
A Novel Big Data Classification Algorithm Based on Backpropagation Neural Network

Weixiang Jiang

School of Software and Big Data, Changzhou College of Information Technology, Changzhou 213164, China

Corresponding Author Email: jiangweixiang@czcit.edu.cn

https://doi.org/10.18280/ria.340211 ABSTRACT

Received: 10 November 2019

Accepted: 17 January 2020

Most of the existing classification algorithms perform poorly facing big data samples. To

solve the problem, this paper puts forward a novel classification algorithm based on

backpropagation neural network (BPNN). Firstly, the original data were normalized to the

same order of magnitude. The normalization improves the consistency of the input data,

facilitating the classification. Next, the least mean square (LMS) algorithm and the BPNN

were integrated into a novel batch learning BP algorithm. Finally, several experiments were

carried out, revealing that our algorithm outshined the traditional BP algorithm in the

classification accuracy. This research provides a good reference for the accurate

classification of big data samples.

Keywords:

classification algorithm, big data,

backpropagation neural network (BPNN),

batch learning, multi-layer perceptron

(MLP)

1. INTRODUCTION

Classification is an important and common task in many

branches of data mining. Data classification aims to abstract

meaningful models from original data, making it possible to

predict future trends. In general, this aim is realized in two

stages: the learning stage and the classification stage. The

former mainly sets up a classifier that describes the training set

properly, while the latter relies on the classifier to make

predictions [1, 2].

To obtain a proper classifier, the learning stage often adopts

a classification algorithm to analyze the original dataset, and

randomly extract the training set from the dataset. The

extracted training set usually includes sample data tuples, and

their class labels. This learning stage is also called supervised

learning, as the class labels of tuples in the training set are

already known. The learning process can be essentially

described by a function y = f(x), which represents the

correspondence between tuples and their class labels. This

function helps to predict the class labels of tuples in the test

set.

In the classification stage, the accuracy of the classifier is

verified on the test set, which consists of test tuples and their

class labels. The class labels predicted by the classifier are

compared with the actual class labels, revealing the accuracy

of the classifier and the prediction accuracy of the

classification algorithm. Figure 1 explains the entire

classification procedure with an example, in which multiple

consumers are classified based on age, income, and credit risk.

The common classification algorithms are mainly based on

statistical method [3, 4], decision tree (DT) [5-7], and the

neural network (NN) [8, 9]. In addition, some classification

algorithms draw the merits from the k-nearest neighbor (k-NN)

algorithm [10, 11], support vector machine (SVM) [12] and so

on.

The NN is a complex interconnected system, whose nature

and function depend heavily on the highly variable connection

mode between neurons. Most of the NNs are feedforward

neural networks (FNNs) [13] (Figure 2).

Figure 1. The entire classification procedure

Revue d'Intelligence Artificielle
Vol. 34, No. 2, April, 2020, pp. 203-208

Journal homepage: http://iieta.org/journals/ria

203

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.340211&domain=pdf

Figure 2. The structure of a typical FNN

This paper mainly improves the backpropagation (BP)

algorithm for the classification of big data samples. Firstly, the

input data were normalized into the range of [0, 10], such that

all input samples belong to the same order of magnitude. Then,

the traditional BP algorithm was improved based on the

backpropagation neural network (BPNN), a typical multi-

layer perceptron (MLP), the least mean square (LMS)

algorithm, and a self-designed momentum factor. To the best

of our knowledge, this is the first attempt to fully integrate

these techniques into the classifier of big data samples.

2. INPUT DATA NORMALIZATION

As mentioned above, the connection mode between neurons

directly bears on the nature and function of the NN. In machine

learning (ML), the perceptron is an NN for supervised learning

of binary classifiers. Based on the eigenvector of an instance,

the perceptron can output the class of the instance.

The perceptron is either single-layer perceptron (SLP) or

MLP. The SLP is the simplest form of the FNN, which

contains no hidden layer. By contrast, the MLP involves at

least one hidden layer. Here, only the MLP is discussed in the

light of our objective. The BPNN is a typical MLP.

As shown in Figure 3, the MLP encompasses several fully

connected layers of neurons. The input x of the MLP has n

features from the data pairs (x, d) in the training set. The

neurons in the input layer are connected with the J neurons in

the hidden layer via the weight vector V, while the J neurons

in the hidden layer are connected with the K neurons in the

output layer via weight vector W. Obviously, the input value

has a direct impact on the output of the MLP. This makes

preprocessing of input data a necessity.

In the same dataset, the sample values may vary greatly.

Sometimes, a sample value might be hundred or even

thousands of times that of another one. Hence, the input

samples of the MLP could belong to vastly different orders of

magnitude. Here, the input data are normalized to ensure that

all sample values have the same order of magnitude.

To promote the prediction effect, the input of the MLP

should cover a large proportion of training samples. Otherwise,

the trained MLP will have a poor prediction effect. The

preprocessing of input data needs to solve a key problem:

speeding up the MLP training, while avoiding the impact of

uneven distribution of training samples on the network.

2.1 Algorithm design

Since the original data are usually unordered, the training

set might contain data scattering in a wide value range. In some

cases, the data differ markedly in the order of magnitude. If

the training set is directly applied, the training speed will be

slowed down, and the trained MLP will have a poor accuracy.

These negative impacts are explained as follows:

The MLP training mainly modifies the connection weights

based on global error. These weights need to be modified in a

long time, such that the connection weights could meet the

requirements of both large samples and small samples. The

time-consuming modification drags down the training speed.

Meanwhile, the training samples are distributed unevenly on

each scale. After training, the modified connection weights

cannot reflect the features of most training samples. As a

result, the input data must be normalized to facilitate the data

prediction.

Numerical normalization is a popular way to minimize the

scale difference between data. However, the numerically

normalized data will still have a huge difference in magnitude.

This means numerical normalization alone cannot satisfy the

demand for the MLP. Thus, this paper normalizes the input

data into the range of [0, 10] in two steps:

Firstly, the eigenvalue of each data was extracted.

Considering their scale difference, the eigenvalues were

converted into the same order of magnitude between 0 and 10.

The interval of [0, 10] was selected, marking the first time that

a specific range is defined for data preprocessing [14, 15].

Secondly, the extracted eigenvalues were multiplied by 10n,

where the value of n depends on the specific dataset.

After the normalization, the classification algorithm could

be obtained. The data in the test set should also be converted

into the same scale, laying the basis for data prediction. Finally,

the prediction results should be converted inversely to be

compared with the original data.

The above input normalization method can be defined as:

Suppose training set T consists of P samples, each of which

has M features and N outputs. Let Xi and Yi be input and

output vectors, respectively, and Zi be the converted value.

The value of Zi falls between 0 and 10. These vectors can be

defined as follows: Xi=(Xi1, Xi2,…,XiM), Yi=(Yi1, Yi2,…,YiN),

Zi=XiP*10n, and 𝑍𝑖𝑃 ∈ [0,10], where i=1,2,…P.

Figure 3. The structure of an MLP

204

2.2 Experimental verification

To verify the effectiveness of the above method, the BPNN

algorithm was adopted to train a classifier with data on mineral

composition, which was then used to predict the burning effect

of different minerals. The test set contains 15 samples. Two

parallel experiments were carried out. One of them directly

uses the original data, which differ in the order of magnitude;

the other uses the data normalized by the above method. Table

1 and Figure 4 both compare the errors between the prediction

results and the actual values of the two experiments. It can be

seen that the prediction was more accurate after the input data

were normalized by the above method. Therefore, the above

input normalization method can indeed improve the

classification accuracy.

Table 1. Comparison between two experiments in prediction

error

Sample

number

Prediction error of

using normalized data

Prediction error of

using original data

1 0.02 0.07

2 0.01 0.04

3 0.04 0.08

4 0.09 0.30

5 0.03 0.07

6 0.02 0.05

7 0.08 0.25

8 0.05 0.15

9 0.01 0.03

10 0.04 0.08

11 0.06 0.12

12 0.02 0.07

13 0.03 0.10

14 0.01 0.02

15 0.11 0.40

Figure 4. Comparison between two experiments in

prediction error

3. MLP CLASSIFICATION BASED ON BATCH

LEARNING

This subsection designs a novel batch learning classification

algorithm based on the MLS, an adaptive learning algorithm

[16], and the BPNN.

3.1 Algorithm design

In the LMS, a cost function τ(w) is set up to be continuously

differentiable to the weight vector 𝑤. The cost function aims

to find the optimal weight vector w*, making 𝜏(𝑤∗) ≤ 𝜏(𝑤)
for any vector w.

By the LMS learning rules, the weight vector 𝑤 can be

defined as:

𝑤𝑝+1 = 𝑤𝑝 + ∆𝑤𝑝 = 𝑤𝑝 − 𝛿𝛻𝜏(𝑤𝑝)

= 𝑤𝑝 − 𝛿
𝜕𝜏

𝜕𝑤
|𝑝

(1)

During the calculation period of the LMS, training data

pairs (x, d) are chosen stochastically, where 𝑥 is input and 𝑑 is

the desired response. Then, the data pairs (x,d) are substituted

into the activation function f(u), where 𝑢 can be expressed as:

𝑢 = 𝜔𝑇𝑥 (2)

Then, the output of the MLP can be obtained as:

𝑜 = 𝑓(𝜔𝑇𝑥) = 2 ∙ 𝜑𝑗(𝜔) − 1 (3)

To evaluate the error of the weight of a specific pair (x,d), it

is necessary to calculate d, and directly compare it with output

o. The error e can be defined as the difference between 𝑑 and

o.

𝑒 = 𝑑 − 𝑜 = 𝑑 − (𝑤𝑇𝑥) (4)

The error e is used to evaluate and trim the weight of

neurons, minimizing the value of the cost function.

As the cost function, the sum of squares for error (SSE)

should decrease gradually in the training process. In geometry,

a continuous nonlinear differentiable cost function of weight

vector is a quadric hypersurface, that is, a parabolic surface

with a concave in the middle. The cost function has a unique

minimum value. Therefore, minimizing the cost function is

equivalent to finding the minimum value along the parabolic

surface.

The minimum value can be obtained by gradient as follows:

𝜏(𝑤) =
1

2
∑(𝑑𝑗 − 𝑜𝑗)

2

𝐶

𝑗=1

 (5)

The gradient ∇τ(w) can be derived from the cost function 𝜏

to each element of the weight vector 𝑤:

𝛻𝜏(𝑤) =
𝜕𝜏

𝜕𝑢

𝜕𝑢

𝜕𝑤
 (6)

where, ∂τ/∂u is an error signal; ∂u/∂w is the effect of the given

input 𝑢 on weight vector 𝑤.

The first partial derivative of cost function 𝜏 to weight

vector 𝑤 can be defined as:

𝛻𝜏(𝑤) = 𝑒𝑗
(𝐿)
𝜑𝑗(𝑣𝑗

(𝐿)
) (7)

Then, the learning rules can be redefined as:

𝑤𝑝+1 = 𝑤𝑝 + ∆𝑤𝑝 = 𝑤𝑝 − 𝛿𝛻𝜏(𝑤𝑝)

= 𝑤𝑝 + 𝛿𝑒𝑝𝑓
′(𝑢𝑝)𝑥𝑝

(8)

If the learning rate 𝛿 is small enough, the cost function

could be reduced step by step by correcting the weight vectors.

205

If the learning rate is too small, the convergence will be too

slow. To solve the problem, a momentum factor was

introduced to improve the convergence rate of cost function in

improved backpropagation (BP) algorithm.

The gradient vector ∇τ(w) of the cost function based on 𝑝

can be expressed as:

𝑤𝑝+1 = 𝑤𝑝 + ∆𝑤𝑝 = 𝑤𝑝 − 𝛿𝛻𝜏(𝑤𝑝)

= 𝛿𝑚(𝑤𝑝 −𝑤𝑝−1)
(9)

where, δm is the momentum factor.

To integrate the LMS to the BPNN, the error signal of the

output layer in the BPNN was defined in the equation of the

LMS. The BP algorithm minimizes the error through repeated

weight modifications. Through gradient descent, each

connection weight wij(n) was corrected by ∆wij(n), which is

proportional to the partial derivative (δτ(n))⁄(δwij (n)).

According to the differential chain rule, the gradient can be

expressed as:

𝜕𝜏(𝑛)

𝜕𝑤𝑖𝑗(𝑛)
=

𝜕𝜏(𝑛)

𝜕𝑒𝑗(𝑛)
∙
𝜕𝑒𝑗(𝑛)

𝜕𝑥𝑗(𝑛)
∙
𝜕𝑥𝑗(𝑛)

𝜕𝑡𝑗(𝑛)
∙
𝜕𝑡𝑗(𝑛)

𝜕𝑤𝑖𝑗(𝑛)
 (10)

The following can be derived from the BP algorithm:

𝜕𝜏(𝑛)

𝜕𝑒𝑗(𝑛)
= 𝑒𝑗(𝑛) (11)

𝜕𝑒𝑗(𝑛)

𝜕𝑥𝑗(𝑛)
= −𝑒𝑥𝑝(‖𝑑𝑗 − 𝑜𝑗‖)

2 (12)

𝜕𝑥𝑗(𝑛)

𝜕𝑡𝑗(𝑛)
= 𝜑𝑗

′(𝑡𝑗(𝑛)) (13)

𝜕𝑡𝑗(𝑛)

𝜕𝑤𝑖𝑗(𝑛)
= 𝑥𝑗(𝑛) (14)

Substitute formulas (11)-(14) into formula (10):

𝜕𝜏(𝑛)

𝜕𝑤𝑖𝑗(𝑛)
= −𝛿

𝜕𝜏(𝑛)

𝜕𝑤𝑖𝑗(𝑛)
 (15)

where, δ is the learning rate of error backpropagation; the

negative sign “-” indicates a gradient descent in weight space.

Then, formula (10) can be rewritten as:

𝜕𝜏(𝑛)

𝜕𝑤𝑖𝑗(𝑛)
= 𝛿𝛾𝑗(𝑛)𝑥𝑗(𝑛) (16)

where, γj(n) is the local gradient.

According to the LMS algorithm, the local gradient can be

defined as:

𝛾𝑗(𝑛) = −
𝜕𝜏(𝑛)

𝜕𝑒𝑗(𝑛)
∙
𝜕𝑒𝑗(𝑛)

𝜕𝑥𝑗(𝑛)
∙
𝜕𝑥𝑗(𝑛)

𝜕𝑡𝑗(𝑛)

= 𝑒𝑗(𝑛)𝜑𝑗
′(𝑡𝑗(𝑛))

(17)

According to the structure of the BPNN, the local gradient

𝛾𝑗(𝑛) of hidden layer neuron 𝑗 can be expressed as:

𝛾𝑗(𝑛) = 𝜑𝑗
′(𝑡𝑗(𝑛))∑𝛾𝑘(𝑛)𝑤𝑘𝑗(𝑛)

𝑘

 (18)

According to the LMS algorithm, the correction value

∆wij(n) of connection weight from neuron 𝑖 to neuron 𝑗 can be

defined as:

∆𝑤𝑖𝑗(𝑛) = 𝛿 × 𝛾𝑗(𝑛) × 𝑥𝑗(𝑛) (19)

The above analysis demonstrates that the BP algorithm is an

optimization algorithm of local search, capable of finding the

solution to complex nonlinear problems.

To prevent the local minimum trap, the authors improved

the BP algorithm for MLP classification based on batch

learning. Since the input and output of the MLP are the same

type of physical quantities, the sample trend will not be

affected by any change of the maximum in the normalization

function. After the original data are normalized by the

previously proposed method, all the samples belong to the

same scale. For each sample, the maximum and minimum

values are on the same order of magnitude, while the other

values fall between the two extremums.

Mathematically, the improved BP algorithm can be defined

as follows:

Let X={xp, dp}, p=1,2,…,P be a training set of P samples,

where xp is the input vector of sample 𝑝 with 𝑛 features, dp is

the desired output vector. During the feedforward process, for

the 𝐽 neurons of hidden layer, the (P, J)-dimensional input

matrix 𝑈 can be calculated as:

𝑈 = 𝛾(𝑋𝑈
𝑖 𝑉𝑈

𝑖) (20)

where, 𝑋𝑈
𝑖 is the matrix of (P, N+1)-dimensional training data;

𝑉𝑈
𝑖 is the weight vector matrix of (N+1, J) dimensions in the

hidden layer.

The output matrix 𝑦 of hyperbolic tangent activation

function can be defined as:

𝑦 = 𝑒𝑥𝑝(−𝑢) ∙ (𝑋𝑈
𝑖 − 𝑈) ‖𝑉𝑈

𝑖 − 𝑈‖⁄ (21)

The derivative of the error signal can be defined as:

𝑦 , =
1

2
(1 − 𝑦2) (22)

During the error backpropagation, the error signals of

output layer and hidden layer can be calculated as a (P, K)-

dimensional matrix ∆O and a (P, J+1)-dimensional matrix ∆Y,

respectively.

The product matrix of hidden layer and output layer can be

respectively defined as:

∆𝑉 = 𝑋𝑇∆𝑌 (23)

∆𝑊 = 𝑦𝑏
𝑇∆𝑂 (24)

Then, the momentum factor δm was introduced to speed up

the learning. The previous batch ∆V and ∆W are saved as

∆V_pre and ∆W_pre, respectively, such that the momentum

factor could be applied to the adaptive modification of

connection weights.

Using the LMS algorithm and momentum factor, the

connection weights 𝑉 and 𝑊 can be respectively updated by:

𝑉 = 𝑉 + 𝛿∆𝑉 + 𝛿𝑚𝛿∆𝑉_𝑝𝑟𝑒 (25)

𝑊 = 𝑊 + 𝛿∆𝑊 + 𝛿𝑚𝛿∆𝑊_𝑝𝑟𝑒 (26)

206

where, the product of δ∆V is the corrected weight of V; the

product of δ∆W is the corrected weight of W; δm δ ∆V_pre and

δm δ ∆W_pre are the momentum factor for updating weights V

and W, respectively.

3.2 Experimental verification

The improved BP algorithm was verified through k-fold

cross validation, using examples from the UCI Machine

Learning Repository [17]. Nine of the ten samples were

allocated to the training set, and the remaining one to the test

set. For comparison, the traditional BP algorithm was also

trained by the same training set and applied to classify the

same test set. The classification accuracy of each algorithm

was measured by the mean percentage error (MPE).

The parameters of the experiment were configured as

follows: the momentum factor δm=0.7 was used to accelerate

the convergence of cost function to the minimum value, and

kw=0.1 was used to initialize the weight vectors. The number

of hidden layer neurons, learning rate, and the number of

iterations in training were changed during the experiment.

The classification accuracies of the improved BP algorithm

and the traditional BP algorithm are compared in Table 2

below. Obviously, our algorithm achieved more accurate

classification than the traditional BP algorithm.

The process time of our algorithm is compared with that of

the traditional BP algorithm in Figure 5. It can be seen that, in

the same hardware environment, our algorithm consumed

slightly more time than the traditional BP algorithm. However,

a slightly longer process time is nothing compared with the

obvious superiority in accuracy.

Table 2. Comparison of the accuracy of the two algorithms

Dataset

number

Accuracy of common

BP algorithm

Accuracy of

proposed algorithm

Dataset 1 99.38% 99.41%

Dataset 2 93.65% 97.25%

Dataset 3 96.62% 97.18%

Dataset 4 100% 100%

Dataset 5 97.53% 97.61%

Dataset 6 89.32% 90.05%

Dataset 7 98.61% 98.72%

Dataset 8 66.90% 72.28%

Dataset 9 77.59% 82.30%

Dataset 10 92.71% 93.88%

Figure 5. Comparison of process time of the two algorithms

4. CONCLUSIONS

Inspired by the theory of batch learning BP algorithm, this

paper combines the LMS algorithm and the traditional BP

algorithm into an improved classification algorithm for the

MLP. The improved algorithm fully integrates the batch

learning rules and momentum factor. To verify its

effectiveness, the improved BP algorithm was compared with

the traditional BP algorithm through experiments. The

comparison shows that our algorithm clearly outperformed the

traditional BP algorithm in classification accuracy. The

research results shed new light on big data classification.

ACKNOWLEDGMENT

We want to thanks The Excellent Science and Technology

Innovation Team of Jiangsu Universities and Colleges, the

Application of Industrial Networks and Big Data; The

Engineering Technology Research and Development Center

of Jiangsu Higher Vocational and Technology Colleges, The

Industrial Big Data and Intelligent Engineering Technology

Research and Development Center; The Provincial

Engineering Research Center of Jiangsu, the Innovation and

Application of Jiangsu Small Business Industrial Internet

Engineering Research Center.

The work is supported by "General program of natural

science research in Jiangsu University, Research on Key

Technologies of disaster tolerant mobile data collection for

underwater acoustic sensor network, No. 19KJB520023";

"Open Lab of Edge of Computing for Smart Manufacturing,

Changzhou College of Information Technology, Changzhou,

China, KYPT201802Z".

REFERENCES

[1] Yan, X., Jia, M. (2018). A novel optimized SVM

classification algorithm with multi-domain feature and

its application to fault diagnosis of rolling bearing.

Neurocomputing, 313(3): 47-64.

https://doi.org/10.1016/j.neucom.2018.05.002

[2] Zheng, B., Huang, H.Z., Guo, W., Li, Y.F., Mi, J. (2018).

Fault diagnosis method based on supervised particle

swarm optimization classification algorithm. Intelligent

Data Analysis, 22(1): 191-210.

https://doi.org/10.3233/IDA-163392

[3] Li, H.Y., Li, H.F., Wei, K.B. (2018). Automatic fast

double KNN classification algorithm based on ACC and

hierarchical clustering for big data. International Journal

of Communication Systems, 31(16): e3488.1-e3488.11.

https://doi.org/10.1002/dac.3488

[4] Brankovic, A., Falsone, A., Prandini, M., Piroddi, L.

(2017). A feature selection and classification algorithm

based on randomized extraction of model populations.

IEEE Transactions on Cybernetics, 48(4): 1151-1162.

https://doi.org/10.1109/TCYB.2017.2682418

[5] Kumar, M.A., Gopal, M. (2010). Fast multiclass SVM

classification using decision tree based one-against-all

method. Neural Processing Letters, 32(3): 311-323.

https://doi.org/10.1007/s11063-010-9160-y

[6] Bazan, J.G., Bazan-Socha, S., Buregwa-Czuma, S., Dydo,

L., Rzasa, W., Skowron, A. (2016). A classifier based on

a decision tree with verifying cuts. Fundamenta

207

Informaticae, 143(1-2): 1-18. https://doi.org/10.3233/FI-

2016-1300

[7] Chandanapalli, S.B., Sreenivasa Reddy, E., Rajya

Lakshmi, D. (2017). FTDT: Rough set integrated

functional tangent decision tree for finding the status of

aqua pond in aquaculture. Journal of Intelligent & Fuzzy

Systems, 32(3): 1821-1832.

https://doi.org/10.3233/JIFS-152634

[8] Hajisalem, V., Babaie, S. (2018). A hybrid intrusion

detection system based on ABC-AFS algorithm for

misuse and anomaly detection. Computer Networks,

136(5): 37-50.

https://doi.org/10.1016/j.comnet.2018.02.028

[9] Bin, S., Sun, G.X., Cao, N., Qiu, J.M., Zheng, Z.Y., Yang,

G.H., Zhao, H.Y., Jiang, M., Xu, L. (2019).

Collaborative filtering recommendation algorithm based

on multi-relationship social network. CMC-Computers,

Materials & Continua, 60(2): 659-674.

https://doi.org/10.32604/cmc.2019.05858

[10] Liang, T., Xu, X., Xiao, P. (2017). A new image

classification method based on modified condensed

nearest neighbor and convolutional neural networks.

Pattern Recognition Letters, 94(7): 105-111.

https://doi.org/10.1016/j.patrec.2017.05.019

[11] Ezghari, S., Zahi, A., Zenkouar, K. (2017). A new nearest

neighbor classification method based on fuzzy set theory

and aggregation operators. Expert Systems with

Application, 80(9): 58-74.

https://doi.org/10.1016/j.eswa.2017.03.019

[12] Yan, X., Jia, M. (2018). A novel optimized SVM

classification algorithm with multi-domain feature and

its application to fault diagnosis of rolling bearing.

Neurocomputing, 313(11): 47-64.

https://doi.org/10.1016/j.neucom.2018.05.002

[13] Sun, G.X., Bin, S. (2018). A new opinion leaders

detecting algorithm in multi-relationship online social

networks. Multimedia Tools and Applications, 77(4):

4295-4307. https://doi.org/10.1007/s11042-017-4766-y

[14] Rashed, M., Rashed, E.A. (2017). Double-Sided Sliding-

Paraboloid (DSSP): A new tool for preprocessing GPR

data. Computers & Geoences, 102(5): 12-21.

https://doi.org/10.1016/j.cageo.2017.02.005

[15] Ramírez-Gallego, S., García, S., Benítez, J.M., Herrera,

F. (2015). Multivariate discretization based on

evolutionary cut points selection for classification. IEEE

Transactions on Cybernetics, 46(3): 595-608.

https://doi.org/10.1109/TCYB.2015.2410143

[16] Barbu, A.L., Laurent-Varin, J., Perosanz, F., Mercier, F.,

Marty, J.C. (2018). Efficient QR sequential least square

algorithm for high frequency GNSS precise point

positioning seismic application. Advances in Space

Research, 61(1): 448-456.

https://doi.org/10.1016/j.asr.2017.10.032

[17] Ding, S.F., Xu, L., Su, C.Y., Jin, F.X. (2012). An

optimizing method of RBF neural network based on

genetic algorithm. Neural Computing and Applications,

21(2): 333-336. https://doi.org/10.1007/s00521-011-

0702-7

208

