

Test-Cost Sensitive Ensemble of Classifiers Using Reinforcement Learning

Mohammad H. Mirhashemi1*, Reza Anvari1, Morteza Barari2, Nasser Mozayani3

1 Faculty of Electrical and Computer Engineering, Malek Ashtar University of Technology, Tehran 15875-1774, Iran
2 Information and Communication Technology Research Institute, Tehran 1439955471, Iran
3 School of Computer Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran

Corresponding Author Email: mirhashemi@mut.ac.ir

https://doi.org/10.18280/ria.340204

ABSTRACT

Received: 10 December 2019

Accepted: 26 February 2020

 The use of classification methods in real-world problems has costs that are usually

neglected in the early algorithms which cause inefficiencies in practice. One of these costs,

which is significant in many cases, is the cost of obtaining feature values for each instance,

named Test-Cost. The Ensemble of classifiers as a common and practical classification

method, is also considered and used in this perspective. Each classifier needs a number of

features to classify the sample; if instead of using all classifiers, the best arrange of

classifiers with the aim of minimizing the needed features is found, an effective solution

for lowering the test-cost is obtained. In this paper, a method is proposed which uses

reinforcement learning to construct such a Classifier Ensemble. The proposed method

learns to find the best sequence of classifiers for each sample to minimize the test-cost. Two

problems, an easy one and a hard one, are considered for testing the proposed method, in

both of which yields very good results.

Keywords:

test-cost sensitive classification, ensemble of

classifiers, reinforcement learning

1. INTRODUCTION

Classification can be used to solve many real-world

problems. But in real world and practical use, conditions

different from the scientific environment are imposed to the

problem. One of the problems in many practical applications,

is the limited time and processing available for runtime. The

importance of runtime cost is such that failure to preserve it

can lead to devaluate the method or even discard it. So finding

methods that minimize runtime cost is one of the requirements

to which should be paid as much attention as possible.

The cost of classifying an example can be divided into two

parts: the cost of extraction of sample features, and the cost of

running the classification. In the majority of types of

classifiers, the second part is negligible and the first part forms

a large part of the cost of running time. In the datasets used in

theoretical experiments the features are extracted before, but

in most of the data used in operational and industrial

applications, samples are raw, meaning that extraction of the

feature values for each sample requires cost. Therefore, the

greater part of the cost of classifying an instance is the

extraction of the value of the features, which is also called the

Test-Cost [1].

A discussion of "utility-based data mining" has been put

forward by Weiss et al. [2] that focuses on the need to

maximize the utility of the "entire data mining process". For

classification problems, the data mining process can be

considered as having three main steps: (1) data acquisition, (2)

model induction, and (3) the application of the induced model

to classify new data [3]. Considering the cost associated with

each of the three main stages of the classification process, the

utility-based data mining problem has been converted to

minimize overall cost. The cost-based model is presented in

Eq. (1):

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝐶𝑜𝑠𝑡𝑑𝑎𝑡𝑎−𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 + 𝐶𝑜𝑠𝑡𝑚𝑜𝑑𝑒𝑙−𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛
+ 𝐶𝑜𝑠𝑡𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛−𝑒𝑟𝑟𝑜𝑟𝑠

(1)

In Eq. (1) all costs are positive. Also, in the third part of the

equation, the cost of correct classification of samples is zero.

Minimizing the Eq. (1) leads to "Optimal Utility/Cost

Classification".

In most test-cost sensitive problems, the costs associated

with the training phase are put aside and only the costs

associated with the running the classification are considered.

Therefore, the cost of model induction is eliminated from the

Eq. (1). The cost of data acquisition is limited to the cost of

extracting the values of sample features, the cost of using the

model is added, and the Eq. (2) is obtained:

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = 𝐶𝑜𝑠𝑡𝑡𝑒𝑠𝑡(𝑓𝑒𝑎𝑡𝑢𝑟𝑒−𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛)

+ 𝐶𝑜𝑠𝑡𝑚𝑜𝑑𝑒𝑙−𝑒𝑣𝑎𝑙𝑢𝑑𝑎𝑡𝑖𝑜𝑛
+ 𝐶𝑜𝑠𝑡𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛−𝑒𝑟𝑟𝑜𝑟𝑠

(2)

The cost of using the model is certain and inevitable, and in

most cases is negligible in comparison with the test-cost.

Reducing the misclassification cost is not computational and

represents the main objective in the classification, and has no

impact on reducing the required time and processing. The only

part that seems can be reduced in order to achieve the goal of

reducing the runtime cost is the test-cost. But in fact, these

factors are not independent and there is an inherent trade-off

between accuracy and cost in real-world problems [4].

Therefore, methods should try to cause minimum increase in

misclassification error while reducing the runtime cost.

There is no single learning algorithm that always lead to the

most accurate learner in all domains. The idea of the ensemble

of classifiers states that there may be another learner who

works more accurate on instances on which one learner has

Revue d'Intelligence Artificielle
Vol. 34, No. 2, April, 2020, pp. 143-150

Journal homepage: http://iieta.org/journals/ria

143

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.340204&domain=pdf

problem, so more accuracy can be obtained by the proper

combination of several base learners [5]. Increasing the

number of classifiers may be in contradiction to the main goal

of minimizing the runtime cost, but if the cost of running a

classifier be remarkably lower than the cost of extracting

features, then discarding some features in exchange for the use

of multiple classifiers would be affordable.

Two properties of ensemble methods can be used to make

suitable test-cost sensitive classifiers: the use of a number of

classifiers instead of all of them, and the use of part of the

features by each classifier. Together, these two properties

provide a very favorable environment for converting an

ensemble into a test-cost sensitive classifier.

The remainder of this paper is organized as follows. Section

2 reviews related works in the domain, Section 3 presents the

proposed method and explains its structure, in Section 4 the

proposed method is evaluated on two problems and the results

are discussed, and finally Section 5 concludes and sums up the

contribution.

2. RELATED WORK

If the order of selecting features/classifiers for all samples

is static, then we call the method static. Obviously, in most

cases, such methods cannot achieve the optimal sort of

features/classifiers for all instances, as it is possible that

different order of features/classifiers gets the lowest cost

answer for different samples. A known method for the

sequential evaluation of the features is the "Cascaded Boosted

Classifier" method by Viola & Jones [6], which is able to

complete the classification of an instance before using all the

features, but it does not consider the cost of features. Bourdev

& Brandt [7] have presented another version with a soft

threshold. Chen et al. in "Cost-Sensitive Cascade" [8] to

simultaneously minimize both the misclassification error and

the cost of features, optimize the ordering of steps and

thresholds. Xu et al. [9], and Grubb & Bagnell [10] separately

presented a method branching from "Gradient Boosting" to

learn cost-sensitive classifiers. These methods have a strong

dependency to the "Stage-wise Regression Algorithm".

Andrade & Okajima [11] concentrate on covariates in Bayes

procedure and assumes that acquiring covariates incur cost, so

try to balance it with the risk of misclassification. They present

a stage-wise method which checks whether acquiring more

covariates reduces the total cost of classification in expectation,

if yes continues otherwise stop. Their weakness is that all the

process is before classification and the effect of the classifier

itself is neglected.

In static methods, examples of which are mentioned above,

a steady sequence of classifiers/features is used for all samples.

The only difference for different samples is the possibility of

finishing the classification in different stages of this sequence.

Generally, it is assumed that the features/classifiers used at the

beginning of this sequence are less costly, and

classifiers/features at its end are more costly. Obviously, in

many cases, the steady order for using classifiers is not

appropriate. To clarify the subject, consider hypothetical

sample that is well-classified using one of the costly

features/classifiers at the end of the sequence, but preceding

features/classifiers are not suitable to classify it appropriately.

If the classification stops before reaching that feature/classifier,

it does not produce a proper result; and if the sequence of

features/classifiers continues to reach that, then the cost of

previous features/classifiers is imposed on the process.

Therefore, static methods, neither in order to minimize

misclassification errors, nor to minimize the cost of extracting

features, do not have the capability to approach the optimal

solution in many cases.

Feature-based methods base their work on the arrangement

of the use of features. First, they try to get the best order for

using the features, then they perform the classification at each

step using existing features. Gao and Koller [12] provided a

method for the "Active Classification" having the features that

have been extracted so far, "Myopically" selects the next

feature based on "Expected Information Gain". Their method

is based on "Local Weighting Regression" and has a high

runtime computational cost. Ji and Carin [13] also formulate

the costly feature selection problem as a "Hidden Markov

Model" ("HMM"). But again the actions are selected

myopically and at the expense of high runtime computational

cost. Dulac-Arnold et al. [14] have proposed another solution

based on the "Markov Decision Process" (MDP) whose action

space includes all the features and labels. Subsequently, they

generalized their method to "Region-based Processing" [15].

Janisch et al. [16] revisit the Dulac-Arnold's approach by

replacing the linear approximation with neural networks and

demonstrate its comparability to the state-of-the-art algorithms.

Again in the study [17] they have made corrections in problem

formulation and claimed that their method can work with both

average and hard budget and is flexible and robust. He et al.

[18] have also formulated the problem as an MDP which

actions are features along with a classification action, but have

solved it by "Imitation Learning of a Greedy Policy". Shim et

al. [19] also formulate the selection of features as an MDP and

also uses neural network as function approximation. They

shared first layers on MLP for both classifier and Q-function

and considered it as feature-level set encoder. Peng et al. [20]

has a similar approach to the above, but adds two techniques

to its RL to improve the performance of RL agent in the search

space. Trapzenkov et al. [21] arranges features in order of cost,

at each stage, it goes through another feature or classifies and

the process ends. The problem is formulated and solved as an

"Empirical Risk Problem" (ERM). Contardo et al. [22]

propose a sequential model based on recurrent neural network

which at each step chooses one feature, and the learned

representation is used both for choosing the next features and

also computing the final prediction. Kachuee et al. [23] based

on Neural Networks, present a method to incrementally select

features based on available context of previous features values.

They use sensitivity analysis to measure the informativeness

of next feature, and denoising autoencoders to handle features

that are not yet acquired. Zhan et al. [24] has focused on search

engine ranking problem and assumes that there are plenty

factors which could be given to the classifier, but each factor

has its cost. They consider fixed sequence for factors, at each

step the current factor could be used or skipped, then use a

reinforcement learning model to learn the optimal sequence

for each sample.

Prioritizing the less costly features for use in the

classification may seem to reduce the total cost of extracting

features, but since the classifiers determine the final result, one

cannot be sure that selecting features and then classifying can

achieve higher performance. To clarify the subject, consider

the hypothetical problem for which there is a classifier that

classifies the samples well with one of the costliest features;

however, feature-based methods are unlikely to select that

costly feature, because they first select features and then

144

perform the classification.

Classifier-based methods, while considering the cost of

extracting features, also involve classifiers and measure their

performance during the search to approach the optimal

solution. In fact, the construction units which are combined

and organized together to produce the final answer are the

classifiers. Benbouzid et al. [25] creates an MDP, which

generalizes "Sequential Boosted Classifier" by adding a

"Skip" action. This method explicitly limits the scope of

learnable policies. Karayev et al. [26] provide a reinforcement

learning method for selecting the "Object Detectors". Their

work relies on costly runtime deduction in a graphical model

for combining observations. Although the goal of this work is

the "Anytime" performance, which is the best possible

response in a budgeted time and processing, but their costly

deduction process is very high for using in the runtime of

typical classification problem. The label tree [27] routes the

instance in a tree of classifiers. Their structure is determined

by the "Confusion Matrix" or learned alongside the weights.

Xu et al. [28] learns a cost-sensitive binary tree composed of

weak learners by a cyclic optimization method similar to the

research [8]. A less relevant approach is in the study [29],

which applies simple interpolation in structured models for a

remarkably increase in human diagnosis. Another interesting

method is the "Theoretical Analysis of Near-Optimal Policies"

to detect objects [30]. Maliah and Shani [31] consider all

subsets of features, and for each subset learns a separate

decision tree. At each step, this method uses that decision tree

which is trained on that subset of features which consists of all

acquired features. Starting with no features acquired for the

input sample, an MDP is used to select the next feature to

acquire, indeed the next decision tree, based on the result of

the current decision tree.

It is classifiers that should eventually be used for

classification, so it's best to test the classifiers itself to find the

suitable classifiers and the proper structure for their

combination. If features are selected first, then the second step

is to search for appropriate classifiers that can perform the

classification process well using these features which is not a

trivial task. So it is more practical to use the former method.

3. PROPOSED METHOD

The process of classifying a sample in the proposed method

can be summarized as follows: By entering each sample, a

classifier is selected and it classifies the sample. Based on the

result, another classifier is selected and it also classifies the

sample. Now according to the results of the two previous

classifiers, the third classifier is selected and it also classifies

the sample. At each step, according to the result of the previous

classifiers, a new classifier is selected or the process ends and

a final label is determined for the sample.

As is clear from the above scenario, these steps can be

expressed as a Markov decision process. The output of the

classifier is kept in a vector that specifies the state. At the

beginning of the sample entry, the output of all classifiers is

unknown ([− − −]). Suppose that the third classifier is

selected and outputs its label, the vector of classifiers output

becomes as ([− − 𝑜3]). Then the first classifier is selected

and the vector of classifiers output becomes ([𝑜1 − 𝑜3]). Now

suppose the final label for the sample is determined and the

classification of sample by the ensemble finishes. This process

from the start state and performing actions to reach the final

state (which is referred to as a period) is depicted in Figure 1

as arrows that specify a path from start to end state.

Figure 1 depicts the implemented MDP symbolically. The

results of the classifiers form the state vector. By assigning the

final label to the input sample, the system enters the end state.

Two types of actions are defined: Select a classifier and select

the final label for the input sample. A select label action brings

the system to the final state. The reward of each classifier

select action is determined by the cost of using that classifier,

which includes the test-cost. The reward for the label select

actions is also determined by the cost of the misclassification.

It should be noted that, as shown in the upper left corner of the

Figure 1, in order to abbreviate the shape each circle represents

several states, because instead of the output label of each

classifier, it is only specified that each classifier has generated

its label or not.

Figure 1. Classifying a sample from start state to final state

(an episode) in the proposed method

The problem is formulated as a Markov decision process

(MDP). A MDP, which is represented by𝑀 , is a 4-tuple

(𝑆, 𝐴, 𝑇, 𝑅) in which 𝑆 is the state space, 𝐴 is the action space,

𝑇(𝑎, 𝑠, 𝑠′) is the transition function that shows the probability

of going to 𝑠′ by performing 𝑎 in 𝑠, and 𝑅(𝑠, 𝑎) is the reward

function that shows expected one-step reward by performing

action 𝑎 in state 𝑠 . The goal of Reinforcement Learning

algorithms is to find the optimal policy 𝜋∗(𝑠) that maps the

states to acitons so that the "Discounted Cumulative Reward"

is maximized.

In our problem, we have the following definitions:

• State: Vector of outputs of classifiers (the result of

those classifiers that are not used yet is assumed to

be unknown)

• Action: Actions are divided into two categories:

Classifier select actions and label select actions.

Classifier select: Selecting one of the classifiers

that are not currently used. Label select: Selecting

one of the final labels for the input sample.

• Reward: In classifier select actions: The cost of

extracting the features which is required by the

classifier and are not used before and the cost of

the classification execution. In Label select actions:

145

Misclassification cost.

• Transition function: In classifier select actions:

Placing the output of the selected classifier in the

state vector specifies the new state. In label select

actions: Transition to the final state.

As stated in the formal definition, the input sample is not

directly inserted into the state. if some or all of the features of

the input sample be included in the state, the MDP will start

from the state corresponding the values of those features. This

state definition can be very useful for a faster selection of

appropriate classifiers for the sample. But instead, it causes a

massive increase in the size of the state space. The space of

features itself is so large that in most cases that it cannot be

learned by a simple learner. Now, if the result of the outputs

of the classifiers is also placed next to it, the state space

expands exponentially, which means that it will be

overwhelming more than before.

Although the proposed method does not insert the input

sample features directly into the state, but it can be seen that

the sample indirectly affects the selection of the classifiers. To

prove this, we may consider a simple scenario as follows:

Assume that using the i-th feature of the input sample in the

first steps is very effective in correct classification of it. Also,

assume that there is a classifier that only uses this feature. So

using this classifier at the beginning of the classification

process can have the same effect as entering the i-th feature in

the state definition. The claim of the proposed method is that

it will use any classifier in its appropriate place, so the intended

classifier will be placed in the first steps, and the same effect

as using that feature will be created approximately. Therefore,

if appropriate and sufficient set of classifiers are used, it can

be expected that the advantages of using the features in the

state will be relatively achieved.

4. EVALUATION AND DISCUSSION

The proposed method has been evaluated in two synthetic

problems, one simple and one complex, to verify the efficiency

of the proposed method. In both problems we will change the

cost of features and see how the method reacts and adapts itself

to minimize the cost.

4.1 Two dimensional lines

A two-dimensional space is considered, in which each

sample has two features of "x" and "y". The problem is binary

classification problem, so each sample has a positive or

negative label. Each classifier is a line that divides the space

into two parts. To test the proposed method, three classifiers

(lines) are considered. Two of classifiers use only one feature,

and the third one requires both features for classification. The

three lines divide the space into seven areas, in four of which

train samples exist. Areas are selected so that two areas can be

separated from the rest of the space by a single line, but the

other two areas at least need two lines to be separated from

other areas (Figure 2).

The number of samples in the areas "A" and "B" are the

same with each other and twice the number of samples in the

areas "C" and "D", the number of samples of the areas "C" and

"D" are also equal to each other. The Figure 3 shows the

minimum classifiers needed to separate each area.

However, since during the classification, the algorithm has

no information about the regions and should follow a sequence

of classifiers to find the class of the input sample, the optimal

answer to the problem using the proposed method is one of the

three answers of Figure 4.

Figure 2. The two dimensional problem and samples

distribution in areas

Figure 3. Minimum classifiers needed to separate each area

in the two dimensional lines problem

Figure 4. Optimal answers to the problem using the proposed

method

For clarification consider the "Answer 1". By entering a

sample, the method uses "classifier 2". If it classifies the

sample into its top side, it is obvious that the sample belongs

to area "A" and the method gives a positive output label.

Otherwise the "classifier 1" is used. If "classifier 1" classify

the sample into its left side, the sample belongs to area "B" and

the method gives a negative output label. Otherwise the

"classifier 3" is used and its output specifies that the sample is

located in which area "C" or "D", so the method gives the

corresponding output label.

To prove the effectiveness of the proposed method, two

separate scenarios are considered for implementation. In the

first scenario, the test-cost is considered zero and in fact the

problem is assumed without the test-cost. In the latter scenario,

different cost values for each feature are considered to

determine whether the proposed method tends to use less

costly features.

146

Table 1. Results of implementation of proposed method for

without test-cost scenario

Answer Num. Probability

1 0.48425

2 0.48225

3 0.335

Table 2. Results of implementation of proposed method for

with test-cost scenario

𝑪𝒐𝒔𝒕(𝒙) = 𝟑 × 𝑪𝒐𝒔𝒕(𝒚) 𝑪𝒐𝒔𝒕(𝒚) = 𝟑 × 𝑪𝒐𝒔𝒕(𝒙)
Answer Num. Probability Answer Num. Probability

1 0.003 1 0.995

2 0.997 2 0.005

3 0 3 0

In the scenario without test-cost, no feature cost is

considered, that is, it is assumed that the use of the features has

no cost. Only the use of each classifier has a fixed cost. Since

responses 1 and 2 in Figure 4 use the least number of classifiers

for the samples, it is expected that they be the most probable

answers. The results of this scenario, as shown in the Table 1,

confirm this; In the scenario with the test-cost, the use of each

of the two features requires cost. This scenario is divided into

two sub-scenarios: 1. The cost of the property "x" is three

times the cost of the property "y". 2. The cost of the property

"y" is three times the cost of the property "x". In the first sub-

scenario, where the "x" is more costly, the results are expected

to tend to the answer 1 of Figure 4, and in the second sub-

scenario, where "y" is more costly, the results are expected to

tend to the answer 2 of Figure 4. The results of the

implementation shown in the Table 2 confirm this.

4.2 3D Gaussian distributions

Consider a three class problem in a three-dimensional space.

Samples of each class are drawn from a Gaussian distribution

𝑁(𝜇, Σ) with diagonal covariance matrix, i.e., ∀𝑖, 𝑗 ∈
{1,2,3}, 𝑖 ≠ 𝑗 ⟹ 𝜎𝑖,𝑗 = 0 . For a better view, the

hyperellipsoid of loci of points with a constant density has

been drawn for each Gaussian distribution in Figure 5.

Figure 5. The two dimensional problem and samples

distribution in areas

As stated in the research [32] the minimum-error-rate

classification can be achieved by use of the discriminant

functions. The discriminant function of normal distributions

𝑁(𝜇𝑖, Σ𝑖) is presented in Eq. (3).

𝑔𝑖(𝑥) = −
1

2
(𝑥 − 𝜇𝑖)

𝑡Σ𝑖
−1(𝑥 − 𝜇𝑖)

−
𝑑

2
ln 2𝜋 −

1

2
ln|Σ𝑖| + ln 𝑃(𝜔𝑖)

(3)

where, ln denotes natural logarithm, 𝑑 denotes number of

dimensions and 𝑃(𝜔𝑖) denotes prior probability of class 𝑖 .
Since the covariance matrices are different for each

distribution, the only term can be dropped from Eq. (3) is the

(
𝑑

2
) ln 2𝜋 . So the discriminant functions have the quadratic

form of Eq. (4). The decision surfaces of the discriminant

functions of each pair of our Gaussian distributions, which has

some form of hyperquadrics, are shown in Figure 6.

𝑔𝑖(𝑥) = 𝑥

𝑡𝑊𝑖𝑥 + 𝑤𝑖
𝑡𝑥 + 𝜔𝑖0 (4)

(a) Decision surfaces of the discriminant functions of Guassian distribution pairs

Error Error Error

42 29 43

(b) Misclassification error on its pair distributions

Figure 6. Three discriminant function classifiers

147

(a) Decision surfaces of linear classifiers

Error Error Error

113 111 125

(b) Misclassification error on its pair distributions

Figure 7. Three linear classifiers which use only one feature for classification

Although above mentioned discriminant functions may

yield the minimum error in classification, but also each one

uses all the features of the input sample. So using them in our

ensemble without adding any other classifier, will force the

system to use all features of the sample. To give our ensemble

the opportunity to use some less feature consuming classifiers,

three simple linear classifiers are added to system. Each of

these classifiers is a hyperplane perpendicular to one of the

axes, so only uses one attribute of sample to classify it. Figure

7 shows these classifiers.

To evaluate the ability of the proposed method to decrease

the test-cost, two ensembles are compared to each other. In the

first ensemble all six classifiers, i.e. three Gaussian

discriminant functions and three hyperplanes are offered

(hereafter called as "6-class ensemble"). So we expect the

algorithm to suitably use these classifiers to control the test-

cost. But in the second ensemble we only offered three

Gaussian discriminant functions to the ensemble (hereafter

called as "3-class ensemble"). So the second ensemble is used

to see the results without the ability to use less attributes of the

input samples. Both ensembles are tested with a range of test-

cost, from low to high test-cost to observe the reaction of the

proposed method and evaluate its performance in controlling

the features cost.

𝑄𝑛𝑒𝑤(𝑠𝑡 , 𝑎𝑡) ⟵ (1 − 𝛼). 𝑄(𝑠𝑡, 𝑎𝑡)⏟

𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒

+ 𝛼. (𝑟𝑡⏟
𝑟𝑒𝑤𝑎𝑟𝑑

+ 𝛾⏟
𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟

. max
𝑎
𝑄(𝑠𝑡+1, 𝑎)⏟

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

)⏞
𝑙𝑒𝑎𝑟𝑛𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

(5)

For training of both ensembles, Q-learning with the same

parameters is used. The value iteration update formula of Q-

learning is shown in Eq. (5). Training is divided into 5000

epoch stages. The Q-learning parameters are set as follows: At

the beginning of each stage, the learning rate (𝛼) is set to 0.05

and decays at each epoch to become 0 at the end of stage. At

the beginning of the next stage, again the learning rate will be

set to 0.05 and so on. An 𝜀-greedy policy is used in training

and the 𝜀 has the same cycle as learning rate, i.e., initialize to

0.2 at the beginning of each stage, and decay to reach 0 at the

end of stage. The discount factor (𝛾) is set to 0.9 and is

constant all the time. At the end of each stage (5000 epoch) the

learner is tested and the feature costs are increased, i.e., after

each stage the learning is stopped, the learner is tested on a test

set, then the feature costs are increased and then the learning

is started again and continued with the new costs. Figure 8

shows the diagrams of test-cost and misclassification error in

terms of test-cost increase, for both ensembles on the test set.

It is apparent from Figure 8(a) that for the 3-class ensemble,

the test-cost increases linearly with increase in features cost.

Obviously its use of all features is due to its bad classifiers, all

of which use all the features so it has no choice to use less

features. But the 6-class ensemble has the opportunity to select

those of its classifiers which use less features. Therefore, at the

beginning where the features cost is low, the method prefers

to use discriminant classifiers because they yield better

classification results, but with increase in features cost, the

method tends to sacrifice accuracy in exchange of features cost.

This shift to use the hyperplane classifiers is first appeared

when the features cost is 4. The increase in misclassification

error in the corresponding point in Figure 8(b) confirms this

shift. The features cost of 7 is another point in which the

method decides to increase misclassification error in favor of

decrease in features cost.

In fact, there is a trade-off between misclassification error

and feature cost which means that to reduce the features cost

the method has no choice except to increase the

misclassification error. This is an issue imposed by the

definition of the current problem and is not a general property

of the proposed method. Two set of classifiers are available in

this problem, one set has high accuracy but use all features,

and another set has less accuracy but use less features.

Therefore, the ensemble has no other choice but to select and

should accept decrease in accuracy to decrease the feature cost.

But suppose that there was plenty of classifiers from which the

ensemble was free to use, in such situation the ensemble may

find set of classifiers which uses less features, but does not

increases the misclassification error. In fact, the proposed

method is seen as a classifier selector which aims to find the

best arrange of classifiers to minimize the features cost and

maximize the accuracy simultaneously.

148

(a) Total cost of extracted features by each ensemble on test

set

(b) Total misclassification error of each ensemble on test set

Figure 8. Results of running the proposed method on 3d

gaussian distributions problem

5. CONCLUSIONS

In this paper, a method for test-cost sensitive classification

is proposed. The basis of the proposed method is to organize

classifiers using reinforcement learning so that the best

arrange of classifiers with the aim of minimizing test-cost is

found for each sample. Although the idea behind this method

is not so complex, but it is very useful and helpful to deal with

the hard problem of run-time cost. The results of the proposed

method on the two problems show that the proposed method

behaves as expected and finds the least cost arrange of

classifiers as feature cost increases.

The contribution of the proposed method in the Test-Cost

sensitive classification domain is summarized as follows: 1.

Instead of looking at the features themselves, it uses the

classifiers and allows the selection of them to determine the

features to use. This is more practical than selecting the

features first, because after that the right classifier should be

found that can do the classification well with the selected

features. 2. Problem formulation as MDP, so that the features

themselves are not included in state, which results a massive

decrease in state space. Instead the method relies on the result

of the used classifiers to find the next suitable classifiers to use.

The ability of the proposed method to find the best set

between classifiers, reaches it maximum performance when a

large number of classifiers is provided for it. Therefore, the

method can choose suitable classifiers and even increase the

number of classifiers needed to classify samples with the aim

of using less features. But this increase in number of classifiers

has another effect, the known problem of high-dimensional

state space in RL methods. Popular solutions such as using

Neural Networks may be used to solve this problem, but a

hopeful future work is to find problem-specific solutions to

address it.

REFERENCES

[1] Contardo, G. (2017). Machine learning under budget

constraints. Doctoral dissertation. Université Pierre et

Marie Curie-Paris VI.

[2] Weiss, G., Saar-Tsechansky, M., Zadrozny, B. (2005).

Report on UBDM-05: Workshop on utility-based data

mining. ACM SIGKDD Explorations Newsletter, 7(2):

145-147. https://doi.org/10.1145/1117454.1117477

[3] Weiss, G.M., Tian, Y. (2007). Maximizing classifier

utility when there are data acquisition and modeling costs.

Data Mining and Knowledge Discovery, 17(2): 253-282.

https://doi.org/10.1007/s10618-007-0082-x

[4] Bolukbasi, T. (2018). Machine learning in the real world

with multiple objectives. Doctoral dissertation. Boston

University.

[5] Alpaydin, E. (2009). Introduction to Machine Learning.

MIT Press.

[6] Viola, P., Jones, M.J. (2004). Robust real-time face

detection. International Journal of Computer Vision,

57(2): 137-154.

https://doi.org/10.1023/b:visi.0000013087.49260.fb

[7] Bourdev, L., Brandt, J. (2005). Robust object detection

via soft cascade. 2005 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition

(CVPR'05), San Diego, CA, USA, pp. 236-243.

https://doi.org/10.1109/cvpr.2005.310

[8] Chen, M., Xu, Z., Weinberger, K., Chapelle, O., Kedem,

D. (2012). Classifier cascade for minimizing feature

evaluation cost. Artificial Intelligence and Statistics,

218-226.

[9] Xu, Z., Weinberger, K.Q., Chapelle, O. (2012). The

greedy miser: Learning under test-time budgets.

Proceedings of the 29th International Conference on

Machine Learning, pp. 1299-1306.

[10] Grubb, A., Bagnell, D. (2012). Speedboost: Anytime

prediction with uniform near-optimality. Artificial

Intelligence and Statistics, 458-466.

[11] Andrade, D., Okajima, Y. (2019). Efficient Bayes risk

estimation for cost-sensitive classification. The 22nd

International Conference on Artificial Intelligence and

Statistics, pp. 3372-3381.

[12] Gao, T., Koller, D. (2011). Active classification based on

value of classifier. Advances in Neural Information

Processing Systems, 1062-1070.

[13] Ji, S., Carin, L. (2007). Cost-sensitive feature acquisition

and classification. Pattern Recognition, 40(5): 1474-

1485. https://doi.org/10.1016/j.patcog.2006.11.008

[14] Dulac-Arnold, G., Denoyer, L., Preux, P., Gallinari, P.

(2012). Sequential approaches for learning datum-wise

sparse representations. Machine Learning, 89(1-2): 87-

122. https://doi.org/10.1007/s10994-012-5306-7

[15] Dulac-Arnold, G., Denoyer, L., Thome, N., Cord, M.,

Gallinari, P. (2014). Sequentially generated instance-

dependent image representations for classification. The

International Conference on Learning Representations

(ICLR 2014).

[16] Janisch, J., Pevný, T., Lisý, V. (2019). Classification

with Costly Features Using Deep Reinforcement

Learning. Proceedings of the AAAI Conference on

Artificial Intelligence, 33: 3959-3966.

https://doi.org/10.1609/aaai.v33i01.33013959

[17] Janisch, J., Pevný, T., Lisý, V. (2020). Classification

with costly features as a sequential decision-making

149

problem. Machine Learning, 1-29.

https://doi.org/10.1007/s10994-020-05874-8

[18] He, H., Daumé III, H., Eisner, J. (2012). Cost-sensitive

dynamic feature selection. The International Conference

on Machine Learning (ICML) workshop on Inferning:

Interactions between Inference and Learning, Edinburgh,

Scotland, UK.

[19] Shim, H., Hwang, S.J., Yang, E. (2018). Joint active

feature acquisition and classification with variable-size

set encoding. Advances in Neural Information

Processing Systems, pp. 1368-1378.

[20] Peng, Y.S., Tang, K.F., Lin, H.T., Chang, E. (2018).

Refuel: Exploring sparse features in deep reinforcement

learning for fast disease diagnosis. In Advances in Neural

Information Processing Systems, pp. 7322-7331.

[21] Trapeznikov, K., Saligrama, V., Castañón, D. (2013).

Multi-stage classifier design. Machine Learning, 92(2-3):

479-502. https://doi.org/10.1007/s10994-013-5349-4

[22] Contardo, G., Denoyer, L., Artières, T. (2016). Recurrent

neural networks for adaptive feature acquisition. Lecture

Notes in Computer Science, 591-599.

https://doi.org/10.1007/978-3-319-46675-0_65

[23] Kachuee, M., Darabi, S., Moatamed, B., Sarrafzadeh, M.

(2019). Dynamic feature acquisition using denoising

autoencoders. IEEE Transactions on Neural Networks

and Learning Systems, 30(8): 2252-2262.

https://doi.org/10.1109/tnnls.2018.2880403

[24] Zhan, Y., Da, Q., Xiao, F., Zeng, A.X., Yu, Y. (2018).

Accelerating E-commerce search engine ranking by

contextual factor selection. arXiv preprint

arXiv:1803.00693.

[25] Benbouzid, D., Busa-Fekete, R., Kégl, B. (2012). Fast

classification using sparse decision DAGs. In

Proceedings of the 29th International Conference on

Machine Learning, pp. 747-754.

[26] Karayev, S., Baumgartner, T., Fritz, M., Darrell, T.

(2012). Timely object recognition. Advances in Neural

Information Processing Systems, pp. 890-898.

[27] Deng, J., Satheesh, S., Berg, A.C., Li, F. (2011). Fast and

balanced: Efficient label tree learning for large scale

object recognition. Advances in Neural Information

Processing Systems, pp. 567-575.

[28] Xu, Z., Kusner, M., Weinberger, K., Chen, M. (2013).

Cost-sensitive tree of classifiers. International

Conference on Machine Learning, pp. 133-141.

[29] Weiss, D., Sapp, B., Taskar, B. (2013). Dynamic

structured model selection. 2013 IEEE International

Conference on Computer Vision, Sydney, NSW, pp.

2656-2663. https://doi.org/10.1109/iccv.2013.330

[30] Chen, Y., Shioi, H., Montesinos, C.F., Koh, L.P., Wich,

S., Krause, A. (2014). Active detection via adaptive

submodularity. In International Conference on Machine

Learning, 32(1): 55-63.

[31] Maliah, S., Shani, G. (2018). MDP-based cost sensitive

classification using decision trees. In Thirty-Second

AAAI Conference on Artificial Intelligence.

[32] Duda, R.O., Hart, P.E., Stork, D.G. (2012). Pattern

Classification. John Wiley & Sons.

150

