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Most of the existing classification algorithms perform poorly facing big data samples. To 

solve the problem, this paper puts forward a novel classification algorithm based on 

backpropagation neural network (BPNN). Firstly, the original data were normalized to the 

same order of magnitude. The normalization improves the consistency of the input data, 

facilitating the classification. Next, the least mean square (LMS) algorithm and the BPNN 

were integrated into a novel batch learning BP algorithm. Finally, several experiments were 

carried out, revealing that our algorithm outshined the traditional BP algorithm in the 

classification accuracy. This research provides a good reference for the accurate 

classification of big data samples.  
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1. INTRODUCTION

Classification is an important and common task in many

branches of data mining. Data classification aims to abstract 

meaningful models from original data, making it possible to 

predict future trends. In general, this aim is realized in two 

stages: the learning stage and the classification stage. The 

former mainly sets up a classifier that describes the training set 

properly, while the latter relies on the classifier to make 

predictions [1, 2]. 

To obtain a proper classifier, the learning stage often adopts 

a classification algorithm to analyze the original dataset, and 

randomly extract the training set from the dataset. The 

extracted training set usually includes sample data tuples, and 

their class labels. This learning stage is also called supervised 

learning, as the class labels of tuples in the training set are 

already known. The learning process can be essentially 

described by a function y = f(x), which represents the 

correspondence between tuples and their class labels. This 

function helps to predict the class labels of tuples in the test 

set. 

In the classification stage, the accuracy of the classifier is 

verified on the test set, which consists of test tuples and their 

class labels. The class labels predicted by the classifier are 

compared with the actual class labels, revealing the accuracy 

of the classifier and the prediction accuracy of the 

classification algorithm. Figure 1 explains the entire 

classification procedure with an example, in which multiple 

consumers are classified based on age, income, and credit risk. 

The common classification algorithms are mainly based on 

statistical method [3, 4], decision tree (DT) [5-7], and the 

neural network (NN) [8, 9]. In addition, some classification 

algorithms draw the merits from the k-nearest neighbor (k-NN) 

algorithm [10, 11], support vector machine (SVM) [12] and so 

on. 

The NN is a complex interconnected system, whose nature 

and function depend heavily on the highly variable connection 

mode between neurons. Most of the NNs are feedforward 

neural networks (FNNs) [13] (Figure 2). 

Figure 1. The entire classification procedure 
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Figure 2. The structure of a typical FNN 

 

This paper mainly improves the backpropagation (BP) 

algorithm for the classification of big data samples. Firstly, the 

input data were normalized into the range of [0, 10], such that 

all input samples belong to the same order of magnitude. Then, 

the traditional BP algorithm was improved based on the 

backpropagation neural network (BPNN), a typical multi-

layer perceptron (MLP), the least mean square (LMS) 

algorithm, and a self-designed momentum factor. To the best 

of our knowledge, this is the first attempt to fully integrate 

these techniques into the classifier of big data samples. 

 

 

2. INPUT DATA NORMALIZATION 

 

As mentioned above, the connection mode between neurons 

directly bears on the nature and function of the NN. In machine 

learning (ML), the perceptron is an NN for supervised learning 

of binary classifiers. Based on the eigenvector of an instance, 

the perceptron can output the class of the instance.  

The perceptron is either single-layer perceptron (SLP) or 

MLP. The SLP is the simplest form of the FNN, which 

contains no hidden layer. By contrast, the MLP involves at 

least one hidden layer. Here, only the MLP is discussed in the 

light of our objective. The BPNN is a typical MLP. 

As shown in Figure 3, the MLP encompasses several fully 

connected layers of neurons. The input x of the MLP has n 

features from the data pairs (x, d) in the training set. The 

neurons in the input layer are connected with the J neurons in 

the hidden layer via the weight vector V, while the J neurons 

in the hidden layer are connected with the K neurons in the 

output layer via weight vector W. Obviously, the input value 

has a direct impact on the output of the MLP. This makes 

preprocessing of input data a necessity. 

In the same dataset, the sample values may vary greatly. 

Sometimes, a sample value might be hundred or even 

thousands of times that of another one. Hence, the input 

samples of the MLP could belong to vastly different orders of 

magnitude. Here, the input data are normalized to ensure that 

all sample values have the same order of magnitude. 

To promote the prediction effect, the input of the MLP 

should cover a large proportion of training samples. Otherwise, 

the trained MLP will have a poor prediction effect. The 

preprocessing of input data needs to solve a key problem: 

speeding up the MLP training, while avoiding the impact of 

uneven distribution of training samples on the network. 

 

2.1 Algorithm design 

 

Since the original data are usually unordered, the training 

set might contain data scattering in a wide value range. In some 

cases, the data differ markedly in the order of magnitude.  If 

the training set is directly applied, the training speed will be 

slowed down, and the trained MLP will have a poor accuracy. 

These negative impacts are explained as follows: 

The MLP training mainly modifies the connection weights 

based on global error. These weights need to be modified in a 

long time, such that the connection weights could meet the 

requirements of both large samples and small samples. The 

time-consuming modification drags down the training speed. 

Meanwhile, the training samples are distributed unevenly on 

each scale. After training, the modified connection weights 

cannot reflect the features of most training samples.  As a 

result, the input data must be normalized to facilitate the data 

prediction. 

Numerical normalization is a popular way to minimize the 

scale difference between data. However, the numerically 

normalized data will still have a huge difference in magnitude. 

This means numerical normalization alone cannot satisfy the 

demand for the MLP. Thus, this paper normalizes the input 

data into the range of [0, 10] in two steps: 

Firstly, the eigenvalue of each data was extracted. 

Considering their scale difference, the eigenvalues were 

converted into the same order of magnitude between 0 and 10. 

The interval of [0, 10] was selected, marking the first time that 

a specific range is defined for data preprocessing [14, 15]. 

Secondly, the extracted eigenvalues were multiplied by 10n, 

where the value of n depends on the specific dataset. 

After the normalization, the classification algorithm could 

be obtained. The data in the test set should also be converted 

into the same scale, laying the basis for data prediction. Finally, 

the prediction results should be converted inversely to be 

compared with the original data.  

The above input normalization method can be defined as: 

Suppose training set T consists of P samples, each of which 

has M features and N outputs. Let Xi  and Yi  be input and 

output vectors, respectively, and Zi  be the converted value. 

The value of Zi falls between 0 and 10. These vectors can be 

defined as follows: Xi=(Xi1, Xi2,…,XiM), Yi=(Yi1, Yi2,…,YiN), 

Zi=XiP*10n, and 𝑍𝑖𝑃 ∈ [0,10], where i=1,2,…P. 

 

 
Figure 3. The structure of an MLP 
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2.2 Experimental verification 

 

To verify the effectiveness of the above method, the BPNN 

algorithm was adopted to train a classifier with data on mineral 

composition, which was then used to predict the burning effect 

of different minerals. The test set contains 15 samples. Two 

parallel experiments were carried out. One of them directly 

uses the original data, which differ in the order of magnitude; 

the other uses the data normalized by the above method. Table 

1 and Figure 4 both compare the errors between the prediction 

results and the actual values of the two experiments. It can be 

seen that the prediction was more accurate after the input data 

were normalized by the above method. Therefore, the above 

input normalization method can indeed improve the 

classification accuracy. 

 

Table 1. Comparison between two experiments in prediction 

error 

 
Sample 

number 

Prediction error of 

using normalized data 

Prediction error of 

using original data 

1 0.02 0.07 

2 0.01 0.04 

3 0.04 0.08 

4 0.09 0.30 

5 0.03 0.07 

6 0.02 0.05 

7 0.08 0.25 

8 0.05 0.15 

9 0.01 0.03 

10 0.04 0.08 

11 0.06 0.12 

12 0.02 0.07 

13 0.03 0.10 

14 0.01 0.02 

15 0.11 0.40 

 

 
 

Figure 4. Comparison between two experiments in 

prediction error 

 

 

3. MLP CLASSIFICATION BASED ON BATCH 

LEARNING  

 

This subsection designs a novel batch learning classification 

algorithm based on the MLS, an adaptive learning algorithm 

[16], and the BPNN. 

 

3.1 Algorithm design 

 

In the LMS, a cost function τ(w) is set up to be continuously 

differentiable to the weight vector 𝑤. The cost function aims 

to find the optimal weight vector w*, making 𝜏(𝑤∗) ≤ 𝜏(𝑤) 
for any vector w. 

By the LMS learning rules, the weight vector 𝑤  can be 

defined as: 

 

𝑤𝑝+1 = 𝑤𝑝 + ∆𝑤𝑝 = 𝑤𝑝 − 𝛿𝛻𝜏(𝑤𝑝)

= 𝑤𝑝 − 𝛿
𝜕𝜏

𝜕𝑤
|𝑝 

(1) 

 

During the calculation period of the LMS, training data 

pairs (x, d) are chosen stochastically, where 𝑥 is input and 𝑑 is 

the desired response. Then, the data pairs (x,d) are substituted 

into the activation function f(u), where 𝑢 can be expressed as: 

 

𝑢 = 𝜔𝑇𝑥 (2) 

 

Then, the output of the MLP can be obtained as: 

 

𝑜 = 𝑓(𝜔𝑇𝑥) = 2 ∙ 𝜑𝑗(𝜔) − 1 (3) 

 

To evaluate the error of the weight of a specific pair (x,d), it 

is necessary to calculate d, and directly compare it with output 

o. The error e can be defined as the difference between 𝑑 and 

o. 

 

𝑒 = 𝑑 − 𝑜 = 𝑑 − (𝑤𝑇𝑥) (4) 

 

The error e is used to evaluate and trim the weight of 

neurons, minimizing the value of the cost function. 

As the cost function, the sum of squares for error (SSE) 

should decrease gradually in the training process. In geometry, 

a continuous nonlinear differentiable cost function of weight 

vector is a quadric hypersurface, that is, a parabolic surface 

with a concave in the middle. The cost function has a unique 

minimum value. Therefore, minimizing the cost function is 

equivalent to finding the minimum value along the parabolic 

surface.  

The minimum value can be obtained by gradient as follows: 

 

𝜏(𝑤) =
1

2
∑(𝑑𝑗 − 𝑜𝑗)

2

𝐶

𝑗=1

 (5) 

 

The gradient ∇τ(w) can be derived from the cost function 𝜏 

to each element of the weight vector 𝑤: 

 

𝛻𝜏(𝑤) =
𝜕𝜏

𝜕𝑢

𝜕𝑢

𝜕𝑤
 (6) 

 

where, ∂τ/∂u is an error signal; ∂u/∂w is the effect of the given 

input 𝑢 on weight vector 𝑤.  

The first partial derivative of cost function 𝜏  to weight 

vector 𝑤 can be defined as: 

 

𝛻𝜏(𝑤) = 𝑒𝑗
(𝐿)
𝜑𝑗(𝑣𝑗

(𝐿)
) (7) 

 

Then, the learning rules can be redefined as: 

 

𝑤𝑝+1 = 𝑤𝑝 + ∆𝑤𝑝 = 𝑤𝑝 − 𝛿𝛻𝜏(𝑤𝑝)

= 𝑤𝑝 + 𝛿𝑒𝑝𝑓
′(𝑢𝑝)𝑥𝑝 

(8) 

 

If the learning rate 𝛿  is small enough, the cost function 

could be reduced step by step by correcting the weight vectors. 
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If the learning rate is too small, the convergence will be too 

slow. To solve the problem, a momentum factor was 

introduced to improve the convergence rate of cost function in 

improved backpropagation (BP) algorithm. 

The gradient vector ∇τ(w) of the cost function based on 𝑝 

can be expressed as: 

 

𝑤𝑝+1 = 𝑤𝑝 + ∆𝑤𝑝 = 𝑤𝑝 − 𝛿𝛻𝜏(𝑤𝑝)

= 𝛿𝑚(𝑤𝑝 −𝑤𝑝−1) 
(9) 

 

where, δm is the momentum factor. 

To integrate the LMS to the BPNN, the error signal of the 

output layer in the BPNN was defined in the equation of the 

LMS. The BP algorithm minimizes the error through repeated 

weight modifications. Through gradient descent, each 

connection weight wij(n) was corrected by ∆wij(n), which is 

proportional to the partial derivative (δτ(n))⁄(δwij (n)). 

According to the differential chain rule, the gradient can be 

expressed as: 

 
𝜕𝜏(𝑛)

𝜕𝑤𝑖𝑗(𝑛)
=

𝜕𝜏(𝑛)

𝜕𝑒𝑗(𝑛)
∙
𝜕𝑒𝑗(𝑛)

𝜕𝑥𝑗(𝑛)
∙
𝜕𝑥𝑗(𝑛)

𝜕𝑡𝑗(𝑛)
∙
𝜕𝑡𝑗(𝑛)

𝜕𝑤𝑖𝑗(𝑛)
 (10) 

 

The following can be derived from the BP algorithm: 

 
𝜕𝜏(𝑛)

𝜕𝑒𝑗(𝑛)
= 𝑒𝑗(𝑛) (11) 

 
𝜕𝑒𝑗(𝑛)

𝜕𝑥𝑗(𝑛)
= −𝑒𝑥𝑝(‖𝑑𝑗 − 𝑜𝑗‖)

2 (12) 

 
𝜕𝑥𝑗(𝑛)

𝜕𝑡𝑗(𝑛)
= 𝜑𝑗

′(𝑡𝑗(𝑛)) (13) 

 
𝜕𝑡𝑗(𝑛)

𝜕𝑤𝑖𝑗(𝑛)
= 𝑥𝑗(𝑛) (14) 

 

Substitute formulas (11)-(14) into formula (10): 

 
𝜕𝜏(𝑛)

𝜕𝑤𝑖𝑗(𝑛)
= −𝛿

𝜕𝜏(𝑛)

𝜕𝑤𝑖𝑗(𝑛)
 (15) 

 

where, δ is the learning rate of error backpropagation; the 

negative sign “-” indicates a gradient descent in weight space.  

Then, formula (10) can be rewritten as: 
 

𝜕𝜏(𝑛)

𝜕𝑤𝑖𝑗(𝑛)
= 𝛿𝛾𝑗(𝑛)𝑥𝑗(𝑛) (16) 

 

where, γj(n) is the local gradient. 

According to the LMS algorithm, the local gradient can be 

defined as: 
 

𝛾𝑗(𝑛) = −
𝜕𝜏(𝑛)

𝜕𝑒𝑗(𝑛)
∙
𝜕𝑒𝑗(𝑛)

𝜕𝑥𝑗(𝑛)
∙
𝜕𝑥𝑗(𝑛)

𝜕𝑡𝑗(𝑛)

= 𝑒𝑗(𝑛)𝜑𝑗
′(𝑡𝑗(𝑛)) 

(17) 

 

According to the structure of the BPNN, the local gradient 

𝛾𝑗(𝑛) of hidden layer neuron 𝑗 can be expressed as: 

 

𝛾𝑗(𝑛) = 𝜑𝑗
′(𝑡𝑗(𝑛))∑𝛾𝑘(𝑛)𝑤𝑘𝑗(𝑛)

𝑘

 (18) 

According to the LMS algorithm, the correction value 

∆wij(n) of connection weight from neuron 𝑖 to neuron 𝑗 can be 

defined as: 

 

∆𝑤𝑖𝑗(𝑛) = 𝛿 × 𝛾𝑗(𝑛) × 𝑥𝑗(𝑛) (19) 

 

The above analysis demonstrates that the BP algorithm is an 

optimization algorithm of local search, capable of finding the 

solution to complex nonlinear problems. 

To prevent the local minimum trap, the authors improved 

the BP algorithm for MLP classification based on batch 

learning. Since the input and output of the MLP are the same 

type of physical quantities, the sample trend will not be 

affected by any change of the maximum in the normalization 

function. After the original data are normalized by the 

previously proposed method, all the samples belong to the 

same scale. For each sample, the maximum and minimum 

values are on the same order of magnitude, while the other 

values fall between the two extremums.   

Mathematically, the improved BP algorithm can be defined 

as follows: 

Let X={xp, dp}, p=1,2,…,P be a training set of P samples, 

where xp is the input vector of sample 𝑝 with 𝑛 features, dp is 

the desired output vector. During the feedforward process, for 

the 𝐽  neurons of hidden layer, the (P, J)-dimensional input 

matrix 𝑈 can be calculated as: 

 

𝑈 = 𝛾(𝑋𝑈
𝑖 𝑉𝑈

𝑖 ) (20) 

 

where, 𝑋𝑈
𝑖  is the matrix of (P, N+1)-dimensional training data; 

𝑉𝑈
𝑖  is the weight vector matrix of (N+1, J) dimensions in the 

hidden layer. 

The output matrix 𝑦  of hyperbolic tangent activation 

function can be defined as: 

 

𝑦 = 𝑒𝑥𝑝(−𝑢) ∙ (𝑋𝑈
𝑖 − 𝑈) ‖𝑉𝑈

𝑖 − 𝑈‖⁄  (21) 

 

The derivative of the error signal can be defined as: 

 

𝑦 , =
1

2
(1 − 𝑦2) (22) 

 

During the error backpropagation, the error signals of 

output layer and hidden layer can be calculated as a (P, K)-

dimensional matrix ∆O and a (P, J+1)-dimensional matrix ∆Y, 

respectively. 

The product matrix of hidden layer and output layer can be 

respectively defined as: 

 

∆𝑉 = 𝑋𝑇∆𝑌 (23) 

 

∆𝑊 = 𝑦𝑏
𝑇∆𝑂 (24) 

 

Then, the momentum factor δm was introduced to speed up 

the learning. The previous batch ∆V and ∆W are saved as 

∆V_pre and ∆W_pre, respectively, such that the momentum 

factor could be applied to the adaptive modification of 

connection weights.  

Using the LMS algorithm and momentum factor, the 

connection weights 𝑉 and 𝑊 can be respectively updated by: 

 

𝑉 = 𝑉 + 𝛿∆𝑉 + 𝛿𝑚𝛿∆𝑉_𝑝𝑟𝑒 (25) 

 

𝑊 = 𝑊 + 𝛿∆𝑊 + 𝛿𝑚𝛿∆𝑊_𝑝𝑟𝑒 (26) 
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where, the product of δ∆V is the corrected weight of V; the 

product of δ∆W is the corrected weight of W; δm δ ∆V_pre and 

δm δ ∆W_pre are the momentum factor for updating weights V 

and W, respectively. 

 

3.2 Experimental verification 

 

The improved BP algorithm was verified through k-fold 

cross validation, using examples from the UCI Machine 

Learning Repository [17]. Nine of the ten samples were 

allocated to the training set, and the remaining one to the test 

set. For comparison, the traditional BP algorithm was also 

trained by the same training set and applied to classify the 

same test set. The classification accuracy of each algorithm 

was measured by the mean percentage error (MPE). 

The parameters of the experiment were configured as 

follows: the momentum factor δm=0.7 was used to accelerate 

the convergence of cost function to the minimum value, and 

kw=0.1 was used to initialize the weight vectors. The number 

of hidden layer neurons, learning rate, and the number of 

iterations in training were changed during the experiment. 

The classification accuracies of the improved BP algorithm 

and the traditional BP algorithm are compared in Table 2 

below. Obviously, our algorithm achieved more accurate 

classification than the traditional BP algorithm. 

The process time of our algorithm is compared with that of 

the traditional BP algorithm in Figure 5. It can be seen that, in 

the same hardware environment, our algorithm consumed 

slightly more time than the traditional BP algorithm. However, 

a slightly longer process time is nothing compared with the 

obvious superiority in accuracy.  

 

Table 2. Comparison of the accuracy of the two algorithms 

 
Dataset 

number 

Accuracy of common 

BP algorithm 

Accuracy of 

proposed algorithm 

Dataset 1 99.38% 99.41% 

Dataset 2 93.65% 97.25% 

Dataset 3 96.62% 97.18% 

Dataset 4 100% 100% 

Dataset 5 97.53% 97.61% 

Dataset 6 89.32% 90.05% 

Dataset 7 98.61% 98.72% 

Dataset 8 66.90% 72.28% 

Dataset 9 77.59% 82.30% 

Dataset 10 92.71% 93.88% 

 

 
 

Figure 5. Comparison of process time of the two algorithms 

 

 

 

4. CONCLUSIONS 

 

Inspired by the theory of batch learning BP algorithm, this 

paper combines the LMS algorithm and the traditional BP 

algorithm into an improved classification algorithm for the 

MLP. The improved algorithm fully integrates the batch 

learning rules and momentum factor. To verify its 

effectiveness, the improved BP algorithm was compared with 

the traditional BP algorithm through experiments. The 

comparison shows that our algorithm clearly outperformed the 

traditional BP algorithm in classification accuracy. The 

research results shed new light on big data classification. 

 

 

ACKNOWLEDGMENT 

 

We want to thanks The Excellent Science and Technology 

Innovation Team of Jiangsu Universities and Colleges, the 

Application of Industrial Networks and Big Data; The 

Engineering Technology Research and Development Center 

of Jiangsu Higher Vocational and Technology Colleges, The 

Industrial Big Data and Intelligent Engineering Technology 

Research and Development Center; The Provincial 

Engineering Research Center of Jiangsu, the Innovation and 

Application of Jiangsu Small Business Industrial Internet 

Engineering Research Center. 

The work is supported by "General program of natural 

science research in Jiangsu University, Research on Key 

Technologies of disaster tolerant mobile data collection for 

underwater acoustic sensor network, No. 19KJB520023";  

"Open Lab of Edge of Computing for Smart Manufacturing, 

Changzhou College of Information Technology, Changzhou, 

China, KYPT201802Z". 

 

 

REFERENCES  

 

[1] Yan, X., Jia, M. (2018). A novel optimized SVM 

classification algorithm with multi-domain feature and 

its application to fault diagnosis of rolling bearing. 

Neurocomputing, 313(3): 47-64. 

https://doi.org/10.1016/j.neucom.2018.05.002 

[2] Zheng, B., Huang, H.Z., Guo, W., Li, Y.F., Mi, J. (2018). 

Fault diagnosis method based on supervised particle 

swarm optimization classification algorithm. Intelligent 

Data Analysis, 22(1): 191-210. 

https://doi.org/10.3233/IDA-163392 

[3] Li, H.Y., Li, H.F., Wei, K.B. (2018). Automatic fast 

double KNN classification algorithm based on ACC and 

hierarchical clustering for big data. International Journal 

of Communication Systems, 31(16): e3488.1-e3488.11. 

https://doi.org/10.1002/dac.3488 

[4] Brankovic, A., Falsone, A., Prandini, M., Piroddi, L. 

(2017). A feature selection and classification algorithm 

based on randomized extraction of model populations. 

IEEE Transactions on Cybernetics, 48(4): 1151-1162. 

https://doi.org/10.1109/TCYB.2017.2682418 

[5] Kumar, M.A., Gopal, M. (2010). Fast multiclass SVM 

classification using decision tree based one-against-all 

method. Neural Processing Letters, 32(3): 311-323. 

https://doi.org/10.1007/s11063-010-9160-y 

[6] Bazan, J.G., Bazan-Socha, S., Buregwa-Czuma, S., Dydo, 

L., Rzasa, W., Skowron, A. (2016). A classifier based on 

a decision tree with verifying cuts. Fundamenta 

207



 

Informaticae, 143(1-2): 1-18. https://doi.org/10.3233/FI-

2016-1300 

[7] Chandanapalli, S.B., Sreenivasa Reddy, E., Rajya 

Lakshmi, D. (2017). FTDT: Rough set integrated 

functional tangent decision tree for finding the status of 

aqua pond in aquaculture. Journal of Intelligent & Fuzzy 

Systems, 32(3): 1821-1832. 

https://doi.org/10.3233/JIFS-152634 

[8] Hajisalem, V., Babaie, S. (2018). A hybrid intrusion 

detection system based on ABC-AFS algorithm for 

misuse and anomaly detection. Computer Networks, 

136(5): 37-50. 

https://doi.org/10.1016/j.comnet.2018.02.028 

[9] Bin, S., Sun, G.X., Cao, N., Qiu, J.M., Zheng, Z.Y., Yang, 

G.H., Zhao, H.Y., Jiang, M., Xu, L. (2019). 

Collaborative filtering recommendation algorithm based 

on multi-relationship social network. CMC-Computers, 

Materials & Continua, 60(2): 659-674. 

https://doi.org/10.32604/cmc.2019.05858 

[10] Liang, T., Xu, X., Xiao, P. (2017). A new image 

classification method based on modified condensed 

nearest neighbor and convolutional neural networks. 

Pattern Recognition Letters, 94(7): 105-111. 

https://doi.org/10.1016/j.patrec.2017.05.019 

[11] Ezghari, S., Zahi, A., Zenkouar, K. (2017). A new nearest 

neighbor classification method based on fuzzy set theory 

and aggregation operators. Expert Systems with 

Application, 80(9): 58-74. 

https://doi.org/10.1016/j.eswa.2017.03.019 

[12] Yan, X., Jia, M. (2018). A novel optimized SVM 

classification algorithm with multi-domain feature and 

its application to fault diagnosis of rolling bearing. 

Neurocomputing, 313(11): 47-64. 

https://doi.org/10.1016/j.neucom.2018.05.002 

[13] Sun, G.X., Bin, S. (2018). A new opinion leaders 

detecting algorithm in multi-relationship online social 

networks. Multimedia Tools and Applications, 77(4): 

4295-4307. https://doi.org/10.1007/s11042-017-4766-y 

[14] Rashed, M., Rashed, E.A. (2017). Double-Sided Sliding-

Paraboloid (DSSP): A new tool for preprocessing GPR 

data. Computers & Geoences, 102(5): 12-21. 

https://doi.org/10.1016/j.cageo.2017.02.005 

[15] Ramírez-Gallego, S., García, S., Benítez, J.M., Herrera, 

F. (2015). Multivariate discretization based on 

evolutionary cut points selection for classification. IEEE 

Transactions on Cybernetics, 46(3): 595-608. 

https://doi.org/10.1109/TCYB.2015.2410143 

[16] Barbu, A.L., Laurent-Varin, J., Perosanz, F., Mercier, F., 

Marty, J.C. (2018). Efficient QR sequential least square 

algorithm for high frequency GNSS precise point 

positioning seismic application. Advances in Space 

Research, 61(1): 448-456. 

https://doi.org/10.1016/j.asr.2017.10.032 

[17] Ding, S.F., Xu, L., Su, C.Y., Jin, F.X. (2012). An 

optimizing method of RBF neural network based on 

genetic algorithm. Neural Computing and Applications, 

21(2): 333-336. https://doi.org/10.1007/s00521-011-

0702-7  

208




