
Hand-Crafted Features vs Deep Learning for Pedestrian Detection in Moving Camera

Bilel Tarchoun1, Anouar Ben Khalifa1*, Selma Dhifallah1, Imen Jegham2, Mohamed Ali Mahjoub1

1 Université de Sousse, Ecole Nationale d’Ingénieurs de Sousse, LATIS-Laboratory of Advanced Technology and Intelligent

Systems, Sousse 4023, Tunisia
2 Université de Sousse, Institut Supérieur d’Informatique et des Techniques de Communication de H. Sousse, LATIS-

Laboratory of Advanced Technology and Intelligent Systems, Sousse 4011, Tunisia

Corresponding Author Email: anouar.benkhalifa@eniso.rnu.tn

https://doi.org/10.18280/ts.370206 ABSTRACT

Received: 7 January 2020

Accepted: 8 March 2020

Detecting pedestrians and other objects in images taken from moving platforms is an

essential task needed for many applications such as smart surveillance systems and

intelligent transportation systems. However, most detectors in this domain still rely on

handcrafted features to separate the foreground objects from the background. While these

types of methods have presented good results with good response times, they still have some

weaknesses to overcome. In recent years, alternative object detection methods are being

proposed, with deep learning based approaches rising in popularity thanks to their promising

results. In this paper, we propose two pedestrian detectors for use in images taken from a

moving vehicle: The first detector uses a block matching algorithm and handcraft features

for pedestrian detection, and the second uses a Faster R-CNN deep detector. We also

compare both systems’ performances to other state-of-the-art pedestrian detectors. Our

results show that although handcraft feature-based approach achieves good results within

acceptable detection times, it suffers from a high false positive rate. However, we found that

Faster R-CNN detector performs better in terms of precision and recall, but these improved

results come at a cost of detection time.

Keywords:

deep learning, handcrafted features,

intelligent transport systems, moving

camera, pedestrian detection

1. INTRODUCTION

The development of autonomous vehicles is attracting the

interest of the computer vision community since these vehicles

require an array of sensors such as radar, lidar, cameras and

ultrasonic sensors to perceive their environment [1, 2]. Among

these sensors, cameras are the most popular tool for intelligent

transportation systems as they provide an extensive amount of

information [3, 4]. This information is used to detect objects

present around the vehicle. Pedestrian detection is the most

critical part of these needed detection tasks to ensure the safety

of all of the vehicles and people on the road. The need for such

pedestrian detectors is an important driving force behind the

evolution of machine learning and computer vision, with many

detection methods proposed each year [5, 6]. However, most

of these proposals rely on the assumption that the camera used

for the detection task is static. These methods fail to produce

the required accuracy when dealing with moving targets in a

moving environment, which is the case for autonomous

vehicles [7]. These issues have created a demand for

pedestrian detection approaches that are able to adapt to the

autonomous vehicle needs. But this further complicates an

already challenging task. In addition to the challenges present

in pedestrian detection from a static camera such as pedestrian

appearance variations, non-rigid deformations, illumination

problems and occlusions, the detection becomes more

complex with the camera’s motion [8, 9]. This complexity is

caused by the difficulty in distinguishing the foreground

objects from the background, as the background itself is also

moving.

To overcome these challenges, many methods for detecting

objects and separating them from their backgrounds have been

proposed. These methods can be categorized in two different

families: Methods based on hand crafted features that model

the background using techniques such as Aggregated Channel

Features, Gaussian Mixture Models and Optical flows [10-12].

The second family uses the recent developments in deep

learning that were made possible in the last decade thanks to

the availability of larger training databases and more powerful

hardware [13, 14].

In this paper we propose two pedestrian detectors, the first

detection framework is based on a block matching algorithm

for camera motion compensation, and handcraft features for

object classification. The second detector is based on a deep

neural network framework to detect pedestrians by a camera

mounted in the dashboard of a car. Our deep neural network is

based on a Faster R-CNN [15] architecture trained using a

transfer learning scheme. We compare our detectors

performances to each other and several handcrafted feature

based detectors. Our Faster R-CNN detector outperforms hand

craft feature based detectors thanks to the ability of CNNs to

generate discriminant features even in real-world conditions.

The main contributions of this paper are the following:

• We propose a handcraft feature based detector that uses

a block matching algorithm to compensate the camera

movement.

• We propose a deep pedestrian detector designed for use

with a camera installed on a vehicle.

• We compare the performance of our detector to other

handcraft feature based detectors.

Traitement du Signal
Vol. 37, No. 2, April, 2020, pp. 209-216

Journal homepage: http://iieta.org/journals/ts

209

https://crossmark.crossref.org/dialog/?doi=10.18280/ts.370206&domain=pdf

The rest of the paper is organized as follows. Section 2

introduces a survey on recent methods for detecting moving

objects by using a moving camera. Section 3 presents both of

our proposed detectors for use in moving cars. In section 4, we

evaluate our detectors performances and compare the results

to each other and to other pedestrian detectors. And finally, the

last section concludes the paper.

2. RELATED WORK ON OBJECT DETECTION WITH

A MOVING CAMERA

Pedestrian detection is a widely studied field in computer

vision, with many feature extraction and classification

methods already proposed in the literature. The majority of

these works are concerned with the case of pedestrian

detection in static cameras. In our work, we focus on the

context of a camera mounted on a moving platform. Object

detection with a moving camera introduces additional issues

related to camera motion, and classic methods of background

modelisation and background subtraction approaches cannot

be used in this case. There are few works that address the

problem of pedestrian detection on a moving platform. These

methods can be divided into two categories: Methods that use

handcrafted features, and methods that adopt a deep learning

based detector.

2.1 Methods based on handcrafted features

These methods are based on the separation of the

foreground of the foreground objects from the images

background, then extracting features from the segmented

objects and classifying them.

Cho et al. [10] implemented a moving object detector for

advanced driver assistance systems based on both optical flow

and background subtraction techniques to mitigate false

positives. First, optical flow is estimated from the current and

previous frame and used to estimate the camera’s egomotion.

The motion information is then used to apply motion

compensation on the previous frame and to generate the

background model using a Gaussian Mixture Model. Using

this information, the authors applied two types of detection to

the image by subtracting the background model from the

current frame and by detecting the difference in optical flows

between the current frame and the previous frame with motion

compensation applied. Finally, the results from both detection

techniques were cross-checked to validate the detections and

remove false positives. The authors have also successfully

implemented their detection method on an FPGA board and

detailed the hardware structure of their approach.

Zhang et al. [11] present an object detector for images taken

from a camera mounted on an unmanned aerial vehicle. The

authors proposed an optical flow based solution for the

detection task, but since the UAV moves in a 3D space the

optical flow vectors could not be directly compared. To solve

this issue, the authors proposed to create a homography

between the previous frame and the current frame to adjust the

optical flow vectors. With these adjustments, it is possible to

compare the difference between the optical flow vectors and

the background movement to generate candidate detections.

Next, the authors proposed to refine the detections by

clustering close regions and using convex hull filling to

remove the cracks in the candidates. Finally, the authors tested

for false positives by removing candidates that have abrupt

motions between frames, as an object should only move for a

small distance in a short time.

Yun et al. [16] presented a method to detect moving objects

in a moving camera view based on a background subtraction

method. The detection includes 3 steps, in the first step various

variables are extracted from the scene such as the illumination

variation, background motion extracted with the Lucas-

Kanade optical flow algorithm in the form of a homography

between the current and previous frame, and a foreground

motion estimation based on the difference between the current

frame and the previous frame adjusted by the background

motion homography. In the next step, the background model

is updated using the homography calculated in the previous

step and the illumination change. Finally, each pixel’s

probability to be in the background is calculated based on the

difference between the pixel’s intensity and the background

model data relevant to the pixel, and these pixel probabilities

are thresholded to obtain the foreground elements after solving

ambiguities according to their connectivity to known

foreground elements.

Yu et al. [17] propose to detect moving objects in a moving

camera view by aligning each frame with the previous one

using optical flows. To find corresponding points between

frames, the Lucas-Kanade optical flow algorithm is applied on

a grid of 16 × 16 evenly distributed grid of points on the

previous frame. Then, each point in the grid is paired up with

their resulting point in the current frame. Six of these

corresponding points are chosen according to the RANSAC

algorithm in order to calculate a homography matrix which is

then used to align the pair of frames. A background model is

then updated using the difference between the current frame

and the previous model’s iteration, as well as the homography.

To find the moving objects, the current frame is aligned with

the two previous frames and compared to the updated

background model to produce a binary image containing the

moving objects. Finally, the objects in this image are

segmented using filters and morphological operations.

All the presented methods included 2 common steps which

are the creation of a background model and the compensation

of the camera motion. These steps are important in order to

detect elements deviated from this model as objects of interest.

While the methods used to create these models (most

commonly optical flows and Gaussian mixture models)

produce good results, there are still some noticeable issues

with the results such as noisy detections and difficulties in

detecting very small or very large objects.

2.2 Methods based on deep learning

This family of methods relies on the ability of CNNs to

generate discriminative features for the detection task without

necessarily needing a background detection technique or other

camera pre-processing.

Heo et al. [18] introduced a deep learning approach for

detecting objects in a dynamic background. This approach

relies on the fusion of two CNNs for the detection task, the

first CNN detects the appearances of objects using the current

frame as an input while the second CNN detects motion

information using the current frame and the background model.

For the first network’s architecture, the authors fine-tuned the

layers preceding the pool4 layer the VGG-16 network and

added a convolution layer that performs the appearance based

detection. While for the second network, the authors trained a

shallow network composed of three convolutional layers and

210

a pooling layer as higher level data is irrelevant for detecting

motion information. The two networks are then fused into one

using a pixel wise SoftMax layer and re-trained to obtain the

final detector.

To improve detection results for small size pedestrians and

better distinguish them from background elements, Kong et al.

[13] introduced a modified Faster R-CNN architecture that

combines multi-scale features and contextual information. In

their work, the authors asserted that the shortcomings of Faster

R-CNN detectors in detecting smaller pedestrians and

discriminating them from the background are caused by the

low resolution of features extracted from small scale

pedestrians in the final convolution layers as well as the ROIs

for feature extraction being too close to the detection target.

To solve this issue, the authors proposed to pool features from

a region 1.5× larger in size than the original ROI proposal and

also to pool features from multiple convolution layers with an

additional normalization and scaling step to obtain a

discriminative feature set better suited for detecting difficult

targets.

In order to detect pedestrians for a human aware navigation

application for robots, Mateus et al. [14] proposed to combine

a hand-crafted detector with a convolutional neural network

detector to achieve good detection performances while

keeping an acceptable detection speed. Instead of processing

the whole image with a CNN detector, the authors first

generated pedestrian proposals using an Aggregated Channel

Features (ACF) pedestrian detector. These proposals are

further filtered by removing proposals that have a detection

score below a certain threshold. For the next step, the authors

have chosen to implement a VGG-VD16 model that was fine-

tuned on the INRIA dataset and modified to fit the

application’s needs. This detector is then used to further

classify the ACF detector’s proposals in order to either accept

them for the final detection results or otherwise reject them.

Rozantsev et al. [19] proposed two approaches to detect

unmanned aerial vehicles (UAV) and aircraft in images taken

by a mobile camera. This task presents additional challenges

compared to detecting objects on the ground since UAVs and

aircraft move in a 3D space, and the background can be

extremely complex (changing between sky and ground). In

both approaches, the video is divided in overlapping slices of

frames and these slices are further divided by a sliding window

to form “spatio-temporal cubes” (st-cubes). Then motion

compensation is applied to stabilize the st-cubes, and these st-

cubes are classified depending on the presence of an object.

The two approaches differ in the methods used for motion

compensation and the classification step. In the first approach,

the authors use two regressors based on boosted trees for

motion compensation in the x and y direction and

classification is done by using HOG3D features and the

gradient boost algorithm. The second approach is based on

deep learning techniques, two CNNs are trained for the motion

compensation step to first coarsely align the large movements

and then refine the small changes. Another CNN is trained for

the classification step to detect the presence of objects in the

motion compensated st-cubes. The authors conclude that the

CNN based approach has led to the best detection results.

CNN based detection is increasingly being adopted for

many applications, and the task of detecting moving objects in

a moving camera is no exception. These deep learning based

approaches have shown great results compared to their

handcraft feature counterparts thanks to their ability to learn

task specific features without necessarily needing pre-

processing such as motion compensation. However, CNN

based methods are still much slower than real-time processing

requirements, and the need of powerful computation hardware

make these solutions impractical in certain scenarios.

3. PROPOSED METHODS

In this section we detail our proposed frameworks for

pedestrian detection by a moving camera. The first framework

is based on deep neural network detection. The second

framework is based on handcrafted features for pedestrian

detection by compensating the camera’s motion.

3.1 Deep learning detector

We have chosen a deep learning based approach for the

detection task as convolutional neural networks have proven

their ability to learn robust and distinguishing features for the

detection targets even in difficult situations. Our method will

be discussed in two parts as shown in Figures 1 and 2. In the

first part, we prepare our detector using transfer learning,

while in second part we apply our trained detector in order to

detect pedestrians in images captured by the vehicle’s camera.

Figure 1. Deep detector training step

211

Step 1: Detector training

Our detector uses a Faster R-CNN based architecture as its

basis, as Faster R-CNN based architectures have shown the

best speed to performance compromise compared to other

CNN architectures [20]. For training the proposed detector we

choose to use transfer learning techniques since they allow us

to retain the advantages of CNN models trained on large

databases. Transfer learning also allows us to fine-tune the

detector using less training data and requiring much less

training time to reach optimal results. To obtain our training

data, we divided our database in two sets, one set is used for

training (1) and the other one is used for validation (2).

𝐷𝐵𝑡𝑟𝑎𝑖𝑛 = {(𝐼, 𝐺)𝑘} 𝑘=1

|𝐷𝐵𝑡𝑟𝑎𝑖𝑛|
 (1)

𝐷𝐵𝑡𝑒𝑠𝑡 = {(𝐼, 𝐺)𝑘} 𝑘=1
|𝐷𝐵𝑡𝑒𝑠𝑡| (2)

where, Ik represents the image number k in the dataset and gk

represents the associated set of ground truth bounding boxes,

with 𝑔𝑘 = [𝑥𝑘
𝑔
, 𝑦𝑘

𝑔
, 𝑤𝑘

𝑔
, ℎ𝑘

𝑔
] being the x,y coordinates of the

top left corner, the width and the height of the bounding box.

The training database is then used for fine tuning a Faster

R-CNN in a four step process where the weights of the Region

Proposal Network (RPN) and the CNN feature extraction

layers are alternatively adjusted: First, the RPN is re-trained

while the CNN weights are locked, then then feature extraction

layers are re-trained. These two steps are repeated again to

fine-tune the training.

Figure 2. Pedestrian detection in vehicle mounted camera

images using our deep detector

Step 2: Detection step

At a given time t, the vehicle mounted camera will capture

a video frame It which is subsequently sent for processing by

our proposed detector for the pedestrian detection task. Object

detection in Faster R-CNN architectures consists of two tasks.

Multiscale feature maps are extracted from the input image

by the convolution and pooling layers that form the feature

extraction part of the network. Also, the RPN suggests

potential areas where objects may be present, these areas are

suggested around anchor points in different sizes and aspect

ratios. The feature maps and the areas suggested by the RPN

are then pooled together in the ROI pooling step, and the final

classification layers decide if a certain area contains a

pedestrian or not. The output of our detector is a set of

pedestrian bounding boxes 𝐵𝐵𝑜𝑥𝑡 = {[𝑥𝑖 , 𝑦𝑖 , 𝑤𝑖 , ℎ𝑖]}𝑖=1
|𝐵𝐵𝑜𝑥𝑡|.

3.2 Handcraft features detector

The main idea of this method consists of the fact that, in

object detection using a moving camera, the foreground

movement is different from the background motion. The

background’s motion is constrained by the camera’s limited

range of movement, while foreground objects can move freely

in any direction. Our proposed handcraft features based

approach is shown in Figure 3. The main steps of our approach

are:

Step 1: Region of interest extraction

Given two consecutive images, we extract a region of

interest (ROI) that is unlikely to contain foreground objects. In

our case, we choose the top 20% of the image as our ROI, as

in a driving scenario foreground objects are mostly situated on

the ground level, and this region still contains enough

background information to properly estimate background

motion

Step 2: Background motion estimation

In this step, we estimate the background’s motion with a

block matching algorithm [7], we split our selected ROIs in

blocks of equal size. For each block in frame t, we search the

corresponding block in frame t + 1. Different block matching

algorithms have been evaluated to calculate the global motion

vector �⃗� 𝑡 at time t as shown by (3).

𝑉𝑡
⃗⃗ ⃗ =

𝑏2

𝑃 × 𝑄
∑∑𝑉𝑙,𝑠

⃗⃗ ⃗⃗ ⃗

𝑄
𝑏

𝑠=1

𝑃
𝑏

𝑙=1

 (3)

With:

𝑏 × 𝑏: Size of the different blocks; 𝑃 × 𝑄: Size of each ROI

image; 𝑉𝑙,𝑠
⃗⃗ ⃗⃗ ⃗: Motion vector between two consecutive images

for block (l,s).

Step 3: Foreground object detection

In this step we divide the rest of the frames into blocks, and

match each block in frame t with its corresponding block in

frame t+1 using the same block matching algorithm chosen for

the previous step to calculate a movement vector for each

block. The obtained movement vectors are then compared to

the background movement vector using the Euclidean distance.

If the difference between the movement vectors is greater than

a certain threshold, the block is considered as a foreground

element and assigned a value of 1, otherwise the block is

considered as a part of the background and assigned the value

of 0. These values are then used to create a binary image that

shows the foreground objects.

212

Figure 3. Schematic of our proposed handcraft feature based detector

Step 4: Segmentation and classification

We first separate the different foreground objects found in

the binary image using the method described by Haralick and

Shapiro [21]. Then we extract feature vectors from each

segmented object using the Histogram of Oriented Gradients

(HOG) method [22]. The final task is to use the extracted

feature vectors in order to classify each object in a pair of

classes: Pedestrian and Non-Pedestrian. We opted for a kNN

based classifier due to their high accuracy while keeping

computational times low.

4. EXPERIMENTS AND RESULTS

In this section, we evaluate our proposed pedestrian

detectors and compare their performances to each other and

other handcraft feature based detectors [23] using the vehicle

half of the I2V-MVPD database [24]. The database contains a

total of sixty-one video sequences of various scenarios in

which a vehicle moves while pedestrians cross the road, these

sequences contain a total of 4740 images. As discussed in the

previous section, we divide the database in two sets, the first

twenty sequences are used as training data, while the rest of

the sequences will form the testing data. All of the experiments

done in this section have been performed on a computer with

the following specifications: CPU: Intel Core i7-7700HQ,

RAM: 16 GB, GPU: NVIDIA GTX 1050Ti with 4GB of

VRAM.

4.1 Deep learning detector training parameters

We considered five different pre-trained CNN architectures

to fine-tune for our detector: VGG-16, VGG-19, Resnet-18,

Mobilenetv2 and GoogleNet. These models were pre-trained

using the ImageNet database, which is a very large database

containing one million images divided into one thousand

classes of various objects. But before proceeding to our

finetuning step, we need to slightly modify these networks.

Since these networks were pre-trained using one thousand

classes, their classification layers contain one thousand

outputs. However, we only need two outputs: the presence or

absence of a pedestrians. Therefore, we keep only two outputs

and change the connections on the previous layers to match

our new output layer. For the fine-tuning, we use the

hyperparameters shown in Table 1.

Table 1. Hyperparameters for the training step

Hyperparameter Value

Mini Batch Size 4

Learning Rate 10-4

Number of epochs 20

Number of strongest regions 500

Momentum 0.9

4.2 Results

We evaluated the results of our five trained Faster R-CNN

architectures and our handcraft features based detector as well

as an Aggregate Channel Features (ACF) [25] based detector

[12] and the method described in [23]. The evaluation metrics

we used are the following:

• Precision (P): The percentage of correct detections

among all detections.

• Recall (R): The percentage of correct detections among

all objects to detect.

• Average Precision (AP): The surface under the

precision/recall curve.

• Detection Time (T).

The detection results are shown in Table 2.

The results show that our proposed handcraft performs

better than the two other tested handcraft detectors. This

performance is especially noticeable in the precision metric

where our detector significantly outperforms the other two

detectors. But our detector has a slightly slower detection time

compared to the other detectors, with an additional 50ms of

detection time per frame.

213

Table 2. Detection results

 Architecture AP (%) P (%) R (%) T (s)

H
an

d
cr

af
t

fe
at

u
re

s ACF [25] 52.06 14.87 71.55 0.214

SURF interest points

[20]
53.14 16.65 71.45 0.225

Proposed 64.78 43.15 76.06 0.270

D
ee

p
 L

ea
rn

in
g

Proposed

VGG-16
52.59 40.34 60.00 0.503

Proposed

VGG-19
57.41 61.81 64.01 0.580

Proposed Googlenet 61.75 66.23 65.21 0.628

Proposed

Mobilenetv2
64.99 43.28 76.15 0.619

Proposed Resnet-18 71.82 57.32 78.18 0.584

Our second proposed detector based on a deep learning

approach has outperformed all of the handcraft feature based

methods. In particular, the best performing architecture

(Resnet-18) had significantly overcame the handcrafted

detectors in both precision and recall metrics as shown in

Figure 4. However, these improvements came at the cost of

high detection time, with our proposed approach needing an

extra 370ms to perform the detection. We notice also that all

detection methods are too slow for real-time detection

requirements.

Table 2 shows that the best compromise between detection

performance and processing times has been obtained using the

Faster R-CNN model. These findings are also confirmed by

the results found in literature as shown by the works of Huang

et al. [20] and Ren et al. [15]. However, we note that there are

still many areas of possible improvements, such as the ratio of

false positives. In fact, Figure 5 presents a sample of these

false positives and compares their frequency in the results of

both of our proposed detectors. We notice that the false

positives are more common in the results of the handcrafted

features based detector. These false positives are caused by the

complexity of our real-world environment, which features a

large amount of vertical elements such as trees, traffic signs,

and light poles for example.

(a)

(b)

Figure 4. Comparison of detection results: (a) Proposed

Handcraft features detector (b) Proposed Resnet-18 detector

(a)

(b)

Figure 5. Comparison of false positive presence: (a)

Proposed Handcraft features detector (b) Proposed Resnet-18

detector

Figure 6. Example of missed detections caused by occlusions

Figure 6 highlights another limitation of our detectors,

which is occlusion handling. Indeed, the database contains

many scenarios where pedestrians move in groups, which

creates a large number of occluded persons. This category of

pedestrians is very difficult to detect, which causes a drop in

our detectors performances. Another factor that explains the

missed detections is the distance of certain pedestrians from

the vehicle’s camera. Beyond a distance of approximately 50

meters, these pedestrians appear in the camera view with small

sizes below 40 pixels in height. These small sized pedestrians

are challenging to detect.

5. CONCLUSION

In this paper, we propose to compare the performances of

deep learning detectors and handcraft feature based detectors.

To perform this comparison, we propose two different

pedestrian detection frameworks: Our first detector uses a

Faster R-CNN architecture trained using transfer learning

techniques, while our second detector uses block matching and

HOG features to detect pedestrians. The results show that our

proposed deep detector is able to outperform handcrafted

feature based detectors in detection performance while still

214

retaining superior robustness against false positives. However,

handcraft feature based detectors are faster than their deep

learning counterpart, which may be of interest in certain

applications. The results produced by our detectors can be

exploited in many applications in safety-critical applications

such as intelligent transportation systems. In future work,

further expansions to this work will be explored to further

improve the results. One possible direction is to develop

collaborative intelligence for roadside pedestrian detection.

REFERENCES

[1] Guerrero-Ibànez, J., Zeadally, S., Contreras-Castillo, J.

(2018). Sensor technologies for intelligent transportation

systems. Sensors, 18(4): 1212.

http://dx.doi.org/10.3390/s18041212

[2] Mimouna, A., Alouani, I., Ben Khalifa, A., El Hillali, Y.,

Taleb-Ahmed, A., Menhaj, A., Ouahabi, A., Ben Amara,

N.E. (2020). OLIMP: A heterogeneous multimodal

dataset for advanced environment perception.

Electronics, 9(4): 560.

https://doi.org/10.3390/electronics9040560

[3] Jegham, I., Ben Khalifa A., Alouani I, Mahjoub M.A.

(2019). MDAD: A multimodal and multiview in-vehicle

driver action dataset. In: Vento M., Percannella G. (eds)

Computer Analysis of Images and Patterns. CAIP 2019.

Lecture Notes in Computer Science, 11679: 518-529.

https://doi.org/10.1007/978-3-030-29888-3_42

[4] Jegham, I., Ben Khalifa, A., Alouani, I., Mahjoub, M.A.

(2020). Vision-based human action recognition: An

overview and real world challenges. Forensic Science

International: Digital Investigation, 32: 200901.

https://doi.org/10.1016/j.fsidi.2019.200901

[5] Brunetti, A., Buongiorno, D., Trotta, G.F., Bevilacqua, V.

(2018). Computer vision and deep learning techniques

for pedestrian detection and tracking: A survey.

Neurocomputing, 300: 17-33.

https://doi.org/10.1016/j.neucom.2018.01.092

[6] Kumar, K., Mishra, R.K. (2019). A robust mRMR based

pedestrian detection approach using shape descriptor.

Traitement du Signal, 36(1): 79-85.

https://doi.org/10.18280/ts.360110

[7] Chebli, K., Khalifa, A.B. (2018). Pedestrian detection

based on background compensation with block-matching

algorithm. 2018 15th International Multi-Conference on

Systems, Signals Devices (SSD), pp. 497-501.

https://doi.org/10.1109/SSD.2018.8570499

[8] Yazdi, M., Bouwmans, T. (2018). New trends on moving

object detection in video images captured by a moving

camera: A survey. Computer Science Review, 28: 157-

177. https://doi.org/10.1016/j.cosrev.2018.03.001

[9] Khalifa, A.B., Alouani, I., Mahjoub, M.A., Amara,

N.E.B. (2020). Pedestrian detection using a moving

camera: A novel framework for foreground detection.

Cognitive Systems Research, 60: 77-96.

https://doi.org/10.1016/j.cogsys.2019.12.003

[10] Cho, J., Jung, Y., Kim, D.S., Lee, S., Jung, Y. (2019).

Moving object detection based on optical flow estimation

and a gaussian mixture model for advanced driver

assistance systems. Sensors, 19(14): 3217.

http://dx.doi.org/10.3390/s19143217

[11] Zhang, J., Ding, Y., Xu, H., Yuan, Y. (2019). An optical

flow based moving objects detection algorithm for the

UAV. 2019 IEEE 4th International Conference on

Computer and Communication Systems (ICCCS), pp.

233-238.

https://doi.org/10.1109/CCOMS.2019.8821661

[12] Byeon, Y., Kwak, K. (2017). A performance comparison

of pedestrian detection using faster RCNN and ACF.

2017 6th IIAI International Congress on Advanced

Applied Informatics (IIAI-AAI), Hamamatsu, pp. 858-

863. https://doi.org/10.1109/IIAI-AAI.2017.196

[13] Kong, W., Li, N., Li, T., Li, G., (2018). Deep pedestrian

detection using contextual information and multi-level

features, In International Conference on Multimedia

Modeling, 10704: 166-177. https://doi.org/10.1007/978-

3-319-73603-7_14

[14] Mateus, A., Ribeiro, D., Miraldo, P., Nascimento, J.C.

(2019). Efficient and robust pedestrian detection using

deep learning for human-aware navigation. Robotics and

Autonomous Systems, 113: 23-37.

https://doi.org/10.1016/j.robot.2018.12.007

[15] Ren, S., He, K., Girshick, R., Sun, J. (2017). Faster R-

CNN: Towards real-time object detection with region

proposal networks. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 39(6): 1137-1149.

https://doi.org/10.1109/TPAMI.2016.2577031

[16] Yun, K., Lim, J., Choi, J.Y. (2017). Scene conditional

background update for moving object detection in a

moving camera. Pattern Recognition Letters, 88: 57-63.

https://doi.org/10.1016/j.patrec.2017.01.017

[17] Yu, Y., Kurnianggoro, L., Jo, K.H. (2019). Moving

object detection for a moving camera based on global

motion compensation and adaptive background model.

International Journal of Control, Automation and

Systems, 17(7): 1866-1874.

https://doi.org/10.1007/s12555-018-0234-3

[18] Heo, B., Yun, K., Choi, J.Y. (2017). Appearance and

motion based deep learning architecture for moving

object detection in moving camera. 2017 IEEE

International Conference on Image Processing (ICIP), pp.

1827-1831. https://doi.org/10.1109/ICIP.2017.8296597

[19] Rozantsev, A., Lepetit, V., Fua, P. (2017). Detecting

flying objects using a single moving camera. IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 39(5): 879-892.

https://doi.org/10.1109/TPAMI.2016.2564408

[20] Huang, J., Sun, C., Zhu, M., Korattikara, A., Fathi, A.,

Fischer, I., Wojna, Z., Song, Y., Guadarrama, S., Murphy,

K. (2016). Speed/accuracy trade-offs for modern

convolutional object detectors. In Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition, pp. 7310-7311.

https://doi.org/10.1109/CVPR.2017.351

[21] Haralick, R., Shapiro, L. (1992). Computer and robot

vision, ser. Computer and Robot Vision. Addison-

Wesley Pub. Co.

[22] Dalal, N., Triggs, B (2005). Histograms of oriented

gradients for human detection. 2005 IEEE Computer

Society Conference on Computer Vision and Pattern

Recognition (CVPR’05), 1: 886-893.

https://doi.org/10.1109/CVPR.2005.177

[23] Jegham, I., Ben Khalifa, A. (2017). Pedestrian detection

in poor weather conditions using moving camera. 2017

IEEE/ACS 14th International Conference on Computer

Systems and Applications (AICCSA), pp. 358-362.

https://doi.org/10.1109/AICCSA.2017.35

215

[24] Khalifa, A.B. I2V-MVPD database, 2019,

https://sites.google.com/site/benkhalifaanouar1/6-

datasets, accessed on 12 December 2019.

[25] Dollar, P., Appel, R., Belongie, S., Perona, P. (2014).

Fast feature pyramids for object detection. IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 36(8): 1532-1545.

https://doi.org/10.1109/TPAMI.2014.2300479

216

