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 Generative Adversarial Networks (GAN) generates model approaches using Convolution 

Neural Networks (CNN) to find out learning regularities and to discover the hidden patterns 

held in given input data. GAN is a generative model that is trained using two models such 

as generator and Discriminator both competing against each other to learn the probability 

distribution function, networks such as CNN, RNN, ANN etc. These traditional neural 

networks are easily fooled in misclassifying things by adding small amount of noise to 

original data, whereas GAN’s are more stable and easier to train due to the amalgamation 

of Feed Forward Neural Network and CNN. In general, GAN’s are simple Neural networks 

be trained in adversarial way to generate the data mimicking same distribution, Generator 

learns new possible sample, and the Discriminator learns how to differentiate generated 

samples from valid facts. Generated samples are similar in the nature but different from real 

distribution data. The generated samples make use of computer vision techniques such as 

visualization designs, realistic image generation, image classifications etc. In the proposed 

work, to realize the probability distribution Restricted - Boltzmann machines and Deep 

Belief networks are used. The performance of the GAN Networks is evaluated on various 

standard datasets to realize the complex tasks such as image prediction, handwritten digit’s 

generation, clothing classification, image segmentation tasks etc. From the experimental 

results, it is clearly evident that the performance of GAN outperforms other state of the art 

classifiers on all the benchmark datasets. 
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1. INTRODUCTION 
 

Deep generative models come under the powerful class of 

unsupervised machine learning these models are applied for 

different types of applications such as image to image 

conversion, photograph editing, high-resolution images, 

classification, image generation, learned compressions, 

domain adaption. GAN’S are introduced in the year 2014 by 

Ian Good Fellow and other researchers at the University of 

Montreal including Yoshua Bengio GAN’S are cleverly 

training the generative models by framing the problem as 

supervised learning problem with two models that is Generator 

(e.g. generate duplicate copies of photos that looks like a real 

photos) And Discriminator (e.g. it will differentiate the 

generated photos and real photo), actually the Discriminator 

will act as classifier it will classify the whether it is an original 

or fake [1]. Basically, GAN’s have the ability to predict 

features in a more adversarial manner; with that both generator 

and discriminator are competed with each other during the 

training. Once they are well trained, they have the ability to 

create an image and piece arts etc. During this training of 

discriminator, generator is kept as constant, like wise during 

the training of generator; discriminator will be kept as constant. 

GAN’S are cleverly training the generative models by framing 

the problem as supervised learning problem with two models 

that is Generator and Discriminator [2]. In this two models are 

train together until we get the situation like zero-sum (or) min-

max game, at certain time period the generator unable to 

generate a data and the discriminator unable to classify the 

data sample i.e. is which one is real and which is fake this 

situation called as a Nash-Equilibrium. In this situation 

whether two players can improve the learning independently 

[3]. In the same way generator and discriminator networks 

usually parameterized in deep neural networks hard to decide 

min-max problem. In implementation training performed use 

stochastic gradient descent (SGD) it will learning process held 

few samples were chosen randomly instead of the whole 

dataset, adaptive learning rate optimization (ADAM) is used 

to find the individual learning rate for each parameter, GAN 

training is sensitive to the choice of loss functions optimization 

of each player in NN architectures so that purpose applies the 

Regularization and Normalization techniques [4, 5]. 

 

 
 

Figure 1. Architecture of GAN 
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The main objective of the generator is will generate an 

image that will look like an original image similarly the goal 

of the discriminator is classify weather it is an actual image or 

forged image. The generic architecture of GAN is given in 

Figure 1.  

Related work is presented in Section II, basic functionalities 

of Tensor Flow are given in Section III, Experimental results 

and discussions are given in Section IV and finally Conclusion 

is presented in Section V. 

 
 

2. RELATED WORK 
 

GAN is a word comprises of three different parts i.e. 

generative, adversarial; networks to study the generative 

model which describes facts generated probabilistic 

distribution. And adversarial means training is done by 

adversarial settings and networks for deep neural networks and 

AI algorithms for training purpose Generator will generate 

forged samples from the given information it may be either 

audio or video or images, here the generator tries to make a 

discriminator is a fool, other hand discriminator can 

distinguish which one is real and which one is fake both NN 

can competing with each other during a training phase. This 

phase, several steps are repeated both networks get their better 

and better performance in each repetition [6]. 

Generator and discriminator architecture GAN, models do 

not directly use pair of input and output, instead of that learns 

how inputs and outputs can be paired it is used for testing the 

ability to use high-dimensional complicated probability 

distribution (Figure 2). It will simulate features for planning, 

Generator uses up-sampling it learns joint probability 

distribution. A Generator will work for classification and 

regression. While discriminator learns the boundary between 

the classes it learns conditional probability distribution, 

discriminator uses down-sampling it is a binary classifier. 

 

 
 

Figure 2. Basic architectures of generator and discriminator 

 

2.1 Concepts related to GAN 

 

KULLBACK - libeler divergence (KL divergence) is 

known as relative entropy This method is used to find 

similarities between the two probability distribution .it will 

measure the how one probability distribution p diverges from 

a second expected probability distribution q,KL divergence 

will be minimum or zero [4], KL divergence equation to 

calculate the probability distributions is as the following Eq. 

(1). 

 

DKL(p||q) =∫𝑥p(x) log 𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥 (1) 

 

From the above equation, DKL represents the KULLBACK 

- Libeler divergence, in this divergence, has asymmetric 

nature, here p(x), q(x) is two probability distributions. The 

distance between the p(x) is similar to q(x) but the distance 

between the q(x) top(x) is not same. Here distance should not 

be used as a metric. 

 

2.2 Jensen – Shannon divergence 

 

It is also called information radius (or) total divergence to 

the average. It is another method to calculate the similarities 

between the two probabilities. In Jensen-Shannon divergence 

has symmetric nature, due to this nature we have a possibility 

to measure the distance as a metric, and we take the square root 

JS-divergence we get JS- distance. 

 

DJS
(p || q) = 

1

2
 DKL 

(P||𝑝+𝑞

2
) + 1

2
DKL

 (q||𝑝+𝑞

2
) (2) 

 

The above equation is used to calculate the probability 

distribution, DJSis Jensen – Shannon divergence DKL is 

KULLBACK – libeler divergence and (p+q) is mid-point 

measure.  

 

2.3 Mathematical modelling in GAN 

 

To train GAN’s we have two different networks i.e. 

generator and discriminator, while training process we must 

keep generator constant during the discriminator training 

phase. Discriminator training tries to distinguish original or 

fake, it has to learn to recognize the flaws of the generator. 

Similarly, we keep the discriminator constant during the 

generator training process. In this, both neural networks during 

training processes can compete with each other the training 

process will be repeated several times until both networks get 

better and better with their individual jobs [7]. Generator 

model will capture the distribution of data and it is trained and 

tries to maximize the probability of discriminator making 

mistakes. In other hands, discriminator will estimate the 

probability of sample it acknowledged from training data not 

from the generator. Both KL-divergence and Jensen-Shannon 

divergence used for the training model.  

The trained generative model tries to maximize the 

probability of discriminator make mistake. Probability 

estimation of sample based on the model not from the 

generator produced data. Discriminator tries to minimize its 

rewards. The Mathematical formula for min-max is as follows: 

 

Min G Max D V(D,G) = EX~ Pdata (x) [log D(x)] + EZ 

~ pz (z) [log (1-D (G (Z)))] 

(3) 

 

The Mathematical formula for the discriminator to identify 

the original and generated images. 
 

Max D V(D) = EX~ Pdata (x) [log D(x)] + EZ ~ pz (z) 

[log (1-D (G (Z)))] 

(4) 

 

Optimization at the generator to fool the discriminator 

 

Min G V(G) = EZ ~ pz (z) [log (1-D (G (z)))] (5) 

 

Here “D” represent the discriminator and “G” represents 

generator, G(Z)- generator model, x- is training sample, z- 

noise vector, D(x)-discriminator model, D(G(z))- 

discriminator output for fake training sample, PX is actual data 

distribution, PZ is the allocation of data generated by generator, 
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E- predictable output, v-variance, log D(x)- discriminator loss, 

Pdata(x)- original data distribution and Pz(Z) - input noise 

distribution. Generator joint probability distribution is a 

likelihood of more than one event occurring at the same time, 

generator mathematical formula is: 

 

p(x, y) = p(x | y).p(y) (6) 

 

From the above equation x, y are random variables, 

similarly, for discriminator, conditional probability 

distribution  

 

p(y | x) (i.e. probability of y given x should be 

maximum) 

(7) 

 

2.4 GAN loss functions 

 

The Architecture involves the simultaneous training of two 

models i.e. generator and discriminator. During the training of 

generator we drop the other one, it reflects the distribution of 

actual data. Both generator and discriminator loss functions 

look will unlike at the ending. The Loss function described by 

Ian Good fellow et al. can be derived from the formula of 

binary cross-entropy. Loss at discriminator real data is define 

as Dlossreal = log (D(x)) And for fake data is define as Dlossfake 

= log (1-D (G (Z))) and to find the total loss at discriminator 

is Dloss = Dlossreal + Dlossfake [8]. Similarly the loss function 

at creator is defined Gloss = log (1- D(G(z))) (or) -log 

(D(G(z))). Formulas for finding the total cost at discriminator 

and generator are as following equations.  

 

Total cost at discriminator is 
1

𝑚
∑ log(𝐷(𝑥𝑚
𝑖=1

i) + log (1-D (G (Zi))) 

 

 

(8) 

Total cost at generator is 
1

𝑚
∑ log(1 − 𝐷(𝐺(𝑍𝑚
𝑖=1

i))) 

 

(9) 

 

As we can see above equations discriminator network runs 

twice one is real data, another is for fake data before it can 

calculate the final loss function generator runs only once, once 

we got the two-loss functions we have to calculate the 

gradients concerning to their parameters, Back-propagation 

can be done through their networks independently [9]. 

 

2.5 GAN objective functions 

 

The Discriminator is a binary classifier to feed real data. The 

Model must generate a high probability for actual data and low 

probability for false data. The main objective of GAN 

functions is to learn some hidden facts about data in the 

classification of real and fake images by extracting the features 

manually and automatically in an efficient manner with low 

cost. 

Variables and functions of GAN’s are specified below [10]. 

Z- is the input noise data, G(Z)-fake generator output-real data 

training sample, D(X)- discriminator output for actual data 

whose values are in between 0-1, D(G(z))- discriminator 

output for invalid data. 

The Discriminator is a binary classifier to feed real data. The 

Model must generate a high probability for actual data and low 

probability for false data (generator produced output), the 

main objective is to learn some hidden facts of data. Variables 

and functions of GAN’s are specified below [10]. Z- is the 

input noise data, G(Z)-fake generator output-real data training 

sample, D(X)- discriminator output for actual data whose 

values are in between 0-1, D(G(z))- discriminator output for 

invalid data. 

From the above D(X), D (G (Z)) gives a score between 0 

and 1. At discriminator D(X) should maximized the real data 

while minimizing the fake data i.e. D(G(Z)), G (z) produces a 

same shape of data but it has some noisy data, we want to build 

a model for generator that maximizes the fake data i.e. 

D(G(Z)), Actually generator use pair of inputs and outputs to 

tell the model to do, whereas discriminator learns how the 

input and outputs can be paired, the main strategy of 

discriminator is estimating the ratio using supervised learning 

is the key approximation mechanism used by GAN’s. 

 

2.6 Challenges with GAN 

 

Mode collapse which means the generator will be stuck at 

one point producing a limited number of samples during 

training or after training, generator keep on producing the 

same image several times repeatedly this leads to complete 

model collapse. Whereas the generator learns very few 

properties and produces few varieties of samples is called 

partial model collapse. Another problem with GAN’s is 

vanishing gradients. This problem will persist if there is no 

stability in training of GAN’S. Unsupervised learning is a 

more challenging task when compared to supervised learning 

because it doesn’t have a label.  

The Third problem is hard to find NASHEQUALIBRIUM 

because in both networks Competent with each other I.e. non-

cooperative game. The fourth problem is counting, and testing 

features, we can’t differentiate the images that have two eyes 

or multiple eyes. The Fifth problem is the problem with a 

perspective which means GAN’S fail to differentiate front and 

back view, 2-D representation converted into 3-D objects, 

another problem with GAN’s are global structures it means 

can’t recognize the bottom and top positions for example cow 

in hind legs position and folding leg positions. GAN requires 

images with high dimensional data because it has many 

variations in case of view point, illumination etc. to overcome 

this limitation finding the hidden and latent vectors. 

To overcome the above problems, we have different types 

of GAN’S i.e., vanilla GAN’s in this type of GAN’S are 

simple here both networks are simple with multi-layer 

perceptron’s. And algorithms simple and to optimize the 

mathematical equations used in SGD, whereas in case of 

conditional GAN’s used some conditional parameters; here 

some additional parameters are added to the generator to 

generate a corresponding data. Whereas deep convolution 

GAN’s (DCGAN) use the convolution network layers instead 

of multi-layer perceptions. In DCGAN layers are not fully 

connected [11]. Another type is super-resolution i.e. 

SRGAN’S here DNN along with adversarial networks in-

order to get the high-resolution images. 
 

 

3. TENSOR FLOW 
 

Tensor flow is an open-source platform to integrate as well 

as develop large scale AI and deep learning models. Tensor 

flow is a machine learning framework originally developed by 

Google [12]. One of the advantages is it can be easily modified, 

share and integrate, training, designing, building because all 

the blueprint features are open to all. And also expand 

particular software and the product it can support various web, 

mobile, and programming languages and IoT applications [13]. 
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Tensor flow library is used for numerical computations, using 

data flow graphs. Nodes signify the operations, edges signify 

the facts, it supports programming languages such as C++, GO, 

Julia, swift and RUST, C#. along these it can support hardware 

acceleration for running large scale machine learning codes it 

includes CUDA (library for running machine language code 

on GPU’s, TPU’s is a custom hardware processing unit it 

especially designed and developed to process tensors 

automatically computing their derivatives, tensors can be 

viewed as a multi-dimensional array of numbers. This will be 

used at the backend. Tensor Flow supports computations 

across multiple CPUs and GPUs. This means to improve the 

speed of the training computations can be allocated across the 

devices and its architecture is given in Figure 3. By performing 

parallelization, there is no need to wait for weeks to get the 

results of algorithms. Tensor Flow provides two versions, and 

they are Tensor Flow with CPU version supports device 

doesn’t run on NVIDIA GPU, simply you can install 

TensorFlow with GPU version, it supports for earlier 

computation. This version needs only strong computational 

capacity, similarly, TPU supported for the cloud [14]. 

 

 
 

Figure 3. Overview of tensor flow architecture 

 

 

4. EXPERIMENTAL RESULTS AND DISCUSSIONS 

 

Data sets contain a collection of facts example it contains 

features significant to solve the problem. Features Important 

pieces of data that help us understand a problem. These are feed 

into a Machine Learning algorithm help to discover, we have 

different types of datasets like MNIST it contains images for 

handwritten digit classification and CIFAR-10 which contains 

images it can be broken into ten different classes. Datasets can 

be categorized into training and test set. The training set teaches 

different features by adjusting the parameters according to the 

likelihood of minimizing the errors. Whereas the test set can’t 

use until the end. After the trained and optimized the data, test 

the neural network against the random sampling, It can 

validating the results accurately in case we don’t get the 

accurate results then go back to look at the hyper parameters in 

training set .to achieve the quality of data tune the network and 

look at preprocessing technique. 

 

4.1 MINST classification clothing images 

 

To train the neural networks model to classify the MNIST 

simple fashion dataset it contains 70,000 gray-scale images 

with 10 different categories, cloth images like it is a shirt, 

trouser, pullover, dress, sneaker, shoes, handbags, pants, coats 

accurately 10, 000 images are used. system learn to classify 

the images and pixel values are ranging from 0-255, and label 

values are representing as integer values those ranges 

represented as 0-9, each image is mapped with a single label. 

Sample MINST fashion dataset is shown in Figure 4. 

 

 
 

Figure 4. MINST fashion dataset 

 

To preprocess the data for the training network to see the 

pixel values whose range is from 0-255. And scale those values 

are ranging from 0-1 to train neural network model, like that 

we have to train and test the data same process, Next step we 

have to build the model for that we take the layers i.e. flatten, 2 

dense layers, first layer is flattened layer transform the images 

into 2-dimensional array of pixels size is (28x28) to one-

dimensional array (28x28) it has no parameter to discover so 

reformat the information. After that pixel is arranged into 

vector format, the network model consists of sequence layers 

which are either fully or densely connected neural network 

layers. The first and second dense layer has (128, 10) nodes 
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with activation function SOFTMAX it will return probability 

score amount is one. The probability of a present image belongs 

to 10 classes it indicates each node. The Next step is compiling 

the model for this measure the loss function, optimizer, and 

metrics. Sample image before preprocessing and 25 images 

before training are given in Figure 5. 

 

 
(a) Sample image before preprocessing 

 
(b) First 25 images of training set and scale the image values to feed NN whose Range 0-1 

 

Figure 5. Images before training  

 

 
 

Figure 6. Correct and incorrect predicted image 

 

To measures the accuracy of the model during the training 

use the loss functions, optimizer defines the update the model 

based on the data, metrics are used to monitor the training and 

test data that are to be correctly classified. After compile the 

model we have to train the model it contains the steps, feed to 

train the model after that model learns the associate images 

and labels, and model can predict the test data for these use 

model. fit, after 10 epochs get the 91% accuracy, Next step is 

to evaluate the accuracy-test data compare how model 

performs, it returns the accuracy is 88% for test data. The 

result will be slightly less when to compare the training set 

accuracy .so the difference between the training and test 

accuracy leads to model over- fitting because of hat model 

performs worse to train new input data. After that we have to 

make the prediction about the images, for this prediction label 

for each image in testing data prediction of a group of ten 

numbers represent the model confidence images of ten 

different articles of clothing, the Correct prediction label 

represents green and incorrect label represents red color for the 

predicted label. Performance evaluation on sample image is 

given on Figure 6. 

Finally, the model is trained to make the prediction about 

the single image. To optimize the model, make the prediction 

on batch or group of examples at one time and presented in 

Figure 7.  
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(a) Test images with predicted labels 

 
(b) Predicting A particular image over a batch of images 

 

Figure 7. Test and predicted image outcome 

 

4.2 Performance evaluation on MNIST dataset 

 

MNIST means the modified national institute of standards 

and technology. The main aim is identified digits from a 

dataset tens and thousands handwritten pictures for this 

approach we use KERAS in tensor flow as backend and for 

prediction purpose use the neural networks that must be 4layer 

or 5layers experimenting with various optimizers SGD, 

ADAM. First step import the libraries and read the data which 

contain the (5X785) it means 1 label and 784 features. 

The Next step to divide the data into the training and 

validation data set (28000, 784). Then perform the data 

cleaning and normalization operations so we get the pixel 

value range between the 0-255 so we have to normalize the 

features so we have to convert our labels from a class vector 

to binary ONE HOT ENCODED. After that perform model 

fitting by using neural networks models and collect the 

accuracy model which perform the best validation it will be 

used for competition (Table 1). 

Model 1: Simple neural networks with 4 – layers (300, 100, 

100, 200) and using the activation function is RELU and to 

determine the output use SOFTMAX function. Model has six 

input layers, four hidden layers and one output layer with 2, 

97,910 parameters to estimate. Then insert the hyper 

parameters with learning rate 0.1, the number of training 

epochs is 20, batch size 20, to compiling the model use the 

categorical cross-entropy is used as a loss function and 

accuracy can be measured as metrics, SGD is used as an 

optimizer. We achieved a training score of around 96-98% and 

a test score of around 95-97%. 

Model 2: In this model change the optimizer as ADAM by 

maintaining the same parameters values it tends to perform the 

better performance tends to an average of 1.5-2.5% so go 

forward ADAM as an optimizer choice by changing different 

learning rate 0.1 – 0.01 and 0.5 and test the accuracy. 

Model 3: In this model learning rate is 0.01, and number of 

training epochs20, with the batch size is 20, categorical cross-

entropy used as loss function and accuracy is measured as 

metrics, ADAM has used an optimizer we get the accuracy is 

97%. 

Model 4: In this model use the learning rate 0.5, with 

number of training epochs is 20, with batch size is 20, use 

categorical cross-entropy as loss function and accuracy is 

measured in metrics, ADAM is used as an optimizer we will 

get the accuracy around 98%. As per three different learning 

rates 0.01, 0.1 and 0.5 we get 98%, 97%, 98% respectively 
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there is no change in changing the learning rate so take default 

learning rate 0.01. So we have to proceed to fit NN with 5 – 

hidden layers with set of (300, 100, 100, 100, 200) we will set 

the training epochs is 20 and training batch size=100. When 

compared to the first model adding an additional layer didn’t 

get any improvement in accuracy this leads to more 

computational cost by adding additional layer to our neural 

network, so we will stick on 4- layer neural network. To 

prevent the over-fitting we will include the dropout rate is 0.3. 

The model has six input layers, four hidden layers, one output 

layer estimating parameters 2,97,910 validation score is close 

to 98% so we proceed to use this model to predict the test set. 

 

Table 1. Performance evaluation using GAN with ADAM optimizer 

 
Layers Learning rate Epochs Batch size Training Accuracy Validation accuracy 

4 0.01 20 100 98% 96% 

4 0.5 20 100 98% 97% 

5 0.01 20 100 98% 96% 

4.3 Dogs and cats image classification 

 

The Dataset contains both cats and dogs we have to classify 

the images. To build a model using the sequential model, 

import the required packages then load the dataset dogs Vs 

cats after that the data set can be split into train and validation 

sets both contain dogs and cats. Sample Dogs & Cats after 

applying various arguments are presented in Figure 8. 

After extracting the contents assign the paths for both the 

train and validation dataset, to understand the data look at how 

many numbers of dogs and cats present in the training and 

validation data set. Total training cat and dog images are (1000, 

1000) and entire validation cat and dog images (500,500) so 

whole training images are 2000 and validation images are 

1000.To preprocess the data set to the training network set up 

the variables for our convenience with batch size=128, 

epochs=15, image height and width is =150. After that to 

prepare the data, arrange the images into floating-point tensors 

arrange them properly for network training, decode the images 

and change into an appropriate grid format as RGB format. 

Rescale the values of the tensor range 0-255 to 0 -1. NN 

choose little input values, defining generators training and 

validation images apply to rescale and resize the images into 

required dimensions found 2000 images belong training 

generator and found 1000 images belongs to validation 

generator. 

To create model batch images from training generator are 

extracted for visualization, the model consists of three 

convolution layers with MAXPOOL each of them are 

connected with a fully connected layer with units 512. on the 

top with the activation function is RELU outputs are binary 

classification activation function is SIGMOID, Compile the 

model ,To train the model use fit_ generator and image_ 

generator methods after the 15 epochs we get the training 

accuracy is 95% and validation accuracy is 73% there will be 

lot of difference by increase the performance of both training 

and validation dataset, this leads to a method over-fitting due 

to this reason generalization is difficult so we need to pass 

DATA ARGUMENTATION, Data argumentation approach 

generates additional training data from the existing samples by 

using random transformations the Main goal is the exact 

sample picture will never see during the training process. 

Next step to pass the arguments like horizontal flip to see 

the same image repeat it five times, then took different 

argumentations, ROTATION randomly at 45 degrees for 

training images, apply another argumentation by zooming up 

to 50% randomly, After that put it into all together that is shift 

width and height, rotation and scaling, zoom operations all 

these arguments see in a single image. Similarly, apply this 

validation generator. Another method is used to reduce the 

over-fitting i.e. dropout here distribute the weights to the 

network apply the dropout to the layers initially set to be zero, 

the outputs are applied during training process dropouts takes 

a fractional value like 0.1, 0.2. Randomly apply the output 

layers, drop out applying layer it kills the 10% of units for each 

training epochs. Finally apply the dropout of first and last 

MAXPOOL layers set 20% for training epoch then compile 

the model will get the accuracy is 61% and validation accuracy 

is 66% so we can see less over-fitting when compared to the 

previous method after training more number of epochs. 

Performance evaluation such as accuracy and loss functions of 

proposed method on Dogs vs Cats dataset during training and 

validation phases is presented in Figure 9 and Figure 10. 

 

 
(a) Plotting training images in grid format i.e.one row and 

five columns 

 
(b) Randomly applied different argumentations five times on 

same image 

 
(c) Plot an augmented image with rotational angle 450 

 
(d) Images after applying the zoom argumentation up to 50% 

randomly 

 
(e) Visualization of single image by applying different 

arguments randomly 

 

Figure 8. Variations in dogs and cats images after applying 

different arguments 

 

 

89



 

 
 

Figure 9. Visualization graph for training validation accuracy and loss 

 

 
 

Figure 10. Visualizing the new model after training significantly less over fitting than before 

 

4.4 CIFAR-10 image dataset 

 

CIFAR-10 dataset is a recognized computer visualization 

used for the identification of objects. it contains 60,000 color 

images with ten different classes, like horse, bird, automobiles, 

cat, frog, deer, truck. Each class contains 6,000 images. The 

dataset is split into training and testing images are (50,000 and 

10000) there is no overlap between the classes because they 

are mutually exclusive, after that normalize the pixel values 

whose range values are between 0-1. Sample CIFAR-10 

dataset is shown in Figure 11. 

 

 
 

Figure 11. First 5 images with their class labels 

 

The Next step is to verify the data the dataset looks accurate, 

so plot the first five images along with display the class name 

below each and every image from training data set, after that 

create a convolution base using a regular model use conv2D, 

max-pooling 2D layers. CNN takes tensors to shape like image 

height, width, and color _ channels as an input ignore batch 

size, color channels refer to RGB in this process configure the 

input shapes (32, 32, 3) it is the format of CIFAR image we 

can pass the arguments for input _ shape for the first layer. 

 

 
 

Figure 12. Model evaluation graph for test and validation 

accuracy 

In this dataset use the sequential model total number of 

parameters 56,320 and trainable parameters are 56,320 then to 

complete the model add the dense layers on top, feed the model 

tensor last output from the convolution base with shape (3, 3, 

64) to do classification, Dense layers take 1D vectors as input 

while the 3D tensor its present output. First, flatten the 3D 

output into 1D then add another one denser layer on the top, 

CIFAR has ten output classes so use the 10 outputs for final 

dense layers, and SOFTMAX is activation function, a 

sequential model used for a model summary, in this the total 

number of trainable parameters is 1, 22,570. To train and 
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compile the model use the ADAM optimizer, sparse 

categorical cross-entropy used for the loss function, accuracy 

is measured in metrics, epochs = 10, we get the accuracy is 

77% and validation accuracy is 70%, Evaluate the model we 

get the test accuracy is 70% (Figure 12). 

 

4.5 Image segmentation oxford-IIIT data set 

 

Image segmentation is used to know the particular object 

location, shape, and its pixel values, to perform the 

segmentation operations to image specify the label name to 

each pixel, to perform image segmentation train the neural 

network outputs of image masking pixel-wise, The oxford – 

IIT pet dataset consists of images and labels with pixel-wise 

mask each pixel can be categories three ways, pixel belongs to 

pet, pixels bordering the pet and surrounding pixels, First 

download the pets’ dataset with segmentation masks, 

performing the operations like flipping images then normalize 

the image whose range between 0-1, segmentation masks are 

labeled as 1, 2, 3... For our convenience subtracting 1 for 

segmentation masking resulting values are 0, 1, and 2. Then 

the dataset can be split into a test and train. Sample Images of 

Oxford IIIT Data set is given in Figure 13. 

 

 
(a) Input and masking image 

 
(b) Predicted images before training 

 
(c) Predicted image after training 

 
 

(d) Test data true predicted images 

 

Figure 13. Training and test set outcomes 

 

The Next step is to define the model here apply the down-

sampling for encoding and up-sampling for decoding, to learn 

the features reduce the number of trainable parameters for 

encoding pre trainable model is used. Encoder task will be pre-

trained by mobileNetv2 model intermediate outputs will be 

used decoder un-sample block it is already implemented by 

tensor flow examples. It contains a 3 output channels because 

there are three possible labels for each pixel here perform the 

multiclass classification where each pixel classified into 3 

classes Encoder consists of specific output for intermediate 

layers in model here encoder will not be trained during the 

training process. Decoder un-sample blocks are implemented 

by tensor flow examples. Next step is to train the model 

optimizer = ADAM, sparse_ categorical_ cross-entropy is 

used as a loss function, metrics= accuracy use the loss function 

because the network is trying to assign each pixel label just 

like a multi-class prediction true segmentation mask for each 

pixel has either 0, 1, 2. The Network has a three output 

channels each and every channel is to predict the class and loss 

function to predict the mask function assign the label to the 

pixel to the channel with the highest value, To make the 

predictions after 20 epochs we get the training accuracy is 93% 

and validation accuracy is 87%. Training and validation loss 

after 20 epochs are given in Figure 14. 

 

 
 

Figure 14. Training and validation loss graph after 20 

epochs 

 

4.6 Hand written digits generation 

 

In any neural networks, we have inputs and output nodes 

and having some hidden layers each input layer is connected 

with the hidden layers with weights, connected with one 

hidden layer is a network and connected with 2 or more hidden 

layer is a deep neural network, activation function specifies 

whether the neuron is a fire or not fire. Import the required 

packages and download the MNIST dataset with the size 

28x28 resolution contain the images are hand-written digits 0-

9, then it will be divide into train and test dataset, then print all 

the train data it displays all the tensor values after that we have 

to show the images by importing the MATPLOTLIB it 

displays colored image if you want gray scale images use 

camp, after doing this we have to normalize the data for both 

train and test data whose axis value is one. It will be 

representing the result tensor values are between 0-1. Next 

step we have to build the model for this use the sequential 

model and the layers for that model i.e. flatten layer, and add 

another layer is dense layer we have to provide the parameters 

(128, activation function = RELU) and add another dense layer 

for classification use (10, activation function = SOFTMAX) 

this will define the architecture of model. Next step we have 

to train the model and compile the model is optimizer= ADAM, 

loss = sparse _ categorical _ cross-entropy, and metrics = 

accuracy, to train a model epochs=5 accuracy achieved after 

training model is about 98%, Next thing is to evaluate the 

model value accuracy we get 97% there will be a slight 

difference between the training models and evaluate model 

there will be less over-fitting after that save the model in epic 
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_ num _reader model then find the prediction for test data we 

get the result differently those are probability distributions. For 

this import NumPy and pass the parameters as ARGMAX for 

predictions with index value, it will show the image of sample 

color and binary given in Figure 15. 

(a) Sample Colored Image (b) Binary Image with CMAP

Figure 15. Sample colored and binary image 

Avoid the mode collapse using the VEEGAN’S, SGD 

(distribution min and max), another method is mini-batch 

discrimination here compute independently each point by 

dividing into small batches. Another problem is the vanishing 

gradient to reduce this problem activation function transform 

values are in the range of 0, 1 and use the optimizers to reduce 

the loss functions and use the chain-rule for back propagation. 

The third problem is Nash-Equilibrium it means games can’t 

solve by the method of iterated elimination of dominated 

strategies to overcome this problem using different game 

strategies like a zero-sum game, constant sum, put the 

equilibrium point for Nash- analysis, min-max, and max-min. 

For lower dimensionality feature representation uses the auto-

encoders unlabeled training data for encoders uses RELU, 

CNN. For feature, representations use dimensionality 

reduction, similarly for estimating the true parameters use 

variation auto-encoders. 

5. CONCLUSIONS

Unsupervised learning is next frontier in artificial 

intelligence. GAN’s are established using two-layer game 

theory. The main aim of GAN is to predicting the correct 

results, to improve the performance during training process, in 

any situation we can train a model in worst-case scenarios also 

by using adversarial training. To improve performance of 

GAN in training, feature matching, minibatch discrimination, 

one-sided label smoothing, and virtual batch normalization 

were added. For better optimization cost function is changed 

and over-fitting is avoided independently at each point by 

splitting the data into small batches; further addition of the 

labels and feature matching techniques are also carried. So 

GAN is used to predict the performance by creating different 

types of models to generate the data, and capturing the data 

distribution and then probability distribution is computed from 

the training samples. Further, performance of GAN is assessed 

with different types of GAN’s such as vanilla, DCGAN’s, 

SRGAN’s to reduce the cost in the implementing of solutions 

for various computer vision problems.  
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