

Performance Evaluation of Generative Adversarial Networks for Computer Vision

Applications

Sravani Nannapaneni, Venkatramaphanikumar Sistla*, Venkata Krishna Kishore Kolli

Department of CSE, VFSTR Deemed to be University, Vadlamudi 522213, Guntur, A.P., India

Corresponding Author Email: drsvpk_cse@vignan.ac.in

https://doi.org/10.18280/isi.250111

ABSTRACT

Received: 10 September 2019

Accepted: 23 December 2019

 Generative Adversarial Networks (GAN) generates model approaches using Convolution

Neural Networks (CNN) to find out learning regularities and to discover the hidden patterns

held in given input data. GAN is a generative model that is trained using two models such

as generator and Discriminator both competing against each other to learn the probability

distribution function, networks such as CNN, RNN, ANN etc. These traditional neural

networks are easily fooled in misclassifying things by adding small amount of noise to

original data, whereas GAN’s are more stable and easier to train due to the amalgamation

of Feed Forward Neural Network and CNN. In general, GAN’s are simple Neural networks

be trained in adversarial way to generate the data mimicking same distribution, Generator

learns new possible sample, and the Discriminator learns how to differentiate generated

samples from valid facts. Generated samples are similar in the nature but different from real

distribution data. The generated samples make use of computer vision techniques such as

visualization designs, realistic image generation, image classifications etc. In the proposed

work, to realize the probability distribution Restricted - Boltzmann machines and Deep

Belief networks are used. The performance of the GAN Networks is evaluated on various

standard datasets to realize the complex tasks such as image prediction, handwritten digit’s

generation, clothing classification, image segmentation tasks etc. From the experimental

results, it is clearly evident that the performance of GAN outperforms other state of the art

classifiers on all the benchmark datasets.

Keywords:

distributed system, task scheduling, load

balancing, fuzzy c-means, hungarian method

1. INTRODUCTION

Deep generative models come under the powerful class of

unsupervised machine learning these models are applied for

different types of applications such as image to image

conversion, photograph editing, high-resolution images,

classification, image generation, learned compressions,

domain adaption. GAN’S are introduced in the year 2014 by

Ian Good Fellow and other researchers at the University of

Montreal including Yoshua Bengio GAN’S are cleverly

training the generative models by framing the problem as

supervised learning problem with two models that is Generator

(e.g. generate duplicate copies of photos that looks like a real

photos) And Discriminator (e.g. it will differentiate the

generated photos and real photo), actually the Discriminator

will act as classifier it will classify the whether it is an original

or fake [1]. Basically, GAN’s have the ability to predict

features in a more adversarial manner; with that both generator

and discriminator are competed with each other during the

training. Once they are well trained, they have the ability to

create an image and piece arts etc. During this training of

discriminator, generator is kept as constant, like wise during

the training of generator; discriminator will be kept as constant.

GAN’S are cleverly training the generative models by framing

the problem as supervised learning problem with two models

that is Generator and Discriminator [2]. In this two models are

train together until we get the situation like zero-sum (or) min-

max game, at certain time period the generator unable to

generate a data and the discriminator unable to classify the

data sample i.e. is which one is real and which is fake this

situation called as a Nash-Equilibrium. In this situation

whether two players can improve the learning independently

[3]. In the same way generator and discriminator networks

usually parameterized in deep neural networks hard to decide

min-max problem. In implementation training performed use

stochastic gradient descent (SGD) it will learning process held

few samples were chosen randomly instead of the whole

dataset, adaptive learning rate optimization (ADAM) is used

to find the individual learning rate for each parameter, GAN

training is sensitive to the choice of loss functions optimization

of each player in NN architectures so that purpose applies the

Regularization and Normalization techniques [4, 5].

Figure 1. Architecture of GAN

Ingénierie des Systèmes d’Information
Vol. 25, No. 1, February, 2020, pp. 83-92

Journal homepage: http://iieta.org/journals/isi

83

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.250111&domain=pdf

The main objective of the generator is will generate an

image that will look like an original image similarly the goal

of the discriminator is classify weather it is an actual image or

forged image. The generic architecture of GAN is given in

Figure 1.

Related work is presented in Section II, basic functionalities

of Tensor Flow are given in Section III, Experimental results

and discussions are given in Section IV and finally Conclusion

is presented in Section V.

2. RELATED WORK

GAN is a word comprises of three different parts i.e.

generative, adversarial; networks to study the generative

model which describes facts generated probabilistic

distribution. And adversarial means training is done by

adversarial settings and networks for deep neural networks and

AI algorithms for training purpose Generator will generate

forged samples from the given information it may be either

audio or video or images, here the generator tries to make a

discriminator is a fool, other hand discriminator can

distinguish which one is real and which one is fake both NN

can competing with each other during a training phase. This

phase, several steps are repeated both networks get their better

and better performance in each repetition [6].

Generator and discriminator architecture GAN, models do

not directly use pair of input and output, instead of that learns

how inputs and outputs can be paired it is used for testing the

ability to use high-dimensional complicated probability

distribution (Figure 2). It will simulate features for planning,

Generator uses up-sampling it learns joint probability

distribution. A Generator will work for classification and

regression. While discriminator learns the boundary between

the classes it learns conditional probability distribution,

discriminator uses down-sampling it is a binary classifier.

Figure 2. Basic architectures of generator and discriminator

2.1 Concepts related to GAN

KULLBACK - libeler divergence (KL divergence) is

known as relative entropy This method is used to find

similarities between the two probability distribution .it will

measure the how one probability distribution p diverges from

a second expected probability distribution q,KL divergence

will be minimum or zero [4], KL divergence equation to

calculate the probability distributions is as the following Eq.

(1).

DKL(p||q) =∫𝑥p(x) log 𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥 (1)

From the above equation, DKL represents the KULLBACK

- Libeler divergence, in this divergence, has asymmetric

nature, here p(x), q(x) is two probability distributions. The

distance between the p(x) is similar to q(x) but the distance

between the q(x) top(x) is not same. Here distance should not

be used as a metric.

2.2 Jensen – Shannon divergence

It is also called information radius (or) total divergence to

the average. It is another method to calculate the similarities

between the two probabilities. In Jensen-Shannon divergence

has symmetric nature, due to this nature we have a possibility

to measure the distance as a metric, and we take the square root

JS-divergence we get JS- distance.

DJS
(p || q) =

1

2
 DKL

(P||𝑝+𝑞

2
) + 1

2
DKL

 (q||𝑝+𝑞

2
) (2)

The above equation is used to calculate the probability

distribution, DJSis Jensen – Shannon divergence DKL is

KULLBACK – libeler divergence and (p+q) is mid-point

measure.

2.3 Mathematical modelling in GAN

To train GAN’s we have two different networks i.e.

generator and discriminator, while training process we must

keep generator constant during the discriminator training

phase. Discriminator training tries to distinguish original or

fake, it has to learn to recognize the flaws of the generator.

Similarly, we keep the discriminator constant during the

generator training process. In this, both neural networks during

training processes can compete with each other the training

process will be repeated several times until both networks get

better and better with their individual jobs [7]. Generator

model will capture the distribution of data and it is trained and

tries to maximize the probability of discriminator making

mistakes. In other hands, discriminator will estimate the

probability of sample it acknowledged from training data not

from the generator. Both KL-divergence and Jensen-Shannon

divergence used for the training model.

The trained generative model tries to maximize the

probability of discriminator make mistake. Probability

estimation of sample based on the model not from the

generator produced data. Discriminator tries to minimize its

rewards. The Mathematical formula for min-max is as follows:

Min G Max D V(D,G) = EX~ Pdata (x) [log D(x)] + EZ

~ pz (z) [log (1-D (G (Z)))]

(3)

The Mathematical formula for the discriminator to identify

the original and generated images.

Max D V(D) = EX~ Pdata (x) [log D(x)] + EZ ~ pz (z)

[log (1-D (G (Z)))]

(4)

Optimization at the generator to fool the discriminator

Min G V(G) = EZ ~ pz (z) [log (1-D (G (z)))] (5)

Here “D” represent the discriminator and “G” represents

generator, G(Z)- generator model, x- is training sample, z-

noise vector, D(x)-discriminator model, D(G(z))-

discriminator output for fake training sample, PX is actual data

distribution, PZ is the allocation of data generated by generator,

84

E- predictable output, v-variance, log D(x)- discriminator loss,

Pdata(x)- original data distribution and Pz(Z) - input noise

distribution. Generator joint probability distribution is a

likelihood of more than one event occurring at the same time,

generator mathematical formula is:

p(x, y) = p(x | y).p(y) (6)

From the above equation x, y are random variables,

similarly, for discriminator, conditional probability

distribution

p(y | x) (i.e. probability of y given x should be

maximum)

(7)

2.4 GAN loss functions

The Architecture involves the simultaneous training of two

models i.e. generator and discriminator. During the training of

generator we drop the other one, it reflects the distribution of

actual data. Both generator and discriminator loss functions

look will unlike at the ending. The Loss function described by

Ian Good fellow et al. can be derived from the formula of

binary cross-entropy. Loss at discriminator real data is define

as Dlossreal = log (D(x)) And for fake data is define as Dlossfake

= log (1-D (G (Z))) and to find the total loss at discriminator

is Dloss = Dlossreal + Dlossfake [8]. Similarly the loss function

at creator is defined Gloss = log (1- D(G(z))) (or) -log

(D(G(z))). Formulas for finding the total cost at discriminator

and generator are as following equations.

Total cost at discriminator is
1

𝑚
∑ log(𝐷(𝑥𝑚
𝑖=1

i) + log (1-D (G (Zi)))

(8)

Total cost at generator is
1

𝑚
∑ log(1 − 𝐷(𝐺(𝑍𝑚
𝑖=1

i)))

(9)

As we can see above equations discriminator network runs

twice one is real data, another is for fake data before it can

calculate the final loss function generator runs only once, once

we got the two-loss functions we have to calculate the

gradients concerning to their parameters, Back-propagation

can be done through their networks independently [9].

2.5 GAN objective functions

The Discriminator is a binary classifier to feed real data. The

Model must generate a high probability for actual data and low

probability for false data. The main objective of GAN

functions is to learn some hidden facts about data in the

classification of real and fake images by extracting the features

manually and automatically in an efficient manner with low

cost.

Variables and functions of GAN’s are specified below [10].

Z- is the input noise data, G(Z)-fake generator output-real data

training sample, D(X)- discriminator output for actual data

whose values are in between 0-1, D(G(z))- discriminator

output for invalid data.

The Discriminator is a binary classifier to feed real data. The

Model must generate a high probability for actual data and low

probability for false data (generator produced output), the

main objective is to learn some hidden facts of data. Variables

and functions of GAN’s are specified below [10]. Z- is the

input noise data, G(Z)-fake generator output-real data training

sample, D(X)- discriminator output for actual data whose

values are in between 0-1, D(G(z))- discriminator output for

invalid data.

From the above D(X), D (G (Z)) gives a score between 0

and 1. At discriminator D(X) should maximized the real data

while minimizing the fake data i.e. D(G(Z)), G (z) produces a

same shape of data but it has some noisy data, we want to build

a model for generator that maximizes the fake data i.e.

D(G(Z)), Actually generator use pair of inputs and outputs to

tell the model to do, whereas discriminator learns how the

input and outputs can be paired, the main strategy of

discriminator is estimating the ratio using supervised learning

is the key approximation mechanism used by GAN’s.

2.6 Challenges with GAN

Mode collapse which means the generator will be stuck at

one point producing a limited number of samples during

training or after training, generator keep on producing the

same image several times repeatedly this leads to complete

model collapse. Whereas the generator learns very few

properties and produces few varieties of samples is called

partial model collapse. Another problem with GAN’s is

vanishing gradients. This problem will persist if there is no

stability in training of GAN’S. Unsupervised learning is a

more challenging task when compared to supervised learning

because it doesn’t have a label.

The Third problem is hard to find NASHEQUALIBRIUM

because in both networks Competent with each other I.e. non-

cooperative game. The fourth problem is counting, and testing

features, we can’t differentiate the images that have two eyes

or multiple eyes. The Fifth problem is the problem with a

perspective which means GAN’S fail to differentiate front and

back view, 2-D representation converted into 3-D objects,

another problem with GAN’s are global structures it means

can’t recognize the bottom and top positions for example cow

in hind legs position and folding leg positions. GAN requires

images with high dimensional data because it has many

variations in case of view point, illumination etc. to overcome

this limitation finding the hidden and latent vectors.

To overcome the above problems, we have different types

of GAN’S i.e., vanilla GAN’s in this type of GAN’S are

simple here both networks are simple with multi-layer

perceptron’s. And algorithms simple and to optimize the

mathematical equations used in SGD, whereas in case of

conditional GAN’s used some conditional parameters; here

some additional parameters are added to the generator to

generate a corresponding data. Whereas deep convolution

GAN’s (DCGAN) use the convolution network layers instead

of multi-layer perceptions. In DCGAN layers are not fully

connected [11]. Another type is super-resolution i.e.

SRGAN’S here DNN along with adversarial networks in-

order to get the high-resolution images.

3. TENSOR FLOW

Tensor flow is an open-source platform to integrate as well

as develop large scale AI and deep learning models. Tensor

flow is a machine learning framework originally developed by

Google [12]. One of the advantages is it can be easily modified,

share and integrate, training, designing, building because all

the blueprint features are open to all. And also expand

particular software and the product it can support various web,

mobile, and programming languages and IoT applications [13].

85

Tensor flow library is used for numerical computations, using

data flow graphs. Nodes signify the operations, edges signify

the facts, it supports programming languages such as C++, GO,

Julia, swift and RUST, C#. along these it can support hardware

acceleration for running large scale machine learning codes it

includes CUDA (library for running machine language code

on GPU’s, TPU’s is a custom hardware processing unit it

especially designed and developed to process tensors

automatically computing their derivatives, tensors can be

viewed as a multi-dimensional array of numbers. This will be

used at the backend. Tensor Flow supports computations

across multiple CPUs and GPUs. This means to improve the

speed of the training computations can be allocated across the

devices and its architecture is given in Figure 3. By performing

parallelization, there is no need to wait for weeks to get the

results of algorithms. Tensor Flow provides two versions, and

they are Tensor Flow with CPU version supports device

doesn’t run on NVIDIA GPU, simply you can install

TensorFlow with GPU version, it supports for earlier

computation. This version needs only strong computational

capacity, similarly, TPU supported for the cloud [14].

Figure 3. Overview of tensor flow architecture

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

Data sets contain a collection of facts example it contains

features significant to solve the problem. Features Important

pieces of data that help us understand a problem. These are feed

into a Machine Learning algorithm help to discover, we have

different types of datasets like MNIST it contains images for

handwritten digit classification and CIFAR-10 which contains

images it can be broken into ten different classes. Datasets can

be categorized into training and test set. The training set teaches

different features by adjusting the parameters according to the

likelihood of minimizing the errors. Whereas the test set can’t

use until the end. After the trained and optimized the data, test

the neural network against the random sampling, It can

validating the results accurately in case we don’t get the

accurate results then go back to look at the hyper parameters in

training set .to achieve the quality of data tune the network and

look at preprocessing technique.

4.1 MINST classification clothing images

To train the neural networks model to classify the MNIST

simple fashion dataset it contains 70,000 gray-scale images

with 10 different categories, cloth images like it is a shirt,

trouser, pullover, dress, sneaker, shoes, handbags, pants, coats

accurately 10, 000 images are used. system learn to classify

the images and pixel values are ranging from 0-255, and label

values are representing as integer values those ranges

represented as 0-9, each image is mapped with a single label.

Sample MINST fashion dataset is shown in Figure 4.

Figure 4. MINST fashion dataset

To preprocess the data for the training network to see the

pixel values whose range is from 0-255. And scale those values

are ranging from 0-1 to train neural network model, like that

we have to train and test the data same process, Next step we

have to build the model for that we take the layers i.e. flatten, 2

dense layers, first layer is flattened layer transform the images

into 2-dimensional array of pixels size is (28x28) to one-

dimensional array (28x28) it has no parameter to discover so

reformat the information. After that pixel is arranged into

vector format, the network model consists of sequence layers

which are either fully or densely connected neural network

layers. The first and second dense layer has (128, 10) nodes

86

with activation function SOFTMAX it will return probability

score amount is one. The probability of a present image belongs

to 10 classes it indicates each node. The Next step is compiling

the model for this measure the loss function, optimizer, and

metrics. Sample image before preprocessing and 25 images

before training are given in Figure 5.

(a) Sample image before preprocessing

(b) First 25 images of training set and scale the image values to feed NN whose Range 0-1

Figure 5. Images before training

Figure 6. Correct and incorrect predicted image

To measures the accuracy of the model during the training

use the loss functions, optimizer defines the update the model

based on the data, metrics are used to monitor the training and

test data that are to be correctly classified. After compile the

model we have to train the model it contains the steps, feed to

train the model after that model learns the associate images

and labels, and model can predict the test data for these use

model. fit, after 10 epochs get the 91% accuracy, Next step is

to evaluate the accuracy-test data compare how model

performs, it returns the accuracy is 88% for test data. The

result will be slightly less when to compare the training set

accuracy .so the difference between the training and test

accuracy leads to model over- fitting because of hat model

performs worse to train new input data. After that we have to

make the prediction about the images, for this prediction label

for each image in testing data prediction of a group of ten

numbers represent the model confidence images of ten

different articles of clothing, the Correct prediction label

represents green and incorrect label represents red color for the

predicted label. Performance evaluation on sample image is

given on Figure 6.

Finally, the model is trained to make the prediction about

the single image. To optimize the model, make the prediction

on batch or group of examples at one time and presented in

Figure 7.

87

(a) Test images with predicted labels

(b) Predicting A particular image over a batch of images

Figure 7. Test and predicted image outcome

4.2 Performance evaluation on MNIST dataset

MNIST means the modified national institute of standards

and technology. The main aim is identified digits from a

dataset tens and thousands handwritten pictures for this

approach we use KERAS in tensor flow as backend and for

prediction purpose use the neural networks that must be 4layer

or 5layers experimenting with various optimizers SGD,

ADAM. First step import the libraries and read the data which

contain the (5X785) it means 1 label and 784 features.

The Next step to divide the data into the training and

validation data set (28000, 784). Then perform the data

cleaning and normalization operations so we get the pixel

value range between the 0-255 so we have to normalize the

features so we have to convert our labels from a class vector

to binary ONE HOT ENCODED. After that perform model

fitting by using neural networks models and collect the

accuracy model which perform the best validation it will be

used for competition (Table 1).

Model 1: Simple neural networks with 4 – layers (300, 100,

100, 200) and using the activation function is RELU and to

determine the output use SOFTMAX function. Model has six

input layers, four hidden layers and one output layer with 2,

97,910 parameters to estimate. Then insert the hyper

parameters with learning rate 0.1, the number of training

epochs is 20, batch size 20, to compiling the model use the

categorical cross-entropy is used as a loss function and

accuracy can be measured as metrics, SGD is used as an

optimizer. We achieved a training score of around 96-98% and

a test score of around 95-97%.

Model 2: In this model change the optimizer as ADAM by

maintaining the same parameters values it tends to perform the

better performance tends to an average of 1.5-2.5% so go

forward ADAM as an optimizer choice by changing different

learning rate 0.1 – 0.01 and 0.5 and test the accuracy.

Model 3: In this model learning rate is 0.01, and number of

training epochs20, with the batch size is 20, categorical cross-

entropy used as loss function and accuracy is measured as

metrics, ADAM has used an optimizer we get the accuracy is

97%.

Model 4: In this model use the learning rate 0.5, with

number of training epochs is 20, with batch size is 20, use

categorical cross-entropy as loss function and accuracy is

measured in metrics, ADAM is used as an optimizer we will

get the accuracy around 98%. As per three different learning

rates 0.01, 0.1 and 0.5 we get 98%, 97%, 98% respectively

88

there is no change in changing the learning rate so take default

learning rate 0.01. So we have to proceed to fit NN with 5 –

hidden layers with set of (300, 100, 100, 100, 200) we will set

the training epochs is 20 and training batch size=100. When

compared to the first model adding an additional layer didn’t

get any improvement in accuracy this leads to more

computational cost by adding additional layer to our neural

network, so we will stick on 4- layer neural network. To

prevent the over-fitting we will include the dropout rate is 0.3.

The model has six input layers, four hidden layers, one output

layer estimating parameters 2,97,910 validation score is close

to 98% so we proceed to use this model to predict the test set.

Table 1. Performance evaluation using GAN with ADAM optimizer

Layers Learning rate Epochs Batch size Training Accuracy Validation accuracy

4 0.01 20 100 98% 96%

4 0.5 20 100 98% 97%

5 0.01 20 100 98% 96%

4.3 Dogs and cats image classification

The Dataset contains both cats and dogs we have to classify

the images. To build a model using the sequential model,

import the required packages then load the dataset dogs Vs

cats after that the data set can be split into train and validation

sets both contain dogs and cats. Sample Dogs & Cats after

applying various arguments are presented in Figure 8.

After extracting the contents assign the paths for both the

train and validation dataset, to understand the data look at how

many numbers of dogs and cats present in the training and

validation data set. Total training cat and dog images are (1000,

1000) and entire validation cat and dog images (500,500) so

whole training images are 2000 and validation images are

1000.To preprocess the data set to the training network set up

the variables for our convenience with batch size=128,

epochs=15, image height and width is =150. After that to

prepare the data, arrange the images into floating-point tensors

arrange them properly for network training, decode the images

and change into an appropriate grid format as RGB format.

Rescale the values of the tensor range 0-255 to 0 -1. NN

choose little input values, defining generators training and

validation images apply to rescale and resize the images into

required dimensions found 2000 images belong training

generator and found 1000 images belongs to validation

generator.

To create model batch images from training generator are

extracted for visualization, the model consists of three

convolution layers with MAXPOOL each of them are

connected with a fully connected layer with units 512. on the

top with the activation function is RELU outputs are binary

classification activation function is SIGMOID, Compile the

model ,To train the model use fit_ generator and image_

generator methods after the 15 epochs we get the training

accuracy is 95% and validation accuracy is 73% there will be

lot of difference by increase the performance of both training

and validation dataset, this leads to a method over-fitting due

to this reason generalization is difficult so we need to pass

DATA ARGUMENTATION, Data argumentation approach

generates additional training data from the existing samples by

using random transformations the Main goal is the exact

sample picture will never see during the training process.

Next step to pass the arguments like horizontal flip to see

the same image repeat it five times, then took different

argumentations, ROTATION randomly at 45 degrees for

training images, apply another argumentation by zooming up

to 50% randomly, After that put it into all together that is shift

width and height, rotation and scaling, zoom operations all

these arguments see in a single image. Similarly, apply this

validation generator. Another method is used to reduce the

over-fitting i.e. dropout here distribute the weights to the

network apply the dropout to the layers initially set to be zero,

the outputs are applied during training process dropouts takes

a fractional value like 0.1, 0.2. Randomly apply the output

layers, drop out applying layer it kills the 10% of units for each

training epochs. Finally apply the dropout of first and last

MAXPOOL layers set 20% for training epoch then compile

the model will get the accuracy is 61% and validation accuracy

is 66% so we can see less over-fitting when compared to the

previous method after training more number of epochs.

Performance evaluation such as accuracy and loss functions of

proposed method on Dogs vs Cats dataset during training and

validation phases is presented in Figure 9 and Figure 10.

(a) Plotting training images in grid format i.e.one row and

five columns

(b) Randomly applied different argumentations five times on

same image

(c) Plot an augmented image with rotational angle 450

(d) Images after applying the zoom argumentation up to 50%

randomly

(e) Visualization of single image by applying different

arguments randomly

Figure 8. Variations in dogs and cats images after applying

different arguments

89

Figure 9. Visualization graph for training validation accuracy and loss

Figure 10. Visualizing the new model after training significantly less over fitting than before

4.4 CIFAR-10 image dataset

CIFAR-10 dataset is a recognized computer visualization

used for the identification of objects. it contains 60,000 color

images with ten different classes, like horse, bird, automobiles,

cat, frog, deer, truck. Each class contains 6,000 images. The

dataset is split into training and testing images are (50,000 and

10000) there is no overlap between the classes because they

are mutually exclusive, after that normalize the pixel values

whose range values are between 0-1. Sample CIFAR-10

dataset is shown in Figure 11.

Figure 11. First 5 images with their class labels

The Next step is to verify the data the dataset looks accurate,

so plot the first five images along with display the class name

below each and every image from training data set, after that

create a convolution base using a regular model use conv2D,

max-pooling 2D layers. CNN takes tensors to shape like image

height, width, and color _ channels as an input ignore batch

size, color channels refer to RGB in this process configure the

input shapes (32, 32, 3) it is the format of CIFAR image we

can pass the arguments for input _ shape for the first layer.

Figure 12. Model evaluation graph for test and validation

accuracy

In this dataset use the sequential model total number of

parameters 56,320 and trainable parameters are 56,320 then to

complete the model add the dense layers on top, feed the model

tensor last output from the convolution base with shape (3, 3,

64) to do classification, Dense layers take 1D vectors as input

while the 3D tensor its present output. First, flatten the 3D

output into 1D then add another one denser layer on the top,

CIFAR has ten output classes so use the 10 outputs for final

dense layers, and SOFTMAX is activation function, a

sequential model used for a model summary, in this the total

number of trainable parameters is 1, 22,570. To train and

90

compile the model use the ADAM optimizer, sparse

categorical cross-entropy used for the loss function, accuracy

is measured in metrics, epochs = 10, we get the accuracy is

77% and validation accuracy is 70%, Evaluate the model we

get the test accuracy is 70% (Figure 12).

4.5 Image segmentation oxford-IIIT data set

Image segmentation is used to know the particular object

location, shape, and its pixel values, to perform the

segmentation operations to image specify the label name to

each pixel, to perform image segmentation train the neural

network outputs of image masking pixel-wise, The oxford –

IIT pet dataset consists of images and labels with pixel-wise

mask each pixel can be categories three ways, pixel belongs to

pet, pixels bordering the pet and surrounding pixels, First

download the pets’ dataset with segmentation masks,

performing the operations like flipping images then normalize

the image whose range between 0-1, segmentation masks are

labeled as 1, 2, 3... For our convenience subtracting 1 for

segmentation masking resulting values are 0, 1, and 2. Then

the dataset can be split into a test and train. Sample Images of

Oxford IIIT Data set is given in Figure 13.

(a) Input and masking image

(b) Predicted images before training

(c) Predicted image after training

(d) Test data true predicted images

Figure 13. Training and test set outcomes

The Next step is to define the model here apply the down-

sampling for encoding and up-sampling for decoding, to learn

the features reduce the number of trainable parameters for

encoding pre trainable model is used. Encoder task will be pre-

trained by mobileNetv2 model intermediate outputs will be

used decoder un-sample block it is already implemented by

tensor flow examples. It contains a 3 output channels because

there are three possible labels for each pixel here perform the

multiclass classification where each pixel classified into 3

classes Encoder consists of specific output for intermediate

layers in model here encoder will not be trained during the

training process. Decoder un-sample blocks are implemented

by tensor flow examples. Next step is to train the model

optimizer = ADAM, sparse_ categorical_ cross-entropy is

used as a loss function, metrics= accuracy use the loss function

because the network is trying to assign each pixel label just

like a multi-class prediction true segmentation mask for each

pixel has either 0, 1, 2. The Network has a three output

channels each and every channel is to predict the class and loss

function to predict the mask function assign the label to the

pixel to the channel with the highest value, To make the

predictions after 20 epochs we get the training accuracy is 93%

and validation accuracy is 87%. Training and validation loss

after 20 epochs are given in Figure 14.

Figure 14. Training and validation loss graph after 20

epochs

4.6 Hand written digits generation

In any neural networks, we have inputs and output nodes

and having some hidden layers each input layer is connected

with the hidden layers with weights, connected with one

hidden layer is a network and connected with 2 or more hidden

layer is a deep neural network, activation function specifies

whether the neuron is a fire or not fire. Import the required

packages and download the MNIST dataset with the size

28x28 resolution contain the images are hand-written digits 0-

9, then it will be divide into train and test dataset, then print all

the train data it displays all the tensor values after that we have

to show the images by importing the MATPLOTLIB it

displays colored image if you want gray scale images use

camp, after doing this we have to normalize the data for both

train and test data whose axis value is one. It will be

representing the result tensor values are between 0-1. Next

step we have to build the model for this use the sequential

model and the layers for that model i.e. flatten layer, and add

another layer is dense layer we have to provide the parameters

(128, activation function = RELU) and add another dense layer

for classification use (10, activation function = SOFTMAX)

this will define the architecture of model. Next step we have

to train the model and compile the model is optimizer= ADAM,

loss = sparse _ categorical _ cross-entropy, and metrics =

accuracy, to train a model epochs=5 accuracy achieved after

training model is about 98%, Next thing is to evaluate the

model value accuracy we get 97% there will be a slight

difference between the training models and evaluate model

there will be less over-fitting after that save the model in epic

91

_ num _reader model then find the prediction for test data we

get the result differently those are probability distributions. For

this import NumPy and pass the parameters as ARGMAX for

predictions with index value, it will show the image of sample

color and binary given in Figure 15.

(a) Sample Colored Image (b) Binary Image with CMAP

Figure 15. Sample colored and binary image

Avoid the mode collapse using the VEEGAN’S, SGD

(distribution min and max), another method is mini-batch

discrimination here compute independently each point by

dividing into small batches. Another problem is the vanishing

gradient to reduce this problem activation function transform

values are in the range of 0, 1 and use the optimizers to reduce

the loss functions and use the chain-rule for back propagation.

The third problem is Nash-Equilibrium it means games can’t

solve by the method of iterated elimination of dominated

strategies to overcome this problem using different game

strategies like a zero-sum game, constant sum, put the

equilibrium point for Nash- analysis, min-max, and max-min.

For lower dimensionality feature representation uses the auto-

encoders unlabeled training data for encoders uses RELU,

CNN. For feature, representations use dimensionality

reduction, similarly for estimating the true parameters use

variation auto-encoders.

5. CONCLUSIONS

Unsupervised learning is next frontier in artificial

intelligence. GAN’s are established using two-layer game

theory. The main aim of GAN is to predicting the correct

results, to improve the performance during training process, in

any situation we can train a model in worst-case scenarios also

by using adversarial training. To improve performance of

GAN in training, feature matching, minibatch discrimination,

one-sided label smoothing, and virtual batch normalization

were added. For better optimization cost function is changed

and over-fitting is avoided independently at each point by

splitting the data into small batches; further addition of the

labels and feature matching techniques are also carried. So

GAN is used to predict the performance by creating different

types of models to generate the data, and capturing the data

distribution and then probability distribution is computed from

the training samples. Further, performance of GAN is assessed

with different types of GAN’s such as vanilla, DCGAN’s,

SRGAN’s to reduce the cost in the implementing of solutions

for various computer vision problems.

REFERENCES

[1] Goodfellow, I. (2016). NIPS 2016 tutorial: Generative

adversarial networks. arXiv preprint arXiv:1701.00160.

[2] Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B.,

Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.

(2014). Generative adversarial nets. In Advances in

Neural Information Processing Systems, pp. 2672-2680.

[3] Mirza, M., Osindero, S. (2014). Conditional generative

adversarial nets. arXiv preprint arXiv:1411.1784.

[4] Radford, A., Metz, L., Chintala, S. (2015). Unsupervised

representation learning with deep convolutional

generative adversarial networks. arXiv preprint

arXiv:1511.06434.

[5] Kang, W.C., Fang, C., Wang, Z., McAuley, J. (2017).

Visually-aware fashion recommendation and design with

generative image models. In 2017 IEEE International

Conference on Data Mining (ICDM), New Orleans, LA,

USA, pp. 207-216.

https://doi.org/10.1109/ICDM.2017.30

[6] Creswell, A., White, T., Dumoulin, V., Arulkumaran, K.,

Sengupta, B., Bharath, A.A. (2018). Generative

adversarial networks: An overview. IEEE Signal

Processing Magazine, 35(1): 53-65.

https://doi.org/10.1109/MSP.2017.2765202

[7] Abadi, M., Barham, P., Chen, J.M., Chen, Z.F., Davis, A.,

Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M.,

Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray,

D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P.,

Wicke, M., Yu, Y., Zheng, X.Q. (2016). TensorFlow: A

system for large-scale machine learning. In 12th

{USENIX} Symposium on Operating Systems Design

and Implementation ({OSDI} 16), pp. 265-283.

[8] Cohen, G., Afshar, S., Tapson, J., Van Schaik, A. (2017).

EMNIST: Extending MNIST to handwritten letters. In

2017 International Joint Conference on Neural Networks

(IJCNN), Anchorage, AK, USA, pp. 2921-2926.

https://doi.org/10.1109/IJCNN.2017.7966217

[9] Che, T., Li, Y., Jacob, A. P., Bengio, Y., Li, W. (2016).

Mode regularized generative adversarial networks. arXiv

preprint arXiv:1612.02136.

[10] Hua, Y., Guo, J., Zhao, H. (2015). Deep belief networks

and deep learning. In Proceedings of 2015 International

Conference on Intelligent Computing and Internet of

Things, Harbin, China, pp. 1-4.

https://doi.org/10.1109/ICAIOT.2015.7111524

[11] Kurach, K., Lucic, M., Zhai, X., Michalski, M., & Gelly,

S. (2018). A large-scale study on regularization and

normalization in GANs. arXiv preprint

arXiv:1807.04720.

[12] Nguyen, K., Fookes, C., Sridharan, S. (2015). Improving

deep convolutional neural networks with unsupervised

feature learning. In 2015 IEEE International Conference

on Image Processing (ICIP), Quebec City, QC, Canada,

pp. 2270-2274.

https://doi.org/10.1109/ICIP.2015.7351206

[13] Wang, F., Jiang, M.Q., Qian, C., Yang, S., Li, C., Zhang,

H.G., Wang, X.G., Tang, X.O. (2017). Residual attention

network for image classification. In Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition, Honolulu, HI, USA, pp. 3156-3164.

https://doi.org/10.1109/CVPR.2017.683

[14] Ertam, F., Aydın, G. (2017). Data classification with

deep learning using Tensorflow. In 2017 International

Conference on Computer Science and Engineering

(UBMK), Antalya, Turkey, pp. 755-758.

https://doi.org/10.1109/UBMK.2017.80935

92

