plotted for the three 
different values of Z such as 1.00, 5.00 and 9.00 at the steady-
state dimensionless time τ=4.00. From Figure. 11 and 12, it is 
cleared that, both the velocity and temperature distributions 
increase with the increment of Z. It is seen from Figures. 13 
and 14 that, both the local shear stress and local Nusselt 
number at upper plate decrease with the increment of Z. 

Figures 7 and 8 show that, both the velocity and temperature 
distributions increase with the increase of Re. 

Figures 9 and 10 show that, both the local shear stress and 
local Nusselt number at upper plate decrease with the 
increment of Re. 

 

 
 

Figure 7. Effects of Re on Velocity Profiles 
 

 
Figure 8. Effects of Re on Temperature Profiles 
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Figure 9. Effects of Re on Shear Stress at upper (moving) 
plate 

 

 
 

Figure 10. Effects of Re on Nusselt Number at upper 
(moving) plate 

 
Figure 11 and 12 show that, both the velocity and 

temperature distributions increase with the increment of Z. 
Figures 13 and 14 shows that, both the local shear stress and 

local Nusselt number at upper plate decrease with the rise of 
Z. 

 
 

Figure 11. Effects of Z on Velocity Profiles 

 
 

Figure 12. Effects of Z on Temperature Profiles 
 

 
 

Figure 13. Effects of Z on Shear Stress at upper (moving) 
plate 

 

 
 

Figure 14. Effects of Z on Nusselt Number at upper 
(moving) plate 

 
Furthermore, the effects of other parameters like Pr, Ec, RD, 

τD and k0 on θ and NuL are presented in the following Table 1. 
Table 1 shows that θ increases with increase of Pr while it 
decreases with the increase of NuL. Again, θ enhances with 
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the increase of Ec while it decreases with the increase of NuL. 
Furthermore, θ opposes with the increase of RD while it 
increases with the increase of NuL. Also, θ has a negligible 

change with the increase of while NuL decreases with the 
increase of τD. Lastly, k0 opposes θ while it increases NuL. 

 
Table 1. Effects of parameters on Temperature profiles and Nusselt number at the upper plate 

 
Effect of Parameters Profiles 

Pr Ec RD τD k0 θ NuL 
0.10 0.10 0.05 0.001 0.10 0.5002 

0.5005 
0.5778 

(Increasing) 

1.0439 
1.0412 
0.9081 

(Decreasing) 

0.30     
0.50     

 0.01    0.5000 
0.5001 
0.5002 

(Increasing) 

1.0446 
1.0443 
1.0439 

(Decreasing) 

 0.05    
 0.10    

  0.05   0.5002 
0.5001 
0.5000 

(Decreasing) 

1.0439 
1.0440 
1.0441 

(Increasing) 

  0.10   
  0.50   

   0.0001  0.5002 
0.5002 
0.5002 

(Negligible change) 

1.04399 
1.40398 
1.40396 

(Decreasing) 

   0.0010  
   0.0100  

    0.10 
0.30 
0.50 

0.50018 
0.50013 
0.50009 

(Decreasing) 

1.0439 
1.0499 
1.0553 

(Increasing) 

6.4 Comparison  
 
A comparison of our results with the several published 

results have been presented in the following tabular form. The 
new invention of the present research is the investigation of 
the flow of Bingham fluid through porous Riga plate.  While 
Bhatti et al.[19] studied the viscous nanofluid along a Riga 
plate with thermal radiation, Ayub et al. [20] considered 

nanofluid flow through Riga plate with slip effect, Ahmed et 
al. [21] studied the nanofluid flow through Riga plate with 
Buoyancy effect, and Abbas et al. [22] studied Cassion 
nanofluid flow through porous Riga plate. The above 
mentioned authors have used different types of solution 
techniques and model. For this restriction, such type of effects 
has been occurred.  

 
 

Table 2. Comparison of the present result with several published results 
 

Output  
Effect on 

Present 
Result 

Bhatti et al. 
(2016) 

Ayub et al. 
(2016) 

Ahmed et al. 
(2017) 

Abbas et al. (2018) 

 
U 
θ 
τL 

NuL 

Modified Hartmann number (𝑍𝑍) 
Increasing 
Increasing 
Decreasing 
Decreasing 

Increasing Increasing Increasing 
Increasing 
Increasing 
Increasing 

Increasing 

 
 

7. CONCLUSIONS 
 
The explicit FDM solution for the EMHD laminar flow of 

Bingham fluid through a porous parallel Riga plates with 
pressure gradient, thermal radiation also viscous dissipation 
has been established. The results were discussed graphically 
for two important parameters like Re and Z, on the velocity 
and the temperature distributions, also on the local shear 
stress and on the local Nusselt number at the upper plate. 
For brevity, the effect of other parameters such as Pr, Ec, RD, 
τD and k0 are shown in the tabular form. Finally, the important 
findings of this investigation are mentioned as follows: 

(1) The converged solution is found at Pr≥0.09 when 
RD≤1.00 and k0≤5.00 with ΔY=0.05 and Δτ=0.0001. 

(2) The appropriate mesh is found at (m, n)=(40, 40).  
(3) The steady-state solution is found at τ=4.00. 
(4) The temperature profile approaches the steady state 

faster than the velocity profile. 

(5) The velocity profile enhances by Re and Z both. 
(6) The temperature distributions increase by Re, Z, Pr 

and Ec. 
(7) The temperature distributions reduce by RD and k0 

both. 
(8) The Re and Z opposes the local shear stress and 

Nusselt number both. 
(9) The Pr, Ec and τD reduces the Nusselt number while 

RD and k0 enhances. 
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