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The solid oxide fuel cell (SOFC) is broadly used for distributed and clean power 
generation. The main problem related to SOFC lies in the difficulties to control the output 
voltage of the SOFC due to the strong nonlinearity, the rapid changes of the load and the 
limited fuel flow. The objective of the control of the SOFC system is to maintain the 
output voltage at a constant level and the fuel utilization rate in a safety interval. In this 
context, a multiple-input multiple-output (MIMO) discrete-time Takagi-Sugeno (TS) 
fuzzy dynamic model with feed forward input is used in this paper to describe the dynamic 
properties of the nonlinear voltage and the fuel utilization rate in a tubular SOFC system. 
This obtained fuzzy model will be used for the application of constrained fuzzy model 
predictive control. The simulation results are provided to show the accuracy and the 
effectiveness of the proposed strategy. 
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1. INTRODUCTION

The solid oxide fuel cell (SOFC) is a full of promise
technology to produce electrical energy. It allows us to directly 
convert chemical energy into electrical energy and heat. The 
SOFC has evoked a substantial attentiveness because it 
provides broad application ranges, a fuel choice’s flexibility, a 
high system efficiency and the feasibility of operation with an 
internal reformer. When we use a solid-state ceramic 
electrolyte, SOFCs are characterized by high temperature 
range (i.e., 600°C-1000°C). This temperature is easier to 
maintain due to the lack of cell corrosion [1]. 

Among the factors affecting over the life of the SOFC is the 
significant change in fuel utilization due to transients in the 
load. Therefore, the fuel utilization rate 𝑈𝑈𝑓𝑓  is considered 
among of the most important control variables of the SOFC 
system. For protecting the SOFC, 𝑈𝑈𝑓𝑓must be in the desired 
range is from 70% to 90% with an optimal operating point 
about 80%. Since a 𝑈𝑈𝑓𝑓<70%where a very important part of 
the fuel is underused, that leads to the decrease in the economic 
efficiency of SOFC, otherwise, a 𝑈𝑈𝑓𝑓>90% may lead to a 
permanent damage risk to the cells as a result of fuel starvation. 

Fuel cells’ analysis can be categorized into two types of 
modeling, dynamic modeling and steady state modeling. In 
references [2, 3], the nonlinear dynamics’ SOFC modeling has 
been investigated. Great efforts, on SOFC modeling, have 
been made by many researchers in the sake of improving its 
performance [4, 5]. 

The most common method to study a system with a 
nonlinear model is to approximate it by a single linear model 
(linearization around an equilibrium point). The linear model 
can be just seen as a local description of the system, which is 
considered as a drawback of this approach. A comprehensive 
approach based on the use of several models around different 

operating points has been developed in recent years. The 
interpolation of these local models through standard activation 
functions allows to modeling the nonlinear global system [6, 
7]. This approach is based on using Takagi–Sugeno (TS) fuzzy 
models [8], known for their universal approximation property. 

In control community, for its capability to represent 
nonlinear dynamics, fuzzy dynamic models of the TS type is 
broadly accepted [8-10]. Fuzzy modeling and identification 
from measured data are considered as efficient tools to 
approximate uncertain nonlinear systems. Since the TS model 
needs less rules compared to the other models, it has attracted 
a huge attention from researchers. This model has simple 
fuzzy implication and each rule’s consequence with linear 
function can describe the input–output mapping in a large 
range [11]. The TS Fuzzy Modeling of SOFC System has been 
widely used in several papers [12-14]. 

For multivariable industrial processes with slow dynamics, 
the model predictive control (MPC) is known as a powerful 
control approach which made it a hot research topic during last 
three decades. MPC is able to control multivariable systems 
under various constraints in an optimal way [12]. The control 
actions are to be computed by solving a receding-horizon 
optimization problem at each sampling time instant, for MPC 
while only the predetermined control law is used in 
conventional optimal control. The linear control plant models 
are the basic formulations of the MPC algorithms. These latter 
can be formulated as easy to solve, linear–quadratic 
optimization problems.  Nevertheless, the application of these 
algorithms to a nonlinear plant may bring unworthy results, 
and it may generally lead to a non–convex optimization 
problem that is a hard-to-solve and a computationally-
demanding problem. In practice, we use suboptimal 
algorithms that consist of approximating the nonlinear model 
at each algorithm’s iteration. At each algorithm’s iteration, the 
standard linear–quadratic optimization problem is formulated 
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and solved where various kinds of nonlinear models can be 
adopted. The TS fuzzy model is one of the most efficient 
nonlinear models [11, 12, 14]. 

When the load changes, the output voltage of the SOFC 
system and the fuel utilization rate can not be kept constant. 
To guarantee that the fuel utilization operates within a safe 
range, two control strategies can be considered. The first one 
consists of maintaining a constant output voltage at the SOFC. 
In the second strategy, we have to directly control the input 
hydrogen fuel in proportion to the stack current, so we can 
achieve a constant utilization control. When the load changes, 
to guarantee the fuel utilization within a desired safe range, 
one proper value for output voltage can be used [11]. 

To control the SOFC system, there exist many different 
methods. The model predictive control (MPC) which is the 
widely used one, was considered in [15, 16]. In this paper, we 
have proposed a control strategy that consists of a predictive 
control based on a nonlinear auto-regressive model with 
exogenous input (NARX) fuzzy dynamic model. In addition 
to maintaining the fuel utilization within a safe range, our 
model is capable of preventing the electrolyte’s damage by 
maintaining the pressure difference, which consists of the 
difference between the partial pressures of the 
hydrogen/oxygen in the anode and the cathode compartments 
of the fuel cell, below 8KPa under transient conditions and 4 
KPa under normal operation [17]. The hydrogen/oxygen ratio 
𝑟𝑟𝐻𝐻_𝑂𝑂 , which consists of the inlet hydrogen flow over inlet 
oxygen flow, is also considered in the proposed control 
strategy. In this latter, it is better to keep the hydrogen/oxygen 
ratio around 1.145, as in [17]. 

In this paper, we will use the dynamic model of the SOFC 
type fuel cell proposed in [18], to form a combined two MISO 
(multiple-input single-output) discrete-time TS fuzzy dynamic 
models with linear consequents, one for the output voltage and 
another for the fuel utilization. This model facilitates the 
control of the SOFC system. After that, we have proposed a 
control strategy that consists of a predictive control based on 
the aforementioned model. The rest of this paper is structured 
as follows. In section 2, we will briefly describe the SOFC 
dynamic model. The multi-variable NARX TS fuzzy model 
will be presented in section 3. In section 4, we will discuss the 
constrained fuzzy predictive control. After that, in section 5, 
the simulation results will be provided and discussed. Finally, 
we will conclude the paper. 

 
 

2. SOFC DYNAMIC MODEL 
 
Using electrochemical reactions, the chemical energy in 

Hydrogen (H2) and Oxygen (O2) can be directly converted into 
electrical energy by fuel cells. So far, tubular SOFC dynamic 
model has been broadly investigated. Thus we’ll concisely 
review this model based on previous researches [3-4, 18]. 

 

 
 

Figure 1. Schematic diagram of a SOFC 

 The anode and cathode channels are the basic components 
of the SOFC system. In the fuel cell, we supply the fuel to the 
anode and the air to the cathode. At the cathode, oxygen 
molecules accept electrons from the external circuit and 
change to oxygen ions. At the anode, water will be produced 
when the negative ions go across the electrolyte and combine 
with the hydrogen. Within the cell, the following 
electrochemical reactions occur 

Anode reaction:  
 

2
2 2 2H O H O e− −+ → +  (1) 

 
Cathode reaction:  
 

2
21 2 2O e O− −+ →  (2) 

 
Total reaction:  
 

2 2 21 2H O H O+ →  (3) 
 
The output voltage is the most important variable in the 

SOFC system because most of control intention is to make the 
actual voltage trajectory and the desired voltage trajectory the 
same.  Based on the dynamic SOFC system and under 
Matlab/Simulink environment, we’ve developed a simulation 
model for the SOFC system. This latter is based on [18] as 
regards to the expression for the partial pressures of hydrogen, 
oxygen and water. To calculate the fuel cell output voltage, we 
will use the expressions for partial pressures. The partial 
pressures inside the channel of hydrogen, oxygen and water 
can be written in the Laplace transform domain as follows [18]: 

 

𝑃𝑃𝐻𝐻2(𝑠𝑠) =
1

(1 + 𝜏𝜏𝑎𝑎𝑠𝑠)
�𝑞𝑞𝐻𝐻𝑖𝑖𝑖𝑖(𝑠𝑠) + 𝜏𝜏𝑎𝑎𝑃𝑃𝐻𝐻2(0)

−
𝑃𝑃𝑎𝑎

4𝐹𝐹𝑀𝑀𝑎𝑎
𝐼𝐼(𝑠𝑠)� 

(4) 

 

𝑃𝑃𝑂𝑂2(𝑠𝑠) =
1

(1 + 𝜏𝜏𝑐𝑐𝑠𝑠)
�𝑞𝑞𝑂𝑂𝑖𝑖𝑖𝑖(𝑠𝑠) + 𝜏𝜏𝑐𝑐𝑃𝑃𝑂𝑂2(0)

−
𝑃𝑃𝑐𝑐

4𝐹𝐹𝑀𝑀𝑐𝑐
𝐼𝐼(𝑠𝑠)� 

(5) 

 

𝑃𝑃𝐻𝐻2𝑂𝑂(𝑠𝑠) =
1

(1 + 𝜏𝜏𝑎𝑎𝑠𝑠)
�𝑞𝑞𝐻𝐻2𝑂𝑂(𝑠𝑠) + 𝜏𝜏𝑎𝑎𝑃𝑃𝐻𝐻2𝑂𝑂(0)

+
𝑃𝑃𝑎𝑎

4𝐹𝐹𝑀𝑀𝑎𝑎
𝐼𝐼(𝑠𝑠)� 

(6) 

 
where 𝑞𝑞𝑂𝑂𝑖𝑖𝑖𝑖 and𝑞𝑞𝐻𝐻𝑖𝑖𝑖𝑖 are the molar flows of oxygen and hydrogen 
at the input of the stack, 𝜏𝜏𝑎𝑎 = 𝑉𝑉𝑎𝑎𝑃𝑃𝑎𝑎 2𝑀𝑀𝑎𝑎𝑅𝑅𝑅𝑅⁄  and 𝜏𝜏𝑐𝑐 =
𝑉𝑉𝑐𝑐𝑃𝑃𝑐𝑐 2𝑀𝑀𝑐𝑐𝑅𝑅𝑅𝑅⁄  are the time constant (second) for the hydrogen 
and oxygen flows. The physical meaning of 𝜏𝜏𝑎𝑎, is that it will 
take 𝜏𝜏𝑎𝑎 seconds to fill a tank of volume 𝑉𝑉𝑎𝑎/2 at pressure 𝑃𝑃𝑎𝑎 if 
the mass flow rate is 𝑀𝑀𝑎𝑎. The same physical meaning for cτ
[18]. 

Several types of irreversible losses, such as activation, 
concentration and ohmic losses will decrease the actual cell 
potential from its ideal potential. The following are the 
polarization equations [19] 

 
𝑉𝑉𝑎𝑎𝑐𝑐𝑎𝑎 = 𝜕𝜕 + 𝛽𝛽 𝑙𝑙𝑙𝑙𝑙𝑙 𝐼𝐼 (7) 
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𝑉𝑉𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐 =
𝑅𝑅𝑅𝑅
𝑛𝑛𝐹𝐹

𝑙𝑙𝑛𝑛 �1 −
𝐼𝐼
𝐼𝐼𝑙𝑙
� (8) 

 
𝑉𝑉𝑐𝑐ℎ𝑚𝑚 = 𝐼𝐼𝑟𝑟 (9) 

 
We can write the cell resistance 𝑟𝑟 as 
 

𝑟𝑟 = 𝑟𝑟0 𝑒𝑒𝑒𝑒𝑒𝑒 �𝛼𝛼 �
1
𝑅𝑅0
−

1
𝑅𝑅𝑠𝑠
�� (10) 

 
where 𝑟𝑟0is the internal resistance at temperature 𝑅𝑅0 and 𝛼𝛼 is a 
constant. 

Considering an ideal behavior and a constant temperature, 
the SOFC output voltage 𝑉𝑉𝑠𝑠 is given by  

 
𝑉𝑉𝑠𝑠 = 𝐸𝐸 − 𝑉𝑉𝑎𝑎𝑐𝑐𝑎𝑎 − 𝑉𝑉𝑐𝑐ℎ𝑚𝑚 − 𝑉𝑉𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐 (11) 

 
𝐸𝐸, is the SOFC open-circuit voltage, which can be written 

as  
 

2 2

2

2

0

( ) .
ln

4
H O

cell
H O

P PRTE N E
F P

  
 = +      

 (12) 

 
where 𝑁𝑁𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙  is the number of series-connected cells and 𝐸𝐸0is 
the standard reference potential state, 298k and 1 atm pressure. 

The fuel utilization factor 𝑈𝑈𝑓𝑓 is the important performance 
index for a SOFC, defined as the ratio between the consumed 
hydrogen flow in reaction 𝑞𝑞𝐻𝐻𝑟𝑟  and the inlet hydrogen flow 𝑞𝑞𝐻𝐻𝑖𝑖𝑖𝑖, 
that is:   

 
r
H

f in
H

qU
q

=  (13) 

 
The inlet hydrogen flow can be controlled so that the fuel 

utilization factor will be regulated at an optimal value about 
80% [20]. 

 

 

 
 

Figure 2. Voltage/power-load current characteristics of 
SOFC in open-loop 

The voltage/power-load current characteristics of the SOFC 
in open loop are depicted in Figure 2, which shows the 
nonlinear behavior of SOFC in an extended operating regime. 
Furthermore, the dynamic responses in open loop of the SOFC 
system to stepwise changes of inputs 𝑞𝑞𝐻𝐻𝑖𝑖𝑖𝑖 , 𝑞𝑞𝑂𝑂𝑖𝑖𝑖𝑖 , and 𝐼𝐼𝐿𝐿  are 
given in Figure 3–5, respectively. 

One can define the ratio between inlet hydrogen flow and 
oxygen flow as [20] 

 

_

in
H

H O in
O

qr
q

=  (14) 

 
In the fuel cell anode and cathode compartments, the 

difference in the partial pressures of hydrogen and oxygen, 𝛥𝛥𝑃𝑃 
is given by 

 
2 2H OP P P∆ = −  (15) 

 

 

 
 

Figure 3. SOFC system step response to load current change 
(−5A) 

 

 

 
 

Figure 4. SOFC system step response to hydrogen flow rate 
change (+0.4×10-2mol/s) 
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Figure 5. SOFC system step response to oxygen flow rate 
change (+0.4×10-2mol/s)   

 
According to [20], for safety reasons, the value of this ratio 

is chosen such that the difference between the pressure of 
hydrogen and that of oxygen must not exceed 4 kPa under 
normal operating conditions and 8 KPa under transient 
conditions. 

 
 

3. MULTIVARIABLE TS NARX FUZZY MODEL 
 
3.1 NARX model structure 

 
Consider a general multiple-input multiple-output (MIMO) 

nonlinear system with m  inputs:𝑢𝑢 ∈ 𝑈𝑈 ⊂ ℜ𝑚𝑚, and𝑒𝑒 outputs: 
𝑦𝑦 ∈ 𝑌𝑌 ⊂ ℜ𝑃𝑃. This system is approximated by a collection of 
coupled MISO discrete-time TS fuzzy dynamic models of the 
input-output NARX type [21] 

 
y ( 1) ( ( ), u( )), 1, 2,...,l l lk R k k l pϕ+ = =  (16) 

 
where, 𝑢𝑢(𝑘𝑘) ∈ ℜ𝑚𝑚  is the input vector containing the current 
inputs, and 𝜑𝜑𝑙𝑙(𝑘𝑘) ∈ ℜ𝑞𝑞 is the regression vector which includes 
current and lagged outputs and inputs: 

 

1 1( ) [y ( ),..., y ( ), u ( 1),..., u ( 1)]T
l p mk k k k kϕ = − −  (17) 

 
with 

 
𝑦𝑦𝑖𝑖(𝑘𝑘) = �𝑦𝑦𝑖𝑖(𝑘𝑘),𝑦𝑦𝑖𝑖(𝑘𝑘 − 1), … , 𝑦𝑦𝑖𝑖�𝑘𝑘 − 𝑛𝑛𝑦𝑦,𝑖𝑖��, 𝑖𝑖

= 1, … , 𝑒𝑒 
(18) 

 
𝑢𝑢𝑗𝑗(𝑘𝑘 − 1) = [𝑢𝑢𝑗𝑗(𝑘𝑘 − 1),𝑢𝑢𝑗𝑗(𝑘𝑘 − 2), . . . ,𝑢𝑢𝑗𝑗(𝑘𝑘

− 𝑛𝑛𝑢𝑢,𝑗𝑗)], 𝑗𝑗 = 1, . . . ,𝑚𝑚 (19) 

 
where, 𝑛𝑛𝑦𝑦,𝑖𝑖  is the number of lagged values for the 𝑖𝑖thoutput, 
and 𝑛𝑛𝑢𝑢,𝑗𝑗 is the number of lagged values for the 𝑗𝑗th input.  

In the following equation, 𝑙𝑙 fuzzy rules are used to describe 
the TS MISO fuzzy model as in [8] 

 

1 ,1

, 1 , 1

,

: if ( ) is M and ... and ( )

is M and ( ) is M and ...

      and ( ) is M then

( 1) ( ) u(k)
1,2,...,

1, 2,...,

li l li lq

li q li q

m li q m

li li l li li

l

R k k

u k

u k

y k k
i

r l L

ϕ ϕ

λ ϕ σ η

+

+

+ = + +
=

=

 (20) 

 
where, 𝑅𝑅𝑙𝑙 denotes the 𝑙𝑙th fuzzy inference rule,𝐿𝐿 the number of 
inference rules,𝜑𝜑𝑙𝑙(𝑘𝑘) the premise measurable variables,𝑟𝑟𝑙𝑙  is 
the number of rules for the 𝑙𝑙th  output, 𝜆𝜆𝑙𝑙𝑖𝑖and 𝜎𝜎𝑙𝑙𝑖𝑖are vectors 
containing the consequent parameters, 𝑀𝑀𝑙𝑙𝑖𝑖  are the antecedent 
fuzzy sets of the thi  rule and 𝜂𝜂𝑙𝑙𝑖𝑖 is the offset. 

The weighted average of the linear consequents in the 
individual rules are used to compute the model output as 
follows [21] 

 

1

1

( ( ) u(k) )
( 1)

l

l

r
li li l li lii

l r
lii

k
y k

ω λ ϕ σ η

ω
=

=

+ +
+ = ∑

∑
 (21) 

 
The product of the membership degrees of the antecedent 

variables (states and inputs) in the 𝑖𝑖th rule 𝜔𝜔𝑙𝑙𝑖𝑖  is its degree of 
fulfillment. 

 
3.2 Parameter identification of the NARX model 

 
After determining the NARX model structure, the least 

squares algorithm can be used to estimate the parameters of 
the NARX model as follows  

 
1ˆ YT TQ Q Qθ
−

 =    (22) 
 

where, 𝜃𝜃� = [𝑎𝑎�1, 𝑎𝑎�1, . . . , 𝑎𝑎�𝑖𝑖𝑦𝑦,𝑖𝑖 , 𝑏𝑏�1, 𝑏𝑏�1, . . . ,𝑏𝑏�𝑖𝑖𝑢𝑢,𝑗𝑗]𝑇𝑇is the estimated 
parameters of the NARX model and 

 
[ (1), (2),..., ( 1)]TQ Nµ µ µ= −  (23) 

 
[ (1), (2),..., ( )]TY y y y N=  (24) 

 
 

4. CONSTRAINED FUZZY PREDICTIVE CONTROL 
 
In this work, the basic global model for calculating the 

prediction is a discret TS fuzzy dynamic model with 
feedforward input given by 

 
( 1) ( ) ( ) ( )

1, . .,
( ) ( )

hh h f f

h

x k A x k B u k B u k
l L

y k C x k

+ = + + =
=

 (25) 

 
where, 

 
𝐴𝐴ℎ = ∑ ℎ𝑙𝑙𝐴𝐴𝑙𝑙

𝐿𝐿
𝑙𝑙=1 ,     𝐵𝐵ℎ = ∑ ℎ𝑙𝑙𝐵𝐵𝑙𝑙

𝐿𝐿
𝑙𝑙=1 ,    𝐵𝐵𝑓𝑓ℎ =

∑ ℎ𝑙𝑙𝐵𝐵𝑓𝑓𝑙𝑙
𝐿𝐿
𝑙𝑙=1 ,    𝐶𝐶ℎ = ∑ ℎ𝑙𝑙𝐶𝐶𝑙𝑙

𝐿𝐿
𝑙𝑙=1  

ℎ = ℎ1, . . . , ℎ𝐿𝐿 

(26) 
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where, 𝑒𝑒(𝑘𝑘) ∈ ℜ
𝑖𝑖

 is the system state variables, 𝑢𝑢𝑓𝑓(𝑘𝑘) ∈ ℜ
𝑚𝑚𝑓𝑓  

and 𝑢𝑢(𝑘𝑘) ∈ ℜ
𝑚𝑚

are respectively the feedforward and 

manipulated inputs, 𝑦𝑦(𝑘𝑘) ∈ ℜ
𝑝𝑝

 the outputs variables and 
(𝐴𝐴𝑙𝑙,𝐵𝐵𝑙𝑙 ,𝐵𝐵𝑓𝑓𝑙𝑙,𝐶𝐶𝑙𝑙) is the 𝑙𝑙𝑎𝑎ℎ local model, which is subject to the 
constraints in the control 𝑢𝑢(𝑘𝑘) 

The augmented model can be obtained [15] 
 

x( 1) Ax( ) B ( ) B ( )
y( ) Cx( )

f fk k u k u k
k k
+ = + ∆ + ∆

=
 (27) 

 
where, 

 

[ ]( )
x( ) , A , B , B , C

( )
h

h

fh h
f

h h h h h f

BA O Bx k
k O I

y k C A I C B C B
 ∆     

= = = = =     
        

 

( ) ( ) ( 1)x k x k x k∆ = − − , ( ) ( ) ( 1)u k u k u k∆ = − − ,
( ) ( ) ( 1)f f fu k u k u k∆ = − −  

(28) 

 
The cost function ℑ  to be minimized at each sampling 

period penalizes the deviations of the predicted outputs𝑦𝑦�(𝑘𝑘 +
𝑗𝑗|𝑘𝑘) of a reference trajectory𝑦𝑦𝑟𝑟(𝑘𝑘 + 𝑗𝑗|𝑘𝑘) and the variations of 
the control vector𝛥𝛥𝑢𝑢(𝑘𝑘), it is usually given by 

 
2 2ˆmin Ur Ru S

Y Y

subject to u u u

u u u

ℑ = − + ∆

≤ ≤

∆ ≤ ∆ ≤∆

 (29) 

 
where, 𝑆𝑆  and 𝑅𝑅 are the weighting matrices, the prediction 
model based on the fuzzy model (25), can be got as 

 
ˆ x( ) U ( )f fY k u k= Θ +Γ∆ +Γ ∆

 
ˆ ( 1 ) ( 2 ) ... ( ) ,

U ( 1 ) ( 2 ) ... ( )

T

p

T
c

Y y k k y k k y k H k

u k k u k k u k H k

 = + + + 

∆ = ∆ + ∆ + ∆ +  
 

( 1 ) ( 2 ) ... ( )

f

T

f f f c

u

u k k u k k u k H k

∆

 = ∆ + ∆ + ∆ + 
 

(30) 
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(31) 

 
The parameter 𝐻𝐻𝑝𝑝  represents the maximum prediction 

horizon and 𝐻𝐻𝑐𝑐  represents the control horizon.  
The constraints of the manipulated variables can be 

expressed in the following matrix form 
 

U
Q UU Q U U
Q U

  
≤ ∆ ≤ ⇒ ∆ ≤   − −   

 (32) 
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(33) 

 
where 𝐼𝐼 is an identity matrix of dimension 𝑛𝑛𝑢𝑢 × 𝑛𝑛𝑢𝑢and 𝑛𝑛𝑢𝑢 is 
the number of manipulated variables. 

Then the cost function (29) can be rewritten as follows   
 

2 2min x( ) U ( ) Ur f f RSu
Y k u k

Q Usubject to U
Q U

U U U

ℑ = −Θ −Γ∆ −Γ ∆ + ∆

  
∆ ≤   − −   

∆ ≤ ∆ ≤∆

 (34) 

 
 

5. SIMULATION RESULTS 
 
5.1 TS fuzzy dynamic model identification of SOFC System 

 
According to section 3, we can identify two combined 

MISO discrete-time TS fuzzy dynamic models of the Tubular 
SOFC System, one for the output voltage and another for the 
fuel utilization rate. In our work, each TS model has three 
inputs: 

(1) Two manipulated inputs: the fuel flow 𝑞𝑞𝐻𝐻𝑖𝑖𝑖𝑖  and the 
oxygen flow 𝑞𝑞𝑂𝑂𝑖𝑖𝑖𝑖.  

(2) One feedforward input: load current 𝐼𝐼𝐿𝐿 . 
For the premise variable 𝐼𝐼𝐿𝐿 , we choose the membership 

function as 
 

1

1, if 80
80" " : 1 , if 80 100

100 80
0, if 100

L

L
L

L

I
ILow MF I

I

≤
 −= − ≤ ≤

−
≥

 (35) 

 
1

2
3

1 MF if 100
" ":

1 MF if 120
L

L

I
Middle MF

I

 − ≤= 
− ≥

 (36) 

 

1

0, if 100
100" ": , if 100 120

120 100
1, if 120

L

L
L

L

I
IHigh MF I

I

≤
 −= ≤ ≤

−
≥

 (37) 

75



The membership functions are shown in figure 6. 
 

 
 

Figure 6. Membership function of load current IL in fuzzy 
SOFC model 

 
And by utilizing the method described in section 3, with  the 

two following regression vectors, which represent the first 
MISO model and the second  MISO model respectively. 
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The two TS fuzzy dynamic models of the SOFC system can 

be easily identified, as follows 
(1) The 1st MISO TS fuzzy model 
 

𝑅𝑅𝑢𝑢𝑙𝑙𝑒𝑒1:IF current load 𝐼𝐼𝐿𝐿  is 𝐿𝐿𝑙𝑙𝐿𝐿, THEN 
 
𝑉𝑉𝑠𝑠(𝑘𝑘 + 1) = 1.15778𝑉𝑉𝑠𝑠(𝑘𝑘) + 0.55134𝑉𝑉𝑠𝑠(𝑘𝑘 − 1)

− 0.70898𝑉𝑉𝑠𝑠(𝑘𝑘 − 2) 
+0.35258𝑞𝑞𝐻𝐻𝑖𝑖𝑖𝑖(𝑘𝑘) − 0.42206𝑞𝑞𝐻𝐻𝑖𝑖𝑖𝑖(𝑘𝑘 − 1) + 0.34322𝑞𝑞𝐻𝐻𝑖𝑖𝑖𝑖(𝑘𝑘

− 2) 
−0.39029𝑞𝑞𝑂𝑂𝑖𝑖𝑖𝑖(𝑘𝑘) − 0.86401𝑞𝑞𝑂𝑂𝑖𝑖𝑖𝑖(𝑘𝑘 − 1) − 0.49042𝑞𝑞𝑂𝑂𝑖𝑖𝑖𝑖(𝑘𝑘

− 2) 
−0.04630𝐼𝐼𝐿𝐿(𝑘𝑘) + 0.01094𝐼𝐼𝐿𝐿(𝑘𝑘 − 1) + 0.03489𝐼𝐼𝐿𝐿(𝑘𝑘 − 2)

 

 
𝑅𝑅𝑢𝑢𝑙𝑙𝑒𝑒2: IF current load 𝐼𝐼𝐿𝐿 is 𝑀𝑀𝑖𝑖𝑀𝑀𝑀𝑀𝑙𝑙𝑒𝑒, THEN 

 
𝑉𝑉𝑠𝑠(𝑘𝑘 + 1) = 0.54731𝑉𝑉𝑠𝑠(𝑘𝑘) + 0.61559𝑉𝑉𝑠𝑠(𝑘𝑘 − 1)

− 0.21283𝑉𝑉𝑠𝑠(𝑘𝑘 − 2) 
−0.98644𝑞𝑞𝐻𝐻𝑖𝑖𝑖𝑖(𝑘𝑘) + 0.20439𝑞𝑞𝐻𝐻𝑖𝑖𝑖𝑖(𝑘𝑘 − 1) − 0.22678𝑞𝑞𝐻𝐻𝑖𝑖𝑖𝑖(𝑘𝑘

− 2) 
+0.83198𝑞𝑞𝑂𝑂𝑖𝑖𝑖𝑖(𝑘𝑘) − 0.99770𝑞𝑞𝑂𝑂𝑖𝑖𝑖𝑖(𝑘𝑘 − 1) − 0.07510𝑞𝑞𝑂𝑂𝑖𝑖𝑖𝑖(𝑘𝑘

− 2) 
+0.03764𝐼𝐼𝐿𝐿(𝑘𝑘) − 0.02100𝐼𝐼𝐿𝐿(𝑘𝑘 − 1) + 0.01478𝐼𝐼𝐿𝐿(𝑘𝑘 − 2) 
 
 

𝑅𝑅𝑢𝑢𝑙𝑙𝑒𝑒3: IF current load 𝐼𝐼𝐿𝐿 is 𝐻𝐻𝑖𝑖𝑙𝑙ℎ,THEN 
 

𝑉𝑉𝑠𝑠(𝑘𝑘 + 1) = 1.04761𝑉𝑉𝑠𝑠(𝑘𝑘) + 0.69987𝑉𝑉𝑠𝑠(𝑘𝑘 − 1)
− 0.74506𝑉𝑉𝑠𝑠(𝑘𝑘 − 2) 

−0.92862𝑞𝑞𝐻𝐻𝑖𝑖𝑖𝑖(𝑘𝑘) − 0.64784𝑞𝑞𝐻𝐻𝑖𝑖𝑖𝑖(𝑘𝑘 − 1)
+ 0.44326𝑞𝑞𝐻𝐻𝑖𝑖𝑖𝑖(𝑘𝑘 − 2) 

−0.05303𝑞𝑞𝑂𝑂𝑖𝑖𝑖𝑖(𝑘𝑘) − 0.69455𝑞𝑞𝑂𝑂𝑖𝑖𝑖𝑖(𝑘𝑘 − 1)
− 0.31775𝑞𝑞𝑂𝑂𝑖𝑖𝑖𝑖(𝑘𝑘 − 2) 

−0.04519𝐼𝐼𝐿𝐿(𝑘𝑘) + 00618𝐼𝐼𝐿𝐿(𝑘𝑘 − 1)
+ 0.03769𝐼𝐼𝐿𝐿(𝑘𝑘 − 2) 

(40) 

 
(2) The 2nd MISO TS fuzzy model 
 

𝑅𝑅𝑢𝑢𝑙𝑙𝑒𝑒1: IF current load 𝐼𝐼𝐿𝐿 is 𝐿𝐿𝑙𝑙𝐿𝐿,THEN 
 
𝑈𝑈𝑓𝑓(𝑘𝑘 + 1) = 0.0844𝑈𝑈𝑓𝑓(𝑘𝑘) + 0.1577𝑈𝑈𝑓𝑓(𝑘𝑘 − 1)

− 0.0590𝑈𝑈𝑓𝑓(𝑘𝑘 − 2) 
−0.5880𝑞𝑞𝐻𝐻𝑖𝑖𝑖𝑖(𝑘𝑘) + 0.8959𝑞𝑞𝐻𝐻𝑖𝑖𝑖𝑖(𝑘𝑘 − 1) − 0.8359𝑞𝑞𝐻𝐻𝑖𝑖𝑖𝑖(𝑘𝑘 − 2) 
−0.7886𝑞𝑞𝑂𝑂𝑖𝑖𝑖𝑖(𝑘𝑘) − 0.7159𝑞𝑞𝑂𝑂𝑖𝑖𝑖𝑖(𝑘𝑘 − 1) − 0.6671𝑞𝑞𝑂𝑂𝑖𝑖𝑖𝑖(𝑘𝑘 − 2) 
+0.0172𝐼𝐼𝐿𝐿(𝑘𝑘) + 0.0074𝐼𝐼𝐿𝐿(𝑘𝑘 − 1) − 0.0218𝐼𝐼𝐿𝐿(𝑘𝑘 − 2) 
 

𝑅𝑅𝑢𝑢𝑙𝑙𝑒𝑒2: IF current load𝐼𝐼𝐿𝐿is𝑀𝑀𝑖𝑖𝑀𝑀𝑀𝑀𝑙𝑙𝑒𝑒,THEN 
 
𝑈𝑈𝑓𝑓(𝑘𝑘 + 1) = 0.8624𝑈𝑈𝑓𝑓(𝑘𝑘) + 0.4573𝑈𝑈𝑓𝑓(𝑘𝑘 − 1)

+ 0.4757𝑈𝑈𝑓𝑓(𝑘𝑘 − 2) 
−0.8732𝑞𝑞𝐻𝐻𝑖𝑖𝑖𝑖(𝑘𝑘) + 0.7209𝑞𝑞𝐻𝐻𝑖𝑖𝑖𝑖(𝑘𝑘 − 1) + 0.8688𝑞𝑞𝐻𝐻𝑖𝑖𝑖𝑖(𝑘𝑘 − 2) 
+0.9688𝑞𝑞𝑂𝑂𝑖𝑖𝑖𝑖(𝑘𝑘) + 0.7179𝑞𝑞𝑂𝑂𝑖𝑖𝑖𝑖(𝑘𝑘 − 1) + 0.5711𝑞𝑞𝑂𝑂𝑖𝑖𝑖𝑖(𝑘𝑘 − 2) 
+0.0268𝐼𝐼𝐿𝐿(𝑘𝑘) − 0.6448𝐼𝐼𝐿𝐿(𝑘𝑘 − 1) − 0.2028𝐼𝐼𝐿𝐿(𝑘𝑘 − 2) 

 
 

𝑅𝑅𝑢𝑢𝑙𝑙𝑒𝑒3: IF current load 𝐼𝐼𝐿𝐿 is 𝐻𝐻𝑖𝑖𝑙𝑙ℎ, THEN 
 
𝑈𝑈𝑓𝑓(𝑘𝑘 + 1) = −0.7321𝑈𝑈𝑓𝑓(𝑘𝑘) − 0.9382𝑈𝑈𝑓𝑓(𝑘𝑘 − 1)

+ 0.8783𝑈𝑈𝑓𝑓(𝑘𝑘 − 2) 
−0.3974𝑞𝑞𝐻𝐻𝑖𝑖𝑖𝑖(𝑘𝑘) − 0.4089𝑞𝑞𝐻𝐻𝑖𝑖𝑖𝑖(𝑘𝑘 − 1)

− 0.3341𝑞𝑞𝐻𝐻𝑖𝑖𝑖𝑖(𝑘𝑘 − 2) 
−0.0659𝑞𝑞𝑂𝑂𝑖𝑖𝑖𝑖(𝑘𝑘) + 0.2964𝑞𝑞𝑂𝑂𝑖𝑖𝑖𝑖(𝑘𝑘 − 1)

− 0.9495𝑞𝑞𝑂𝑂𝑖𝑖𝑖𝑖(𝑘𝑘 − 2) 
+0.6844𝐼𝐼𝐿𝐿(𝑘𝑘) + 0.1181𝐼𝐼𝐿𝐿(𝑘𝑘 − 1) + 0.7082𝐼𝐼𝐿𝐿(𝑘𝑘

− 2) 

(41) 

 
The results in figure 7-9 respectively represent the input 

signals of the SOFC system, the output voltage and the fuel 
utilization rate of the SOFC system, and those of the TS fuzzy 
models.  

To evaluate the modeling results, the root mean square error 
(RMSE) defined in the following equation is considered. 

 

2

1

1 ˆ( ( ) ( ))
N

k
RMSE y k y k

N =

= −∑  (42) 

 
where, 𝑁𝑁  is the number of sample data considered for 
modeling,𝑦𝑦�(𝑘𝑘)  is the fuzzy system output and𝑦𝑦(𝑘𝑘)  is the 
actual output.  

The RMSE of the output voltage and the fuel utilization are 
0.1436 and 0.1328 respectively. These values are compared in 
table 1, with the results obtained for other modeling methods. 
One can conclude that, using the proposed TS fuzzy models, 
the dynamic behavior of the physical SOFC model can be 
approximated with good accuracy. 
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Figure 7. Excitation input signals to SOFC system 
 

 
 

Figure 8. Dynamic output of SOFC voltage  
 

 
 

Figure 9. Fuel utilization response 
 

Table 1. Comparison of modeling methods 
 

References Identified models 
RMSE 

Vs Uf 

[11] GA-RBF (Genetic Algorithm-Radial Basis function) neural network model 1.1836 - 

[19] NARMA (Nonlinear Autoregressive-moving Average) TS fuzzy model 0.2582 - 

[22] Modified OIF (Output–Input Feedback) Elman neural network model 0.2573 - 

This paper NARX TS fuzzy 0.1436 0.1328 

5.2 Fuzzy predictive control of a tubular SOFC System 
 
As we mentioned earlier, the power generation in the SOFC 

power plant is directly affected by the change in the external 
load. In fact, for stable operation of electrical equipment, the 
output voltage of this power system must be at a required 
constant value. To achieve this objective, we integrate a 
controller into the SOFC system. In this work, we use the 
proposed Fuzzy Model Feed forward Predictive Control 
(FMFPC) method detailed in section 4 and shown in figure 10 

 

 
 

Figure 10. Diagram of the proposed FMFPC 
 
Following the same steps as in [12], we can rewrite the 

fuzzy models in equations (40) and (41) as a state space model 

with feed forward input defined in (25), where 𝑢𝑢(𝑘𝑘)  is a 
manipulated input vector composed of hydrogen flow rate and 
oxygen flow rate, 𝑢𝑢𝑓𝑓(𝑘𝑘) is the feed forward input vector that 
consists of the load current, and 𝑦𝑦(𝑘𝑘)  is an output vector 
composed of the output voltage and the fuel utilization rate.   

In this section, the FMFPC is used to control a SOFC given 
an output voltage equal to 164V, a fuel utilization rate within 
a range is from 70% to 90%with an optimal operating point 
about 80%, and we respect the variation of 𝛥𝛥𝑃𝑃 and 𝑟𝑟𝐻𝐻_𝑂𝑂in the 
previously mentioned margins. The FMFPC method used here 
is based on the Fuzzy Models in (25). The MPC parameters 
are chosen as: 𝐻𝐻𝑐𝑐 = 3, 𝐻𝐻𝑝𝑝 = 10, 𝑄𝑄 = 12𝐼𝐼 and 𝑅𝑅 = 0.4𝐼𝐼. 

In standard functioning, the load’s current of the SOFC 
system is 120 A. The voltage reference is assumed to be fixed 
at 164 V. To check the performance of the SOFC system we 
change the load’s current by a step of 500 seconds in a range 
of 90 to 130A (see figure 11). The proposed FMFPC is 
considered here. As can be seen from figure 12-14, when the 
load current fluctuates, the output voltage changes rapidly then 
returns back to the reference value, the fuel utilization rate 
remains in the required range and the monitored variables 
changes are kept within the safety range, so the proposed 
FMFPC can be used to maintain the output voltage in its 
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reference value with guaranteed all the performances of SOFC 
considered before. 

 

 
 

Figure 11. Load current variation 
 

 
 

Figure 12. Trajectories of SOFC voltage by FMFPC 
 

 
 

Figure 13. Fuel utilization response by FMFPC 
 
Regarding the comparison with the results of [15], the 

fuel/hydrogen flow rate and oxygen flow in [15] are fixed to 
be 𝑟𝑟𝐻𝐻_𝑂𝑂 = 1.145, so their control system has only one active 
manipulated variable and slow load following response 
(around 200s). While in this paper, there are two independent 
control inputs 𝑞𝑞𝐻𝐻𝑖𝑖𝑖𝑖  and 𝑞𝑞𝑂𝑂𝑖𝑖𝑖𝑖  in data-driven control system and 
load following response less than 100s, in general, more 
control freedom offers more opportunities for performance 
improvement. In this paper, we have taken into account the 
control performance in controller design and synthesis, so our 
proposed fuzzy predictive control system can maintain the 
load following ability with negligible tracking error. 

 

 
 

Figure 14. Curves of monitoring performances 

 
 

Figure 15. Curves of manipulated variables 
 
 

6. CONCLUSION  
 
In this work, we have developed a NARX MIMO 

constrained fuzzy predictive control strategy issued from a 
data-driven identification, in the aim of improving the load 
tracking performance of a SOFC system. This strategy 
guarantees a constant output voltage, a fuel utilization rate that 
operates in a safe range, a pressure difference below the 
required values and a hydrogen/oxygen ratio around 1.145. 
The simulation results show the accuracy of the proposed 
SOFC control strategy. 
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APPENDIX 
 
Parameters in the SOFC dynamic model [1] 
𝑅𝑅 = 1173(𝐾𝐾) Gas temperature  
𝑅𝑅 = 8.3143(𝐽𝐽/(𝑚𝑚𝑙𝑙𝑙𝑙.𝐾𝐾)) Gas constant 
𝐹𝐹 = 96487(𝐶𝐶/𝑚𝑚𝑙𝑙𝑙𝑙) Faraday’s constant 
𝑃𝑃𝑎𝑎 = 𝑃𝑃𝑐𝑐 = 3(𝑎𝑎𝑎𝑎𝑚𝑚) Anode and cathode pressures 
𝑉𝑉𝑎𝑎 = 61.7138×10-6(𝑚𝑚3) Volume of anode channel 
𝑉𝑉𝑐𝑐 = 99.02×10-6(𝑚𝑚3) Volume of cathode channel 
𝐸𝐸0 = 1.18(𝑉𝑉) Standard reference potential 
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