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 Current algorithms for the prediction of air pollutant particle concentration generally failed 

to effectively integrate with the time dependence and spatial correlation features of particle 

concentration. To this end, this paper studied the improvement and application of the multi-

layer LSTM algorithm based on spatial-temporal correlation. First, the paper proposed the 

method for calculating the correlation coefficients of air pollutant particle concentration in 

global and local regions, and established the matrix for the corresponding correlation 

coefficients; then layer by layer, the K-1 layer LSTM algorithm was used to extract the time 

dependence eigen vector H of the particle concentration at N observation sites, and calculate 

the product (R) of the local correlation coefficient matrix and eigen vector H, so as to 

achieve the fusion of time dependence and spatial correlation features in local region; at 

last, at the K layer, the inner product of the global correlation coefficient matrix and R was 

calculated to extract the spatial correlation feature of particle concentration in global and 

local regions. On the global and local datasets, the proposed algorithm was compared with 

the LSTME algorithm, space-time deep learning (STDL) algorithm, time delay neural 

network (TDNN) algorithm, autoregressive moving average (ARMA) algorithm, support 

vector regression (SVR) algorithm and the traditional LSTM NN algorithm. The 

comparison results showed that, in terms of air particle concentration prediction, the 

proposed algorithm outperformed the other algorithms, proving that the multilayer neural 

network based on spatial-temporal correlation can effectively improve the prediction 

performance of the LSTM algorithm. 
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1. INTRODUCTION 

 

PM2.5 particles pose a serious threat to human health. In 

2009, Krewski et al. [1] pointed out that there was an obvious 

correlation between sudden human death and the duration of 

exposure to PM2.5. In 2013, Zheng et al. [2] proposed that the 

real-time prediction of air pollutant concentration is of great 

significance for preventing diseases caused by the pollutant. In 

2017 and 2018, Di et al. [3] and Hung et al. [4] respectively 

pointed out that the smaller the particle volume of the pollutant, 

the stronger the water solubility, the stronger the penetrability 

of the pollutant particles into the respiratory system, the higher 

the adsorption rate, and the greater the impact on human health. 

Therefore, the prediction of PM2.5 has become a current 

research hotspot. 

Air pollutant concentration prediction algorithms mainly 

include two types: process model algorithms and statistical 

algorithms. With meteorological theories as priori knowledges, 

the process model algorithms simulate the generation, 

discharge, diffusion, conversion and removal of pollutants 

according to the atmospheric physicochemical reaction 

processes. Key process model algorithms include: spatial-

temporal evolution feature simulation algorithm of physical 

and chemical reaction of air pollutants based on scale and 

direction [5], community multiscale air quality model (CMAQ) 

algorithm [6], embedded air quality prediction algorithm [7], 

and WRF-Chem model-based mesoscale air quality algorithm 

[8]. However, Vautard et al. [9] and Stern et al. [10] pointed 

out that the process model algorithms could achieve better 

prediction results in air quality prediction, but they are limited 

by conditions such as complex prior knowledge, infinite data 

sets, and multidimensional restraints, therefore, such 

algorithms are often of poor universality. 

To solve the problem of algorithm universality, the 

statistical algorithms had been proposed. Statistical algorithms 

construct air quality prediction models based on statistical 

theories, and the main methods include: autoregressive 

moving average (ARMA) method [11], multiple linear 

regression (MLR) [12], support vector regression (SVR) [13] 

and other regression methods, artificial neural network (ANN) 

[14] and its hybrid algorithms [15], the experiment of 

algorithm [16] showed that the nonlinear mapping, adaptive 

and robust features of ANN determined its good performance 

in time series prediction and the algorithm could be widely 

used. Typical ANN algorithms include: multilayer perceptron 

[17] (MLP), BP neural network [18], RBF neural network [19], 

fuzzy-decision neural network (FDNN) [20], general 

regression neural network [21] (GRNN), recurrent neural 

network [22] (RNN), time-delay neural network (TDNN) [23], 

and Elman neural networks [24], etc. 

However, the problems of gradient vanishing or gradient 

exploding had restricted the long-term time-dependence 

feature of RNN in learning time series. To this end, in 1997, 

Hochreiter and Schmidhube [25] developed a LSTM (long-

term and short-term memory) neural network (NN). Unlike 

traditional RNNs, the LSTM NN solved the gradient problems 
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and realized long-term time dependence learning of time series. 

LSTM NN has been applied to the prediction of the evolution 

process of air pollutant particle concentration and achieved 

certain progress. Common LSTM algorithms include: 

ensemble-LSTM algorithm [26], CNN-LSTM algorithm [27], 

LSTM-FC algorithm [28]; the LSTM algorithm based on the 

features of air pollutant particle concentration: GC-LSTM 

algorithm [29], spatiotemporal convolutional LSTM algorithm 

[30]; the LSTM algorithm based on deep learning (DL-LSTM) 

[31], multi-output DL-LSTM algorithm [32]; and Deep CNN-

LSTM algorithm [33]. 

In summary, LSTM algorithms have achieved good 

research results in the simulation of the evolution process of 

air pollutant particle concentration and the prediction of the 

concentration value, but they still have the following 

shortcomings: (1) The algorithms are mainly applied to the 

classification of atmospheric pollutants, rather than the 

evolution simulation and concentration prediction; (2) The 

algorithms have not explored the spatial correlation feature of 

PM2.5 in depth; (3) The algorithms have not effectively 

integrated the time dependence feature with the spatial 

correlation feature of pollutant particle concentration. 

Therefore, this paper aims to study the simulation of the 

evolution process of air pollutant particle concentration and 

the prediction of the concentration value by integrating the 

time dependence and spatial correlation features extracted by 

the LSTM algorithm, and constructs the atmospheric evolution 

algorithm to predict the concentration of air pollutant particles. 

The main innovations of this paper include: (1) The paper 

defined the spatial correlation of PM2.5 particle concentration 

and its calculation method; (2) It used the multilayer LSTM 

network to learn the long-term time dependence feature of 

PM2.5 particle concentration; (3) According to the 

information of the spatial correlation feature of PM2.5 particle 

concentration, the paper proposed a neighbor correlation 

matrix generation algorithm and constructed the neighbor 

correlation matrix; (4) Integrated with the spatial-temporal 

correlation features of PM2.5 particle concentration, this paper 

constructed the TSM-LSTM algorithm (temporal-spatial 

multi-scale LSTM) for the prediction of air concentration and 

applied it to the accurate prediction of PM2.5 concentration. 

 

 

2. LSTM ALGORITHM BASED ON SPATIAL-

TEMPORAL CORRELATION 

 

The evolution of PM2.5 particle concentration is a 

stochastic process with both time dependence and spatial 

correlation features, and is restricted by many factors. 

Therefore, constructing a LSTM algorithm integrating both 

features is conductive to better simulating the evolution 

process of PM2.5 particle concentration and predicting the 

value of the concentration. 

 

2.1 PM2.5 particle concentration evolution process 

 

The evolution of PM2.5 particle concentration is affected by 

internal and external factors. Internal factors refer to the 

physical and chemical factors that produce PM2.5 particles 

and have the characteristic of slow-varying. In this paper, 

external factors refer to outside factors that would cause the 

evolution of PM2.5 particle concentration, including the time 

factor and the space factor. The time factor refers to the time 

dependence of the observation data at a same observation site. 

The space factor refers to the effect of the particle 

concentration of the neighbor observation site on the particle 

concentration of the current observation site. 

Therefore, the evolution of PM2.5 particle concentration is 

a random process with temporal and spatial correlation 

features. 

 

2.2 PM2.5 particle concentration has spatial correlation 

feature 

 

Feng et al. [34] and Qi et al. [35] pointed out that the factors 

of the spatial correlation of PM2.5 particle concentration 

include: geographical location, regional mountains and wind, 

but they hadn’t taken account the factor of the vegetation 

between the observation sites, especially the effect of the 

mountain vegetation on the PM2.5 particle concentration. 

Therefore, the response map of the spatial correlation factors 

of PM2.5 particle concentration is shown in Figure 1, and the 

spatial correlation factor τ is expressed as follows: 

 

 
 

Figure 1. Spatial correlation factors of PM2.5 particle 

concentration 

 

The spatial correlation factor (also known as the global 

spatial correlation factor) τ is: 

 

𝜏(i,j) =

Wind_cofficent×Mountain_cofficent
×𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑓𝑓𝑖𝑐𝑒𝑛𝑡

𝐷(i,j)
 

(1) 

 

where, 𝑀𝑜𝑢𝑛𝑡𝑎𝑖𝑛_𝑐𝑜𝑓𝑓𝑖𝑐𝑒𝑛𝑡  represents the mountain 

influence coefficient between the two adjacent points pj and pi, 

it can be expressed as 𝑀𝑜𝑢𝑛𝑡𝑎𝑖𝑛_𝑐𝑜𝑓𝑓𝑖𝑐𝑒𝑛𝑡 = 𝑀_𝑙𝑒𝑛𝑔𝑡ℎ ×
𝑀_𝑤𝑖𝑑𝑡ℎ ×𝑀_ℎ𝑖𝑔ℎ × 𝑐𝑜𝑠 𝜑 , wherein the 𝑀_𝑙𝑒𝑛𝑔𝑡ℎ , 

𝑀_𝑤𝑖𝑑𝑡ℎ , and 𝑀_ℎ𝑖𝑔ℎ  respectively represent the length, 

width, and height of the mountain, and angle  is the included 

angle between the trend of the mountain and the connection 

line Pij; 𝑊𝑖𝑛𝑑_𝑐𝑜𝑓𝑓𝑖𝑐𝑒𝑛𝑡  represents the wind influence 

coefficient between points pj and pi during this period of time, 

it can be expressed as 𝑊𝑖𝑛𝑑_𝑐𝑜𝑓𝑓𝑖𝑐𝑒𝑛𝑡 = 𝑊_𝑤𝑖𝑛𝑑 × 𝑐𝑜𝑠𝜃, 

wherein 𝑊𝑤𝑖𝑛𝑑  represents the average wind strength between 

pj and pi during this period of time, and θ is the angle between 

the direction of the wind and the connection line of pj and pi; 

𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑓𝑓𝑖𝑐𝑒𝑛𝑡  represents the vegetation influence 

coefficient between pj and pi, it reflects the effect of vegetation 

on the PM2.5 particle concentration at the observation site pj, 

𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑓𝑓𝑖𝑐𝑒𝑛𝑡 = 𝑁𝐷𝑉𝐼(𝑖, 𝑗), and this coefficient is 

related to the flourishing degree of vegetation between pj and 

pi, this paper uses the NDVI coefficient to represent it, which 

can well reflect the flourishing degree of vegetation, and it is 

less affected by other conditions. D(j,i) represents the distance 

50



 

between observation points pj and pi, and it can be expressed 

by the Euclidean distance of the latitude and longitude 

between the two points. 

Formula (1) shows the effect of factors such as geographical 

location, regional mountains and wind on the evolution of 

PM2.5 particle concentration at adjacent observation sites, 

therefore, the spatial correlation matrix of air pollutant particle 

concentration was constructed as follows: 

 

 

𝜏 = [

𝜏11 𝜏12 . . . 𝜏1𝑛
𝜏21 𝜏22 . . . 𝜏2𝑛

. . .
𝜏𝑛1 𝜏𝑛2 𝜏𝑛𝑛

] 

 

 

τ(i,j) represents the spatial correlation coefficient of two 

neighbor air monitoring sites i and j, τ is the spatial correlation 

matrix between the sites within the region, it represents the 

coefficients of the influence of the air quality of each neighbor 

monitor site on the observation site.  

As the sizes of the research area of research objects pi and 

pj were different, the effects of spatial correlation factors on 

the correlation coefficient τ varied as well; when the 

geographical area of the research object was relatively large, 

according to the effects of each factor, this paper defined the 

correlation coefficient as the global spatial correlation 

coefficient; when the geographical area of the research object 

was relatively small, and only wind and distance factors acted 

as the main factors, this paper defined the correlation 

coefficient as the local spatial correlation coefficient τ; and the 

calculation method was to simplify Formula (1). 

The calculation method for the local spatial correlation 

factor τ of the i-th observation site to the j-th neighbor 

observation site is: 

 

𝐿𝑜𝑐𝑎𝑙_𝜏(𝑖, 𝑗) =
𝑊𝑖𝑛𝑑_𝑐𝑜𝑓𝑓𝑖𝑐𝑒𝑛𝑡

𝐷(𝑖, 𝑗)
 (2) 

 

where, i and j are the observation sites. D(i,j) represents the 

Euclidean distance between the two sites. Therefore, the 

spatial correlation matrix E1 was defined as: 

 

𝐿𝑜𝑐𝑎𝑙_𝜏 = [

𝑙𝜏11 𝑙𝜏12 . . . 𝑙𝜏1𝑛
𝑙𝜏21 𝑙𝜏22 . . . 𝑙𝜏2𝑛

. . .
𝑙𝜏𝑛1 𝑙𝜏𝑛2 𝑙𝜏𝑛𝑛

] 

 

The i-th row of E1 are the spatial correlation coefficients of 

all sites to the j-th site. 

 

2.3 PM2.5 particle concentration has long-term time 

dependence feature 

 

In the evolution of PM2.5 particle concentration, at an 

observation site, the particle concentration at a certain moment 

is affected by the particle concentration at the previous 

moment, and this effect has the feature of long-term time 

dependence, which can be expressed as: 

 

𝜓(𝑡, 𝑥, 𝑦) = 𝜑(𝜓(𝑡 − 1, 𝑥, 𝑦), 𝜓(𝑡 − 2, 𝑥, 𝑦), 
𝜓(𝑡 − 3, 𝑥, 𝑦). . . , 𝜓(𝑘, 𝑥, 𝑦)) 

(3) 

 

where, function  represents the long-term time-dependence 

of the time series. x,y represents the location of the observation 

site, denoted by latitude and longitude. The research in some 

literatures showed that the LSTM algorithms that can solve the 

gradient problems of RNN network could better analyze and 

learn the time dependence feature of PM2.5 particle 

concentration, and get better prediction and classification 

results. 

 

2.4 Design and implementation of the LSTM algorithm 

based on spatial-temporal correlation 

 

Based on the above analysis, this paper proposes the TSM-

LSTM algorithm which first uses the LSTM algorithm to 

extract the time dependence feature of PM2.5 particle 

concentration and then integrates it with the spatial correlation 

feature calculated by Formula (1) to achieve the simulation of 

the evolution process of PM2.5 particle concentration and the 

effective prediction of PM2.5 particle concentration. 

Design idea of the algorithm: first, use the multilayer LSTM 

NN to learn the time dependence feature of PM2.5 particle 

concentration time series of the observation sites; then use 

Formula (1) (2) to calculate the spatial correlation matrix 

between the observation sites, and use the inner product 

method to integrate the time dependence results with the 

spatial correlation matrix to learn the deep-level features of 

PM2.5 particle concentration, simulate the evolution process 

of PM2.5 particle concentration, and achieve the prediction of 

PM2.5 particle concentration. 

The structure of the TSM-LSTM algorithm is as shown in 

Figure 2, which shows that the feature of the long-term time 

dependence of PM2.5 particle concentration was learned 

through the multilayer LSTM network. {𝑥𝑡1,x𝑡2,x𝑡3,...x𝑡𝑛} 

represents the observation data series of the N sites with time 

lag. The time-lag parameter was set to be ∆. Subsequent 

experiments showed that parameter ∆ was related to the size 

of the research region, the larger the area of the research region, 

the longer the time lag.  represents the operation of the inner 

product of vectors.  

In terms of the TSM-LSTM algorithm’s integration method 

of the time dependence and spatial correlation features, the 

integration of the time dependence and spatial correlation 

features of the PM2.5 particle concentration was achieved 

through two steps: integration of the information related to 

local space and the integration of the information related to 

global space. The integration method of local geographic 

information is as follows: 
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Figure 2. Structure of the prediction algorithm of TSM-LSTM 

 

For the i-th site, the integration method for the spatial and 

temporal correlations is: 

 

𝜌𝑖(ℎ𝑙𝑖 , 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) = 𝐿𝑜𝑐𝑎𝑙_𝜏{ℎ𝑙1, ℎ𝑙2, ℎ𝑙3, . . . , ℎ𝑙𝑛} (4) 

 

hli represents the long-term time dependence information of 

the learning of the l-th layer of the LSTM network. 

𝜌𝑖(ℎ𝑙𝑖 , 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) represents the feature of the PM2.5 particle 

concentration after the l-th layer spatiotemporal information 

integration.  

The implementation method for integrating the global 

geographic information is: 

 

(𝑦𝑝𝑟𝑒1 𝑦𝑝𝑟𝑒2 𝑦𝑝𝑟𝑒3 . . . 𝑦𝑝𝑟𝑒𝑛) = 𝜏

(

 
 

ℎ𝑒𝑛𝑑1
ℎ𝑒𝑛𝑑2
ℎ𝑒𝑛𝑑3
. . .

ℎ𝑒𝑛𝑑𝑛)

 
 

 (5) 

 

where, yprei represents the predicted value of the PM2.5 

concentration at the i-th observation site. hendi represents the 

predicted value of the PM2.5 concentration of the last layer of 

LSTM. 

Through twice geographic information integration, the 

global and local PM2.5 particle concentration evolution 

processes were merged into one, which made the algorithm 

more universal and the prediction of PM2.5 particle 

concentration more accurate.  

 

2.5 Evaluation methods for prediction algorithms 

 

In this paper, the root means square error (RMSE), mean 

absolute error (MAE), and mean absolute percentage error 

(MAPE (%)) were taken as the evaluation criteria for the 

performance of the algorithms, which are expressed as follows: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖

∗)2
𝑁

𝑖=1

 (6) 

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖

∗|

𝑛

𝑖=1

 (7) 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑
|𝑦𝑖 − 𝑦𝑖

∗|2

𝑦𝑖
∗

𝑛

𝑖=1

 (8) 

 

where, 𝑦𝑖
∗  is the measured air pollutant concentration, 𝑦𝑖  is 

the predicted air pollutant concentration, and n is the number 

of the observation samples. 

 

 

3. EXPERIMENTAL DATASETS AND RESULTS 

 

3.1 Research region of the algorithm and the validation of 

datasets 

 

This paper uses global and local datasets to study the 

performance of the TSM-LSTM algorithm. The local dataset 

refers to the hourly PM2.5 concentration data set collected 

from 12 air quality monitoring sites in Beijing from January 1, 

2015 to December 30, 2018. The local data set contained the 

main factors for the formation of PM2.5 in fast-developing 

megacities, and had good representativeness. The global 

dataset refers to the daily PM2.5 concentration data set 

collected from 12 air quality monitoring sites in Beijing city, 

Tianjin city and Hebei province from January 2013 to 

December 2018. The global data set contained the main factors 

for the formation of PM2.5 in developing countries, and had 

good representativeness. The global and local datasets were 

divided into a test set and a training set at a ratio of 20:80 (as 

shown in Figure 3 and Table 1). 
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                  a) Local research region (Beijing)                    b) Global research region (Beijing, Tianjin and Hebei) 

 

Figure 3. Researching regions 

 

 
 

Figure 4. Distribution map of Pearson correlation coefficients of PM2.5 concentration in local research region (∆=1h) 

 

 
 

Figure 5. Distribution map of Pearson correlation coefficients of PM2.5 concentration in global research region (∆=36h) 

 

Table 1. Research regions 

 

Types of the region Research regions 

Local region North new district, Fengtai Yungang, 

National Agricultural Exhibition 

Center, Chengde, Langfang, Baoding, 

Shijiazhuang, Handan, Dongli, Jinnan, 

Development Zone and Wuqing 

District; 

Global region North new district, Botanical Garden, 

Wanliu, Olympic Sports Center, 

National Agricultural Exhibition 

Center, Dongsi, Guanyuan, Gucheng, 

Temple of Heaven, Wanshou West 

Palace, Fengtai Garden and Fengtai 

Yungang 

3.2 Spatial correlation research based on Pearson theory 

 

Taking the PM2.5 particle concentration data of 12 sites in 

Beijing as the observation objects, the Pearson correlation 

coefficient method was adopted to calculate the geographical 

correlation of the particle concentration at the 12 sites, and the 

Pearson correlation coefficient distribution map was plotted in 

Figure 4 and Figure 5. 

The experimental results showed that the Pearson 

correlation coefficients of PM2.5 concentration at 12 air 

monitoring sites in Beijing urban area were all higher than 0.8, 

and the correlation coefficients of neighbor sites were higher 

than 0.91. Therefore, the PM2.5 concentrations of the 12 

observation sites had a strong spatial correlation, and the 

correlation of the neighbor sites was higher than that of the 

53



 

distant sites. 

The experimental results showed that the Pearson 

correlation coefficients of PM2.5 concentration at 12 air 

monitoring sites in Beijing-Tianjin-Hebei region were all 

higher than 7.3, and the correlation coefficients of neighbor 

sites were higher than 0.87. Therefore, the PM2.5 

concentrations at the 12 observation sites had a strong spatial 

correlation, and the correlation of the neighbor sites was 

higher than that of the distant sites. Similar to the research 

results of 12 sites in Beijing, due to the value of time lag, the 

correlation coefficients of the global region were lower than 

those of the local region. 

 

3.3 Long-term time dependence research based on 

autocorrelation 

 

The autocorrelation coefficient method was used to 

calculate the autocorrelation coefficients of the PM2.5 

concentrations at 12 air monitoring sites in the global and local 

regions, the curves of the autocorrelation coefficients were 

drawn as follows Figure 6. 

 

 
a) Local region time dependence   b) Global region time dependence 

 

Figure 6. Relationship between autocorrelation coefficient of PM2.5 particle concentration and time lag 

 

The experimental results showed that, in the local and 

global regions, the particle concentrations between the 

observation sites had the long-term time dependence feature, 

and the time-lag relationship was quite obvious. Compared 

with the long-term time dependence of local region, the time-

lag of the long-term time dependence of the global region was 

much longer.  

 

3.4 The effect of time lag 

 

The above experiments showed that the evolution process 

of PM2.5 particle concentration was affected by the time lag. 

Therefore, three criteria were set to evaluate the time-lag of 

different regions, and the evaluation results are shown in Table 

2. 

The experimental results showed that the time-lag had a 

significant effect on the performance of the algorithm. The 

time-lag in the global region was about 12 hours, and the time-

lag in the local region was about 4 hours. Moreover, the time-

lag of the macro region was generally longer than the time-lag 

of the micro region, and the effects of the algorithm 

performance were mainly reflected in that the effect of macro 

region time-lag was more obvious than that of the micro region 

time-lag, and the effect of micro region time-lag changed 

faster, indicating that the time-lag factor had an importance 

impact on the evolution of PM2.5 concentration. 

 

Table 2. Relationship between time lag and algorithm performance 

 

Local Area Global Area 

Evaluation method RMSE MAE MAPE Evaluation method RMSE MAE MAPE 

Lag Time 2 13.87 7.37 12.20 Lag Time 4 16.38 9.22 15.54 

4 11.24 5.21 9.81 8 15.49 8.45 14.38 

6 11.13 5.58 8.98 12 15.12 7.37 10.29 

8 11.08 5.39 8.54 24 14.89 7.31 10.11 

12 10.92 4.89 8.51 48 13.92 6.87 9.85 

 

3.5 The effect of neural network structure 

 

The structure of the LSTM network, especially the numbers 

of network layers and nodes, had an important impact on the 

extraction of the features of long-term time dependence and 

geographic information correlation. Therefore, for different 

regions and different numbers of network nodes, three criteria 

were set to evaluate the effect of node number on the algorithm 

performance, and the evaluation results are shown in Table 3 

below. 

The experimental results showed that, under the condition 

of same time-lag, for a same dataset, with the increase of the 

number of LSTM neural network nodes, the algorithm 

extracted time dependence and spatial correlation features 

more accurately. The TSM-LSTM algorithm can accurately 

simulate the evolution process of PM2.5 particle concentration 

and predict the PM2.5 particle concentration. 

The experimental results showed that (Figure 7), under the 

condition of same time-lag, for a same dataset and the same 

number of nodes in each layer, with the increase of the number 

of LSTM neural network layers, the algorithm learned the time 

dependence and spatial correlation features more accurately. 
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The TSM-LSTM algorithm can accurately simulate the 

evolution process of PM2.5 particle concentration and predict 

the value of concentration. When the number of layers was less 

than 7, the indicators of the three evaluation criteria decreased; 

when the number of layers was more than 7, the indicators of 

the three evaluation criteria tended to be stable; therefore, 

when the number of layers was 7, the performance of the 

algorithm was the best.

 

Table 3. Relationship between LSTM neural network structure and algorithm performance (RT is the runtime) 

 

Local Area Global Area 

Evaluation method RMSE MAE MAPE  RT Evaluation method RMSE MAE MAPE  RT 

Number of nodes 400 16.26 8.29 11.32 34.28 Number of nodes 400 18.28 11.18 11.62 214.28 

800 14.58 7.94 9.71 54.22 800 16.76 10.32 10.44 254.22 

1200 12.46 6.81 8.90 65.47 1200 15.28 8.78 11.32 365.47 

1600 11.52 5.29 7.81 88.23 1600 14.98 7.96 10.77 588.23 

2000 10.99 4.87 7.25 168.21 2000 13.75 7.53 9.99 968.21 

 

 
Figure 7. Relationship between the number of LSTM layers 

and algorithm performance 

 

3.6 Relationship between predicted value and measured 

value 

 

600 samples were selected from the global and local 

predicted value and measured value datasets to plot the 

distribution maps of the predicted values and measured values 

of PM2.5 concentration in global and local regions (as shown 

in Figure 8).  

The experimental results showed that, between the 

predicted values and the measured values, there was a fit that 

approximated to y=x+ε, wherein the ε was any small positive 

number, the distribution areas were relatively concentrated, 

indicating that the predicted results and the measured results 

were come from the same dataset.  

 

 
a) Distribution of PM2.5 in global region 

 
b) Distribution of PM2.5 in local region 

 

Figure 8. Distribution maps of predicted values and 

measured values of PM2.5 concentration in global and local 

regions 

 

3.7 Comparative study of algorithm prediction 

performance 

 

On the same training and test dataset, under the conditions 

of different input parameters and different network structures, 

the performances of the proposed ST-LSTM algorithm, the 

LSTM algorithm [25], LSTME algorithm [36], STDL 

algorithm [37], DL-LSTM algorithm [31], SVR [13] and 

ARMA [11] were compared. The LSTM, LSTM E, DL-LSTM, 

and STDL algorithms adopted the same inputs as the TSM-

LSTM algorithm, but the network structures were different. 

The experimental results (Table 4) showed that: on the same 

training and test dataset, under the conditions of different input 

parameters and different network structures, the artificial 

neural network algorithms had the characteristics of nonlinear 

learning and fitting, therefore, the prediction ability of the 

neural network algorithms was better than that of the non-

neural network algorithms. With the increase of the number of 

layers, the deep neural networks’ learning and abstraction 

capabilities were enhanced, and the prediction ability of the 

network algorithms was better than that of the shallow neural 

network algorithms. The multilayer TSM-LSTM algorithm 

proposed in this paper outperformed other LSTM networks in 

terms of the prediction performance. In summary, compared 

with other time series analysis algorithms, the TSM-LSTM 

proposed in this paper had better prediction ability. 
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Table 4. Comparison of algorithm performance 

 

Algorithm Index LSTM STDL DL-LSTM ARMA SVR LSTME TSM-LSTM 

RMSE 16.24 11.51 15.12 25.41 24.14 15.45 12.56 

MAE 8.31 4.26 12.31 15.35 12.21 7.35 5.30 

MAPE 17.54 8.15 28.14 26.32 26.78 10.69 9.39 

 

 

4. CONCLUSIONS 

 

Targeting at the problems that the current air pollutant 

particle concentration prediction algorithms failed to 

effectively utilize the feature of the long-term time 

dependence of particle concentration and ignored the spatial 

correlation feature of particle concentration, this paper 

proposed a PM2.5 concentration prediction algorithm (TSM-

LSTM) based on spatial-temporal correlation and LSTM 

extension; by effectively integrating the spatial correlation and 

long-term time dependence of air pollutant PM2.5 

concentration, the LSTM algorithm was improved and applied 

to the PM2.5 concentration evolution process simulation and 

numerical prediction. On the global and local datasets, 

different network structures and experimental parameters were 

selected to compare multiple classic algorithms, and the 

proposed algorithm exhibited excellent performance in 

prediction and simulation. The study discovered the following 

rules: 

(1) In terms of evolution simulation and numerical 

prediction of air particle concentration, the deep neural 

networks were superior to shallow neural networks, and the 

shallow neural networks were superior to non-neural networks. 

(2) In terms of evolution simulation and numerical 

prediction of air particle concentration, LSTM neural 

networks can better learn the long-term time dependence 

feature of air concentration, therefore, their simulation results 

and prediction performance were better than those of similar 

shallow neural networks.  

(3) In terms of evolution simulation and numerical 

prediction of air particle concentration, the multi-layer LSTM 

neural network with temporal and spatial feature learning 

capabilities outperformed the traditional time series 

algorithms and the neural network algorithms. 

(4) The model in this paper had good performance in the 

prediction and simulation of air quality in global and local 

regions.  
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