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 The present paper addresses numerical prediction of hydrodynamic instability with 

convective heat transfer through a rotating curved rectangular duct of curvature 0.1 . 

The bottom wall of the duct is heated while cooling from the ceiling. Numerical 

calculations are carried out by using a spectral method and covering a wide range of the 

Taylor number 0 2000Tr   for the constant pressure gradient force, the Dean 

number, 1000Dn = . First, solution structure of the steady solutions is investigated. 

As a result, three branches of asymmetric steady solutions with two- to ten-vortex 

solutions are obtained by using Newton-Raphson iteration method. Then unsteady 

solutions are obtained by time evolution calculations and flow transitions are well 

justified by obtaining the phase space and power spectrum of the solutions. It is found 

that chaotic flow turns into steady-state flow through periodic oscillating flow, if Tr is 

increased. Streamlines and isotherms are also obtained at several values of Tr, and it is 

found that the unsteady flow consists of two- to ten-vortex solutions. The present study 

shows that combined action of the centrifugal-Coriolis-buoyancy forces contribute to 

generate the vorticity. The present study exposes the role of secondary vortices on 

convective heat transfer, which shows that convective heat transfer is significantly 

enhanced by the secondary flow; and the chaotic flow, which occurs at small Tr but at 

large Dn, enhances heat transfer more effectively than the steady-state or periodic 

solutions. 
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1. INTRODUCTION 

 

Fluid flow through curved ducts and channels has been 

extensively studied over a wide range of applications because 

of their enormous applications in fluids engineering such as in 

turbo-machinery, refrigeration, air conditioning systems, heat 

exchangers, gas turbines, rocket engine, internal combustion 

engines and also in aviation engineering. In the past decades, 

there have been a lot of works on fluid flow and heat transfer 

of rotating arrangement. The scholars are mentioned to Dierich 

and Nikrityuk [1], Chatterjee et al. [2], Khaled [3] and Wei-

Cheng et al. [4] for some distinguished reviews on heat 

transfer and fluid flows in different sectors of engineering. In 

a curved duct, it is strongly anticipated that centrifugal forces 

are originated in the flow on account of curvature provoking 

an opposite directional revolving vortex rate acted on the axial 

direction through the duct that generates the properties of 

spiraling motion in the bending pathway acquainted as 

secondary flow. In a convinced precise flow agreement and 

beyond, an extra couple of counter-rotating vortices develop 

at the exterior wall of the duct which is widely entitled as Dean 

Vortices [5]. Many theoretical and experimental studies have 

been conducted by considering this flow; for example, the 

articles by Berger et al. [6], Mondal et al. [7, 8] and Chen et al. 

[9] may be referenced. 

Hydrodynamic instability in the curved duct is a prevalent 

phenomenon which is resulted from imbalance amongst the 

radial pressure gradient and centrifugal forces. This instability 

is subjected to Dean number (Dn) [10] and physical 

parameters of the curved duct’s aspect ratio and curvature ratio. 

Several studies are conducted to investigate hydrodynamic 

stability of fluid flow in the curved ducts. Sugiyama et al. [11] 

investigated laminar flow in the curved ducts under different 

aspect ratios and curvature ratios, experimentally. Winters [12] 

studied the symmetric and asymmetric steady solutions in the 

curved duct via finite element method. Different branches of 

the steady solutions on linear hydrodynamic stability of 

laminar flow in curved duct are numerically studied by Yanase 

et al. [13]. Hasan et al. [14] have interpreted the effect of 

steady solution structures as well as the linear stability for 

rotating curved duct. Chandratilleke and Nursubyakto [15] 

indicated the remarkable effect of the aspect ratio on Dean 

hydrodynamic instability by numerical simulation. In a 

numerical study, Fellouah et al. [16] investigated the flow 

behavior in 180  curved duct at various curvature ratios and 

aspect ratios.  

The fluid flow in a rotating curved duct generates 

centrifugal and Coriolis force. Such rotating passages are used 

in many engineering applications e.g. in cooling system for 

conductors of electrical generators. For isothermal flows of a 

constant property fluid, the Coriolis force tends to generate 

vortices while centrifugal force is purely hydrostatic by Zhang 
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et al. [17]. Mondal et al. [18] performed comprehensive 

numerical study on fully developed bifurcation structure and 

stability of two-dimensional (2D) flow through a curved duct 

with square cross section and found a close relationship 

between the unsteady solutions and the bifurcation diagram of 

steady solutions. When a temperature induced variation of 

fluid density occurs for non-isothermal flows, centrifugal type 

buoyancy forces can contribute to the generation of vorticity 

[19]. These effects counteract each other in a non-linear 

manner depending on the direction of wall, resistance 

coefficient and the flow domain. Therefore, the effect of 

counteract of the system is more subtle and complicated and 

yields new; richer features of flow and heat transfer in general, 

bifurcation and stability in particular, for non-isothermal flows.  

Unsteady solutions of fully developed curved duct flows 

were initiated by Yanase and Nishiyama [20] for a rectangular 

cross section. In that study, they investigated unsteady 

solutions for the case where dual solutions exist. The time-

dependent behavior of the flow in a curved rectangular duct of 

large aspect ratio was investigated, in detail, by Yanase et al. 

[13] numerically. They performed time-evolution calculations 

of the unsteady solutions with and without symmetry 

condition and showed that periodic oscillations appear with 

symmetry condition while aperiodic time variation without 

symmetry condition. Hasan et al. [21] have analyzed the flow 

velocity and temperature profiles for periodic, multi-periodic 

and chaotic flow in a curved square duct. Wang and Liu [22] 

performed numerical as well as experimental investigations of 

periodic oscillations for the fully developed flow in a curved 

square duct. Flow visualization in the range of Dean numbers 

from 50 to 500 was conducted in their experiment. Mondal et 

al. [7] applied spectral method to study non-isothermal flow 

through a stationary curved rectangular duct of aspect ratios 1 

to 3, and showed that the steady-state flow turns into chaotic 

flow through various flow instabilities if the aspect ratio is 

increased. Very recently, Islam et al. [23] conducted spectral 

numerical study of Dean-Taylor flow through a rotating coiled 

rectangular duct, where they performed unsteady solutions of 

the flow for both rotating and co-rotating cases and discussed 

the role of secondary vortices on convective heat transfer. 

However, solution structure as well as transient behavior of the 

unsteady solution is not yet resolved for the flow through a 

rotating curved rectangular duct with bottom wall heating and 

cooling from the ceiling, which motivated the present study to 

fill up this gap. 

The significant inflictions of flow are to increase the 

thermal passage between two walls because it is probable that 

the Dean flow may contribute to transport energy and then soar 

up heat flow between these two walls. Norouzi et al. [24] 

investigated inertial and creeping flow of a second-order fluid 

with convective heat transfer in a curved square duct by using 

finite difference method. Chandratilleke et al. [25] presented a 

numerical investigation to examine the secondary vortex 

motion and heat transfer process in fluid flow through curved 

rectangular ducts of aspect ratios 1 to 6. The study formulated 

an improved simulation model based on 3-dimensional vortex 

structures for describing secondary flow and its thermal 

characteristics. Zhang et al. [26] adopted finite volume method 

and SIMPLE algorithm to perform laminar and turbulent flow 

through a curved square duct at low Reynolds number. There 

was a good agreement between their numerical result and the 

experimental data. Heat transfer between the cooled and 

heated side walls as well as temperature gradients for a wide 

range of Taylor number have been enumerated by Hasan et al. 

[27]. Wu et al. [28] performed numerical study of the 

secondary flow characteristics in a curved square duct by using 

spectral method, where the walls of the duct except the outer 

wall rotate around the centre of curvature and an azimuthal 

pressure gradient was imposed. Recently, Mondal et al. [29] 

investigated combined effects of centrifugal and Coriolis 

instability of the isothermal/non-isothermal flows through a 

rotating curved rectangular duct numerically. The secondary 

flow characteristics in a curved square duct were investigated 

experimentally by using visualization method by Yamamoto 

et al. [30]. Recently, Razavi et al. [31] investigated flow 

characteristics, heat transfer and entropy generation in a 

rotating curved duct by using control volume method. The 

effects of Dean number, wall heat flux and force ratio on the 

entropy generation were presented in that paper. Very recently, 

Li et al. [32] conducted a combined experimental and 

numerical study on 3D flow development in a curved 

rectangular duct with varying curvature. Effects of curvature, 

Reynolds number and aspect ratio on hydrodynamic instability 

were discussed in that paper to accurately predict the core of 

secondary base vortices. To the best of the authors' knowledge, 

however, there has not yet been done any work studying the 

solution structure as well as effects of secondary vortices on 

convective heat transfer for the non-isothermal flow through a 

rotating curved rectangular duct whose bottom wall is heated 

and cooling from the ceiling. But from the scientific as well as 

engineering point of view it is quite interesting because this 

type of flow is often encountered in engineering applications 

such as in gas turbines, metallic industry etc.  

Examining the unique features of secondary flow and heat 

transfer, the main objective of the present study is to discuss 

the solution structure of the steady solutions and to investigate 

time-dependent behavior of the unsteady solutions through a 

rotating curved rectangular duct whose bottom wall is heated 

and cooling from the ceiling.  

 

 

2. MATHEMATICAL FORMULATIONS  
 

Consider a hydro-dynamically and thermally fully 

developed two-dimensional (2D) flow of viscous 

incompressible fluid through a rotating coiled rectangular duct, 

whose height and width are 2h  and 2d , respectively. The 

coordinate system with the relevant notation is shown in 

Figure 1. The system rotates at a constant angular velocity 
T  

around the 'y  axis. It is assumed that the bottom wall of the 

duct is heated while cooling from the ceiling, the inner and 

outer walls being thermally insulated. It is also assumed that 

the flow is uniform in the axial direction, which is driven by a 

constant pressure gradient along the center-line of the duct as 

shown in Figure 1. The dimensional variables are made non-

dimensional by using the representative length d , the 

representative velocity 0U
d


= , where   is the kinematic 

viscosity of the fluid.   is the curvature of the duct defined as 

d

L
 = . 
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(a)                                                                             (b) 

 

Figure 1. Coordinate system of the curved rectangular duct 

 

By assumption of rotationally symmetric flow, stream 

functions for cross-sectional velocities have the following 

form 
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Eq. (1) satisfies the continuity equation. Now, stream-wise 

velocity ( )w , cross-sectional stream-function ( )  and T  are 

defined based on the Navier-Stokes equation as follows: 
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The equations for w ,   and T  are actually benefited for 

numerical computation. The non-dimensional parameters Dn , 

the Dean number; Gr , the Grashof number; Tr , the Taylor 

number, and Pr , the Prandtl number, which appear in Eqns. 

(2) - (4) are defined as: 
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The rigid boundary conditions for w  and   are used as 
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(5) 

 

and the temperature T  is assumed to be constant on the walls 

as  

 

( ) ( ) ( ),1 1,  , 1 1,  1,T x T x T y y= − = −  =  (6) 

 

There is a class of solutions which satisfy the following 

symmetry condition with respect to the horizontal plane 0y = . 
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The solution which satisfies the condition (6) is called a 

symmetric solution, and that which does not an asymmetric 

solution. In the present study, only Tr  vary ( )0 2000Tr   

while Dn , Gr , Pr  and   are fixed as 1000Dn = , 

100Gr = , 7.0Pr =  (water) and 0.1 = . 

 

 

3. NUMERICAL CALCULATIONS 

 

3.1 Method of numerical calculation 

 

In order to solve the Eqns. (2)-(4) numerically, the spectral 

method is used. This is the method which is thought to be the 

best numerical method for solving the Navier-Stokes as well 

as energy equations [33]. By this method the variables are 
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expanded in a series of functions consisting of the Chebyshev 

polynomials. That is, the expansion functions ( )n x  and 

( )n x  are expressed as 
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where, ( )1( ) cos cos ( )C x n xn
−=  is the thn  order 

Chebyshev polynomial. ( ), ,w x y t , ( ), ,x y t  and ( ), ,T x y t  

are expanded in terms of the expansion functions ( )n x  and 

( )n x  as: 
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where, M  and N  are the truncation numbers in the x - and 

y -directions respectively, and 
mnw , 

mn  and 
mnT  are the 

coefficients of expansion. To obtain the steady solution, the 

time derivative terms ,
w

t



  
,

t




 and 

T

t




 are taken to be 

zero and the expansion series (9) with coefficients 
mnw , 

mn  

and 
mnT  being time independent, are substituted into the basic 

Eqns. (2), (3) and (4), and the collocation method [33] is 

applied. As a result, a set of nonlinear algebraic equations for 

mnw , mn  and 
mnT  are obtained. The collocation points 

( , )i jx y  are taken to be 
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Steady solutions are obtained by the Newton-Rapshon 

iteration method assuming that all the coefficients to be time 

independent. To avoid difficulty near the point of inflection 

for the steady solutions, we use the arc-length method. In the 

arc-length method, the arc-lengths play a central role in the 

formulation. The arc-length equation is  
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The convergence is assured by taking sufficiently small p

( )1010p
−  defined as 
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Finally, in order to calculate the unsteady solutions, the 

Crank-Nicolson and Adams-Bashforth methods together with 

the function expansion (9) and the collocation methods are 

applied to Eqns. (2)-(4). 

 

3.2 Resistance coefficient 

 

The resistant coefficient   is used as the representative 

quantity of the flow state. It is also called the hydraulic 

resistance coefficient, and is generally used in fluids 

engineering, defined as 
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where, quantities with an asterisk denote dimensional ones,  

stands for the mean over the cross section of the duct and hd   

is the hydraulic diameter. The mean axial velocity w   is 

calculated by 
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,   is related to the mean non-

dimensional axial velocity w   as 
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where, 2w d w   =   .  

 

 

4. RESULTS AND DISCUSSIONS 

 

4.1 Steady solutions 

 

In this study, we first investigate solution structure of the 

steady solutions by Newton-Raphson iteration method for the 

curvature 0.1 =  and discuss pattern variation of secondary 

flows on various branches of steady solutions. After an 

extensive survey, three branches of steady solutions are 

obtained over the Taylor number 0 2000Tr  . A 

bifurcation diagram of steady solution is shown in Figure 2 for 

1000Dn =  and 100Gr =  using  , the representative 

quantity of the flow state. The three steady solution branches 

are named the first steady solution branch (Branch 1, black 

solid line), the second steady solution branch (Branch 2, 

purple solid line) and the third steady solution branch (Branch 

3, blue solid line) respectively. The solution branches are 

obtained by the path continuation technique with various 

initial guesses and are distinguished by the nature and number 

of secondary vortices appearing in the cross section of the duct. 

It is observed that there is no bifurcating relationship among 

the three branches of steady solutions. In the following, the 

three branches of steady solutions, obtained for 0.1 = , are 

discussed in brief. 
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Figure 2. Solution structure of steady solutions for 

1000Dn = , 100Gr =  and 0 2000Tr   

 

The first steady solution branch 

 

 
 

Figure 3. (a) First steady solution branch for 1000Dn =  and 

100Gr = (the route of the branch: a b c→ → ). (b) 

Enlargement of Figure 3 (a) 

 
 

Figure 4. Streamlines of secondary flow (top) and axial flow 

(middle) and isotherm (bottom) on the first steady solution 

branch for 1000Dn = , 100Gr =  at various values of Tr  

 

The first steady solution branch for 0.1 =  is plotted 

exclusively in Figure 3 designated by black solid line for 

249 2000Tr  . Figure 3 (a) shows that the branch starts 

from point ‘a’ ( )2000Tr =  and extends to the direction of 

decreasing Tr  up to 249Tr =  where it experiences a smooth 

turning and then goes to the direction of increasing Tr  up to 

2000Tr = . An enlargement of Figure 3 (a) is shown in Figure 

3 (b), where we see that the branch has two sub-branches 

which closely overlaps each other after turning at point b. 

Streamlines of secondary flow (top) and axial flow distribution 

(middle) and isotherms (bottom) on the first steady solution 

branch are shown in Figure 4 at several values of Tr . As seen 

in Figure 4, the branch consists of asymmetric two-vortex 

solutions. 

 

The second steady solution branch 
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Figure 5. (a) Second steady solution branch for 1000Dn = , 

100Gr = and 0 850Tr   (the route of the branch: 

( )a b c d e f g h i→ → → → → → → → . (b) Enlargement 

of Figure 5(a), (c) Enlargement of Figure 5(a) around 
200Tr =  

 

The second steady solution branch for 0.1 =  is 

exclusively shown in Figure 5(a) by depicting purple solid line 

for 0 850Tr  . As seen in Figure 5(a), the branch starts at 

Tr =0 and extends to the direction of increasing Tr up to Tr = 

850 experiencing many turnings on its way. To have a clear 

view about the turnings of the branch, enlargements of the 

second branch are shown in Figure 5(b) and in Figure 5(c). 

Typical contours of secondary flow patterns (top), axial flow 

distribution (middle) and temperature profiles (bottom) on the 

second steady solution branch are shown in Figure 6 at several 

values of Tr, where we see that the branch consists of two- to 

eight-vortex solutions. Temperature distribution shows that 

the stream lines are consistent with the secondary vortices and 

axial flow distribution and heat is transferred from the bottom 

heated wall to the fluid. Here the contours of w ,   and T  

are drawn with the increment 4.0w = , 0.8 = , and 

0.3T = . The same increment of w ,  , T  are used for all 

figures in this study, if not specified. The right hand side of 

each duct box for w  and   are in the outside direction of the 

curvature. The solid lines ( )0,  T 0    show that the 

secondary flow is in the clockwise direction while the dotted 

ones ( )0   in the counter clockwise direction.  

 
 

Figure 6. Streamlines of secondary flow (top) and axial flow 

(middle) and isotherms (bottom) on the second steady 

solution branch for 1000Dn = , 100Gr =  at various values 

of Tr  

 

The third steady solution branch 
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Figure 7. (a) Third steady solution branch for 1000Dn = , 

100Gr =  and 0 1200Tr   (the route of the branch: 

a b c d e f g h i j k→ → → → → → → → → → ). (b) 

Enlargement of Figure 7(a) at large Tr , (c) Enlargement of 

Figure 7(a) at small Tr  

 

 
 

Figure 8. Streamlines of secondary flow (top) and axial flow 

(middle) and isotherms (bottom) on the third steady solution 

branch for 1000Dn = , 100Gr =  at various values of Tr  

 

The third steady solution branch for 0.1 = is plotted 

exclusively in Figure 7(a) for 0 1200Tr   designated by 

blue solid line. As seen in Figure 7(a), the branch starts from 

0Tr =  and extends to the direction of increasing Tr  up to 

1200Tr =  having many turnings on its way. The branch is 

entangled and experiences many smooth turnings and finally 

goes to the direction of decreasing Tr  up to 0Tr = . Figures 

7(b) and 7(c) show enlargements of Figure 7(a). Streamlines 

of secondary flow and axial flow and isotherms of temperature 

profiles on the first steady solution branch are shown in Figure 

8 at several Tr . As seen in Figure 8, the branch is comprised 

with asymmetric two- and three-vortex solutions. Temperature 

distribution shows that the stream lines are consistent with 

secondary and axial flow distributions.  

 

4.2 Unsteady solution 

 

We take a curved rectangular duct of aspect ratio 2 with 

curvature 0.1 and rotate it around the center of the curvature 

with an angular velocity 
T  in the positive direction. Positive 

direction means that the rotational direction is in the same as 

the main flow direction. In the following, time evolutions of 

the unsteady flow characteristics are discussed, in detail, for 

1000Dn = , 100Gr =  and 0 2000Tr  . 

 

Time evolution of the unsteady solutions for 0 1470Tr   

 

 

 
 

Figure 9. Unsteady solutions for 1000Dn = , 100Gr =  and 

0Tr = . (a) Time evolution of  , (b) Phase plots in the 

 −  plane, (c) Power spectra of the time evolution 
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Figure 10. Streamlines of secondary flow (top), axial flow 

(middle) and isotherms (bottom) for 1000Dn = , 100Gr = , 

0Tr = and 14.00 18.00t   
 

We performed time evolution calculation of   for 

0 1470Tr   at 100Gr = . Figures 9(a), 11(a), 13(a) and 

15(a) show the time evolution results for 0Tr = , 1000Tr = , 

1200Tr =  and 1470Tr =  respectively. As seen in Figures 

9(a), 11(a), 13(a) and 15(a), time-dependent solutions for 

0Tr = , 1000Tr = , 1200Tr =  and 1470Tr =  oscillate 

irregularly that means the flow is chaotic and it is found that 

the flow is chaotic for all values of Tr  in the range 

0 1470Tr  .  

 

 

 

 
 

Figure 11. Unsteady solutions for 1000Dn = , 100Gr =  and 

1000Tr = . (a) Time evolution of  , (b) Phase plots in the 

 −  plane, (c) Power spectra of the time evolution 

 

 
 

Figure 12. Streamlines of secondary flow (top), axial flow 

(middle) and isotherms (bottom) for , 100=Gr , 1000=Tr

and 12.00 17.00 t  

 

To clearly observe the unsteady flow characteristics, we 

also draw phase space of the time evolution results as shown 

in Figures 9(b), 11(b), 13(b) and 15(b) for 0Tr = , 1000Tr = , 

1200Tr =  and 1470Tr =  respectively in the  −  plane, 

where dxdy =    and this quantity is zero at the cross-

section. As seen in Figs. 9(b), 11(b), 13(b) and 15(b), most of 

the  −  plane is covered with chaotic orbits, which shows 

that the unsteady flow for 0Tr = , 1000Tr = , 1200Tr =  and 

1470Tr =  is chaotic. In order to justify the chaotic solution in 

more detail, the power spectra of the time change of   are 

calculated for 0 1470Tr   as shown in Figures 9(c), 11(c), 

13(c) and 15(c) for 0Tr = , 1000Tr = , 1200Tr =  and 

1470Tr =  respectively, where continuous line spectrum with 
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different frequencies are seen, which justify that the flow is 

chaotic for 0Tr = , 1000Tr = , 1200Tr =  and 1470Tr = . 

Then we draw streamlines of secondary and axial flow and 

isotherms of temperature profiles for the respective flow 

parameters as shown in Figures 10, 12, 14 and 16.  

 

 

 

 
 

Figure 13. Unsteady solutions for 1000Dn = , 100Gr =  and 

1200Tr = . (a) Time evolution of  , (b) Phase plots in the 

 −  plane, (c) Power spectra of the time evolution 

 

It is found that the streamlines of the secondary flow consist 

of two opposite vortices; one is an outward flow 

(anticlockwise direction) shown by solid line and the other one 

inward flow (clockwise direction) shown by dotted lines. The 

flow is accelerated due to combined action of the centrifugal, 

Coriolis and buoyancy forces; centrifugal force is created due 

to the motion through a curved channel, Coriolis force due to 

the rotation of the duct around the vertical axis while buoyancy 

forces because of the thermal gradient. It is found that the 

unsteady solutions at 0Tr =  and 1000Tr =  oscillates 

irregularly in the four- to seven-vortex solutions, the unsteady 

solutions at 1200Tr =  oscillates in the four- to eight-vortex 

solutions, while the unsteady solution at 1470Tr =  oscillates 

in the two- to six-vortex solutions The unsteady flow at 

0,  1000 & 1200Tr Tr Tr= = =  are called strong chaos while 

that for 1470Tr =  weak chaos [9]. It is found that maximum 

eight-vortex solution is attained at 1200Tr = . Temperature 

distribution is found to be consistent with the secondary 

vortices and a strong interaction is observed between the 

heating-induced buoyancy force and the centrifugal instability, 

which stimulates fluid mixing and thus results in thermal 

enhancement in the flow. In this study, it is found that 

secondary flow enhances heat transfer in the flow particularly 

when Dean vortices emerge at the outer wall. It is also found 

that combined action of the centrifugal, Coriolis and buoyancy 

force help to increase the number of secondary vortices, and 

as the flow becomes chaotic, the number of secondary vortices 

increases and consequently heat is transferred substantially 

from the heated bottom wall to the fluid. If the Tr is increased 

a little, for example, 1480Tr = , it is found that the chaotic 

flow turns into periodic. 

 

 
 

Figure 14. Streamlines of secondary flow (top), axial flow 

(middle) and isotherms (bottom) for 1000Dn = , 100Gr = , 

1200Tr = and 13.00 18.20t   

 

In this study, contours of temperature profiles show that the 

streamlines of the heat flow is uniformly distributed to all parts 

of the contour transferring heat from bottom wall to the fluid, 

and the contribution of the rotation and pressure on secondary 

flows significantly change and increase the number of 

secondary vortices. It is clearly evident that heating the bottom 

wall causes the temperature contours to become asymmetrical 

in comparison to isothermal cases. This essentially arises from 

the interaction between the heating-induced buoyancy force 

and the centrifugal force that drives secondary vortices. In this 

regard, it should be noted that the centrifugal force due to the 

duct curvature creates two effects; it generates a positive radial 

fluid pressure field in the duct cross section and induces a 
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lateral fluid motion driven from inner wall towards the outer 

wall. This lateral fluid motion occurs against the radial 

pressure field generated by the centrifugal effect and is 

superimposed on the axial flow to create the secondary vortex 

flow structure. As the flow through the curved duct is 

increased, the lateral fluid motion becomes stronger and the 

radial pressure field is intensified. In the vicinity of the outer 

wall, the combined action of adverse radial pressure field and 

viscous effects slows down the lateral fluid motion and forms 

a stagnant flow region. Beyond a certain critical value of Dn , 

the radial pressure gradient becomes sufficiently strong to 

reverse the flow direction of the lateral fluid flow. A weak 

local flow re-circulation is then established creating an 

additional pair of vortices in the stagnant region near the outer 

wall. This flow situation is known as Dean’s hydrodynamic 

instability while the vortices are termed as Dean vortices. 

 

Time evolution of the unsteady solution for 1480Tr =  

 

 

 
 

Figure 15. Unsteady solutions for 1000Dn = , 100Gr =  and 

1470Tr = . (a) Time evolution of  , (b) Phase plots in the 

 −  plane, (c) Power spectra of the time evolution. 

In order to study the non-linear behavior of the unsteady 

solution, we investigate time evolution of   for 1480Tr =  at 

100Gr =  and 1000Dn =  as shown in Figure 17, where we 

see that the unsteady solution at 1480Tr =  oscillates 

periodically. This periodic oscillation is well justified by 

drawing the orbits of the solution in the phase space as shown 

in Figure 17(b), where we see that periodic orbits overlap each 

other, which confirms that the flow at 1480Tr =  is periodic. 

In order to investigate the transition from a chaotic solution to 

periodic oscillation in more detail, the power spectra of the 

time change of   is calculated for 1480Tr = . The result is 

shown in Figure 17(c), in which not only the line spectrum of 

the fundamental frequency with large frequency but the other 

line spectrum with small frequency is seen, which shows that 

the oscillation presented in Figure 17(a) is periodic.  

 

 
 

Figure 16. Streamlines of secondary flow (top), axial flow 

(middle) and isotherms (bottom) for 1000Dn = , 100Gr = , 

1470Tr = and 10.00 15.65t   

 

In fact, the periodic oscillation, which is observed in the 

present study, is a traveling wave solution advancing in the 

downstream direction which is well-justified in the recent 

investigation by Yanase et al. [34] for three-dimensional 

travelling wave solutions as an appearance of 2D periodic 

oscillation. Therefore, it is found that 2D calculations can 

accurately predict the existence of 3D traveling wave solutions 

by showing an appearance of 2D periodic oscillation. Then we 

draw streamlines of secondary and axial flow and isotherms of 

temperature profile for 1480Tr =  as shown in Figure 18. It is 

found that the streamlines of secondary flow for the periodic 

oscillation at 1480Tr =  consist of asymmetric two-vortex 

solution. It is found that the transition from chaotic state to the 

periodic oscillation occurs between 1470Tr = and 1480Tr = . 

If Tr  is increased further, for example 1490Tr = , it is found 

that the periodic oscillation turns into steady-state solution as 

shown in Figure 19.  

In order to search for the region of steady-state solutions, 

we investigate time evolution of  for 1490 2000Tr   and 
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it is found that the flow is steady-state for all the values of Tr  

in the range. Figures 19(a) and 20(a) show steady-state 

solutions for 1490Tr =  and 2000Tr =  respectively. Typical 

contours of secondary flow patterns and temperature profiles 

are shown in Figure 19(b) for 1490Tr =  and in Figure 20(b) 

for 2000Tr =  at time 20.00t = . It is found that unsteady 

solution at 1490Tr =  and 2000Tr =  possess two-vortex 

solutions. In this study, it is found that if the Tr  is increased 

further, for example, 2000Tr  , the flow is steady-state as 

well. Therefore, it is suggested that the transition from periodic 

solution to the steady-state occurs between 1480Tr =  and 

1490Tr = . It is also found that temperature distribution is 

consistent with secondary vortices, and secondary flow 

enhances heat transfer in the flow through vortex generation.    

 

 

 

 
 

Figure 17. Unsteady solutions for 1000Dn = , 100Gr =  and 

1480Tr = . (a) Time evolution of  , (b) Phase plots in the 

 −  plane, (c) Power spectra of the time evolution 
 

 
 

Figure 18. Streamlines of secondary flow (top), axial flow 

(middle) and isotherms (bottom) for 1000Dn = , 100Gr = , 

1480Tr = and 17.10 17.40t   

 

Time evolution of the unsteady solutions for 

1490 2000Tr   

 
 

Figure 19. (a) Time evolution of  for 1000Dn = , 

100Gr =  and 1490Tr = , (b) Streamlines of secondary flow 

(top) and isotherm (bottom) for 1490Tr =  at 20.00t =  

 

4.3 Validation of the numerical result 

 

Here, we represent the validation of our numerical results 

with the experimental studies performed by some authors. By 

using visualization method, Yamamoto et al. [30] conducted 

experimental investigations (Figure 21(a)) of the flow through 

a rotating curved square duct of curvature 0.03 = , where 

three of the duct walls, except the outer wall, rotate around the 

centerline of curvature at a constant revolution speed for the 

positive rotation at Tr =150.  

In this study, however, we investigate flow features for the 

rotation of the whole system (not the three walls only), and 

compare our results with that of Yamamoto et al. [30] 

considering the same curvature and rotational speed. On the 

41



 

other hand, Figure 21(b) shows a comparative study of our 

numerical result with the experimental investigation obtained 

by Chandratilleke [35] for the flow through a curved 

rectangular duct of aspect ratio 2. We see that in both the cases 

our numerical results have a good agreement with the 

experimental data. Note that, till now no experimental studies 

have been found for rotating curved rectangular duct flow.  

 

 
 

Figure 20. (a) Time evolution of   for 1000Dn = , 

100Gr =  and 2000Tr = , (b) Streamlines of secondary flow 

(top) and isotherm (bottom) for 2000Tr =  at 20.00t =  

 

 
 

Figure 21. Experimental vs. Numerical results; left: 

experimental results, right: numerical results; (a) curved 

square duct, (b) curved rectangular duct 

 

 

5. CONCLUSIONS 

 

Due to ample applications from medical services to 

industrial activities, the study of flows and heat transfer 

through a rotating curved rectangular duct has attracted much 

attention to the researchers. In this study, a comprehensive 

numerical study on fluid flow and heat transfer through a 

rotating curved rectangular channel of aspect ratio 2 has been 

presented for a constant curvature 0.1 =  over the Taylor 

number 0 2000Tr   for 1000Dn = . A temperature 

difference is applied between the horizontal walls for 

100Gr = , where the bottom wall is heated and cooling from 

the ceiling. After an extensive survey over the parametric 

ranges, three branches of asymmetric steady solutions with 

two- to ten-vortex solutions are obtained. It is found that there 

is no bifurcating relationship among the branches of steady 

solutions. We then investigated unsteady flow behavior by 

time evolution calculation justified by drawing the phase 

spaces and power spectra of the solutions. It is found that the 

unsteady flow undergoes in the scenario ‘chaotic→ periodic

→ steady-state’, it Tr  is increased in the positive direction. 

The study shows that combined action of the centrifugal and 

Coriolis force counteracts each other in a nonlinear manner 

which results in to turn the chaotic flow to steady-state flow. 

It is found that the unsteady flow is chaotic for 0 1470Tr  , 

periodic for 1480Tr = and steady-state for 1490 2000Tr  . 

It is found that the transition from chaotic state to periodic flow 

occurs between 1470Tr =  and 1480Tr = ; and from periodic 

to steady-state between 1480Tr =  and 1490Tr = . The 

present study elucidates the role of secondary vortices on 

convective heat transfer and it is found that convective heat 

transfer is significantly enhanced by the secondary flow; and 

the chaotic flow, which occurs at small Tr  but at large Dn , 

enhances heat transfer more effectively than the steady-state 

or periodic solutions. In this regard, it should be noted that, the 

occurrence of the chaotic state, as presented in the present 

study, is related with destabilization of the periodic or quasi-

periodic solutions which reminds us the case of Lorenz 

attractor [36]. It may be possible that the transition in the 

present study is caused by a similar mechanism as that of 

Ruelle-Takens scenario [37] in the laminar flow. 
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NOMENCLATURE 

Dn Dean number 

Gr Grashof number 

Pr Prandtl number 

A Aspect ratio 

L Radius of the curvature 

X Horizontal axis 

Y Vertical axis 

Z Axis in the direction of the main flow 

U Velocity components in the x − direction 

V Velocity components in the y − direction 

W Velocity components in the z − direction 

T Temperature 

T Time 

Greek symbols 

 Curvature of the duct  

 Density 

 Resistance coefficient

 Viscosity 

 Thermal diffusivity  

 Kinematic viscosity

 Sectional stream function 
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