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HIV/AIDS is a dreaded disease which has over the year claimed the life of so many people 
both female and male, adult and children in the whole continents or the globe. The 
mathematical model on the control of HIV/AID control was formulated using, vaccine, 
condom, therapeutic dose and public health campaign. The Maple software was applied 
to obtain the Eigen values which validate the asymptotical unstable nature of the disease 
equilibrium position. The paper suggests with the appropriate use of condom for both 
female and male can help to reduce both the prevalence and incidence of the HIV/AIDs 
pandemic. 
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1. INTRODUCTION

The human immunodeficiency virus since discovery has
caused a lot of havoc to the global community by weakening 
the person’s immune system as it destroys the most important 
cells that fight diseases and infection in human body. 

No effective cure exists right now against this disease, HIV, 
but with proper Medicare, HIV can be controlled. People are 
likely to get HIV more even because of many factors which 
includes; their sex partners, their risk behaviours, and where 
they live. 

HIV can be transmitted through sexual behaviours and 
needle or syringe use. Only certain body fluids – blood, semen 
(cum), pre seminal fluid (pre cum), rectal fluids, vaginal fluids 
and breast milk from a person who has HIV can transmit HIV 
virus (CDC 2017). These fluids must come in contact with the 
mucous membrane or damage tissue or be directly injected 
into the blood stream (from the needle or syringe) for 
transmission to occur. These mucous membranes are found 
inside the rectum vagina, penis or mouth. 

The number of new HIV infection has declined globally by 
21% since the estimated peak of the epidemic in 1997, 2.1 
million People were newly infected with HIV worldwide in 
2017 (NACA). In some part of the world, particularly within 
sub Sahara Africa, between 15% to 28% of the population are 
living with HIV. According to Naresh et al. [1], the study of 
HIV/AIDS control dynamics has been of great interest to both 
applied mathematicians and biologists due to its universal 
threat to human existence. Mathematical model has been used 
in the study of HIV/AIDS control and treatment. 

Yusuf and Benyah [2] presented a deterministic mode, for 
controlling the spread of HIV/AIDS. Gumel et al. [3] proposed 
a mathematical model for the dynamic of an infectious disease, 
a three dimensional model which assumed a non - linear 
incidence rate was quantitatively analysed to determine the 
stability of the equilibrium. Naresh et al. [1] also proposed non 
linear ordinary differential equation model to study the effect 

of vaccination on the spread of HIV/AID in a homogenously 
mixing population. Wu et al. [4] studied the impact of 
imperfect vaccine and their analysis showed that in a 
population of self interested individuals, there exists an 
overshooting of vaccine uptake level as the effectiveness of 
vaccination increases. The basic reproduction number of their 
model was calculated. Isaac et al. [5] presented a mathematical 
model of HIV/AIDS at the Techiman municipality of Ghana 
and recommended that HIV/AIDS education should be 
intensified. 

Omale et al. [6] presented a well structured mathematical 
model for the control of HIV/AIDS using condom, vaccine, 
therapeutic doses with public health campaign in a 
heterogeneous population using (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2𝐴𝐴2𝐴𝐴𝐴𝐴𝑇𝑇)  model 
formulation. The model is well posed and invariant within a 
well feasible deterministic region. 

Motivated by the above work, in this paper we consider the 
stability analysis of the model by looking at the local and 
global stability of the disease free equilibrium, and the basic 
reproduction number of the model. Some numerical 
simulations are also given. 

2. MATHEMATICAL MODEL FORMULATION

The development of our model is based on the following
assumptions, in Omale et al. [6] as, 

(1) The diseases HIV/AIDS is killing continuously
(2) Individual who contact this disease will definitely die

of the disease if untreated or on control drug. 
(3) There is no medicine right now for total cure of this

particular disease, therefore infected individual will live with 
the disease in his/her life time. Individual on HIV drug will 
remain on the drug forever. 

(4) Individual who is faithful to the drug will not die of
HIV/AIDS. 
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(5) There is no vaccine with 100% efficacy to prevent 
HIV/AIDS. 

(6) The available vaccines are imperfect; and so the 
vaccine will wane with time. 

(7) That not all the people within the sexually active 
population are willing to use condom whenever they have sex. 

(8) There are no vertical transmissions of the diseases. 
(9) That campaign reduces the rate of transmission; 

because those who are properly informed will reduce their 
exposure to infection whenever they meet any infectious 
opportunity. 

Rate of infection k, the force of infection is given by  
 

𝑘𝑘 =
𝑛𝑛1𝛽𝛽1𝑆𝑆2 + 𝑛𝑛2𝛽𝛽2𝐴𝐴2 + 𝑛𝑛3𝛽𝛽3𝐴𝐴𝑇𝑇

𝑁𝑁
 (1) 

 
where, 

n=number of sex partners 
𝛽𝛽1 =transmission rate from infectious individual not 

receiving treatment 
𝛽𝛽2=transmission rate from infectious individual receiving 

treatment            
𝛽𝛽3=transmission rate of AIDS individual who is undergoing 

therapy, (HAARTS) 
In the force of infection 𝛽𝛽1 > 𝛽𝛽2 > 𝛽𝛽3. This show that 𝛽𝛽1 

contribute much on the transmission of the infection due to the 
fact that they are not receiving treatment, so they are not 
protected, 𝛽𝛽2 contribute much less on the transmission of the 
infection due to their HIV status, they have acquired 
HIV/AIDS but receiving treatment so their viral load will be 
significantly reduced, unless if they desist from taking their 
daily pills. 𝛽𝛽3 is expected to contribute least to the infection, 
since they just acquired the full virus and are aware of the 
AIDS status and they are receiving the daily therapy. There is 
natural death rate (𝜇𝜇) in the whole compartments, but there is 
an HIV/AIDS induced death rate in the (A) and (𝐴𝐴2) classes. 
(A) and (𝐴𝐴2 ) are the same if proportion of (A) class stop 
receiving treatment, Omale et al. [6]. 

 
Table 1. State variable of the HIV/AIDS with control 

strategies 
 

S(t) Number of susceptible at time t 
V(t) Number of preventive vaccinated individual at time t 
H(t) Number of susceptible that are condom users at time t. 
E(t) Latent/exposed individuals at time  t 

I(t) Infectious individuals at time t not receiving any 
treatment 

𝑆𝑆2(t) Number of infectious individuals who are undergoing 
treatment 

A(t) Number of individuals with full blown AIDS. 

𝐴𝐴𝑇𝑇(t) Number or proportion of full blown AIDS who are 
undergoing therapy. 

𝐴𝐴2(t) Proportion of full blown AIDS who are not receiving the 
therapy. 

 
The total population at any time t is given by  
 
𝑁𝑁(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) + 𝑆𝑆(𝑡𝑡) + 𝑆𝑆(𝑡𝑡) + 𝑆𝑆(𝑡𝑡) + 𝑆𝑆(𝑡𝑡) + 𝑆𝑆2(𝑡𝑡)

+ 𝐴𝐴2(𝑡𝑡) + 𝐴𝐴(𝑡𝑡) + 𝐴𝐴𝑇𝑇(𝑡𝑡)  (2) 

 
The population is homogeneously mixed and each 

susceptible individual has equal chance of acquiring HIV 
infection when the individual come in contact with an 
infectious individual [7].  

The variables and parameters to be used in the model are as 
Table 1 and Table 2. 

 
Table 2. Parameter descriptions 

 
𝝅𝝅 Population recruited into the susceptible class. 

P Proportion of susceptible recruited individual with lost 
preventive vaccination 

𝜔𝜔 Proportion of susceptible recruited individual that uses 
condom 

𝜇𝜇 Per capita death rate (Nature death) 
𝛼𝛼𝑖𝑖 Disease induced death rate 
𝛿𝛿1 Preventive Vaccination rate in the population 
𝛿𝛿2 Rate of condom usage in the population 
θ Waning rate of the vaccine 
ε Improper condom usage 
𝜑𝜑 Condom efficacy or effectiveness 
𝜃𝜃1 Vaccination efficacy rate 
𝜙𝜙 Progression rate of latent individual to infectious class. 
c Public health campaign rate 

𝜎𝜎1,𝜏𝜏𝑐𝑐  Rate of non effectiveness of the drug. 
τ Treatment rate of infectious individual 
η Rate of progression to full blown AIDS 
e Reduction in developing symptom. 

𝑟𝑟1 Rate at which those in the AID class receive treatment 
due to effectiveness of public health campaign 

k Effective contact rate of the susceptible with the 
infectious classes and called force of infection. 

𝛿𝛿2 The rate at which the susceptible individual uses condom 
effectively 

r Rate at which unvaccinated and those who voluntarily 
refused to use condom become exposed to the infections. 

𝑟𝑟2 Rate at which proportion of those in A class refused to 
receive the therapy and remain wih AIDS. 

𝛼𝛼2 Disease induced death rate of those who refused therapy 
as AIDS individuals. 

 
 

3. EXISTENCE OF EQUILIBRIUM POINTS 
 
Let 𝑆𝑆 �𝑠𝑠∗, 𝑣𝑣∗, ℎ

∗
, 𝑒𝑒∗, 𝑖𝑖∗, 𝑖𝑖∗1, 𝑎𝑎∗, 𝑎𝑎∗1, 𝑎𝑎2∗� be the equilibrium 

point of normalized model system (1). The equilibrium points 
can be derived by setting the right hand side of (1) equal to 
zero, that is 

 
𝑑𝑑𝑠𝑠∗

𝑑𝑑𝑡𝑡
= 𝜋𝜋 + 𝛿𝛿𝑐𝑐 + 𝜀𝜀ℎ∗ − (𝑛𝑛1𝛽𝛽1𝑖𝑖 + 𝑛𝑛2𝛽𝛽2𝑖𝑖2 + 𝑛𝑛3𝛽𝛽3𝑎𝑎2)𝑠𝑠∗

+ (𝜃𝜃 + 𝛿𝛿2𝑐𝑐 + 𝑝𝑝 + 𝜔𝜔 + 𝜇𝜇)𝑠𝑠∗ = 0 
𝑑𝑑𝑣𝑣∗

𝑑𝑑𝑡𝑡
= (𝑝𝑝 + 𝜃𝜃)𝑣𝑣∗ − (1 − 𝜃𝜃1)(𝑛𝑛1𝛽𝛽1𝑖𝑖 + 𝑛𝑛2𝛽𝛽2𝑖𝑖2

+ 𝑛𝑛3𝛽𝛽3𝑎𝑎2)𝑣𝑣∗ + 𝛿𝛿1𝑐𝑐𝑠𝑠∗ − 𝜇𝜇𝑣𝑣∗ = 0 
𝑑𝑑ℎ∗

𝑑𝑑𝑡𝑡
= (𝜔𝜔 + 𝛿𝛿2𝑐𝑐)𝑠𝑠∗

− (1 − 𝜑𝜑)(𝑛𝑛1𝛽𝛽1𝑖𝑖 + 𝑛𝑛2𝛽𝛽2𝑖𝑖2
+ 𝑛𝑛3𝛽𝛽3𝑎𝑎2)ℎ∗ − (𝜀𝜀 + 𝜇𝜇)ℎ∗ = 0 

𝑑𝑑𝑒𝑒∗

𝑑𝑑𝑡𝑡
= (1 − 𝜑𝜑)(𝑛𝑛1𝛽𝛽1𝑖𝑖 + 𝑛𝑛2𝛽𝛽2𝑖𝑖2 + 𝑛𝑛3𝛽𝛽3𝑎𝑎2)ℎ∗

+ (1 − 𝜃𝜃1)(𝑛𝑛1𝛽𝛽1𝑖𝑖 + 𝑛𝑛2𝛽𝛽2𝑖𝑖2
+ 𝑛𝑛3𝛽𝛽3𝑎𝑎2)𝑣𝑣∗
+ (𝑛𝑛1𝛽𝛽1𝑖𝑖 + 𝑛𝑛2𝛽𝛽2𝑖𝑖2 + 𝑛𝑛3𝛽𝛽3𝑎𝑎2)𝑠𝑠∗
− (𝜙𝜙 + 𝜇𝜇)𝑒𝑒∗ = 0. 

(3) 

 
𝑑𝑑𝑖𝑖∗

𝑑𝑑𝑡𝑡
= 𝜙𝜙𝑒𝑒∗ + (1 − 𝜎𝜎1)𝑖𝑖2 − (𝜏𝜏𝑐𝑐 + 𝜂𝜂𝑒𝑒 + 𝜇𝜇)𝑖𝑖∗ = 0 
𝑑𝑑𝑖𝑖1`
𝑑𝑑𝑡𝑡

= 𝑟𝑟1𝑐𝑐𝑎𝑎 − �(1 − 𝜎𝜎2) + 𝜇𝜇�𝑖𝑖1 = 0 
(4) 
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𝑑𝑑𝑎𝑎∗

𝑑𝑑𝑡𝑡
= 𝜂𝜂𝑒𝑒𝑖𝑖∗ + (1 − 𝜎𝜎2)𝑎𝑎1∗ − (𝑟𝑟1𝑐𝑐 + 𝛼𝛼 + 𝑟𝑟2 + 𝜇𝜇)𝑎𝑎∗

= 0 
𝑑𝑑𝑎𝑎2
𝑑𝑑𝑡𝑡

= 𝑟𝑟2𝑎𝑎 − (𝛼𝛼 + 𝜇𝜇)𝑎𝑎2 = 0 
𝑑𝑑𝑎𝑎1
𝑑𝑑𝑡𝑡

= 𝜏𝜏𝑐𝑐𝑖𝑖 − ((1 − 𝜎𝜎1) + 𝜇𝜇)𝑎𝑎1 = 0 
 
 

4. EXISTENCEOF DISEASE FREE EQUILIBRIUM 
POINT (DFE) 

 
The disease free equilibrium of the normalized model 

system (1) is obtained by setting  
 
𝑑𝑑𝑠𝑠∗

𝑑𝑑𝑡𝑡
=
𝑑𝑑𝑣𝑣∗

𝑑𝑑𝑡𝑡
=
𝑑𝑑ℎ∗

𝑑𝑑𝑡𝑡
=
𝑑𝑑𝑒𝑒∗

𝑑𝑑𝑡𝑡
=
𝑑𝑑𝑖𝑖∗

𝑑𝑑𝑡𝑡
=
𝑑𝑑𝑖𝑖∗2
𝑑𝑑𝑡𝑡

=
𝑑𝑑𝑎𝑎∗

𝑑𝑑𝑡𝑡
=
𝑑𝑑𝑎𝑎∗

𝑑𝑑𝑡𝑡
=
𝑑𝑑𝑎𝑎∗𝑖𝑖
𝑑𝑑𝑡𝑡

=
𝑑𝑑𝑎𝑎∗2
𝑑𝑑𝑡𝑡

= 0 
(5) 

 
 

5. THE EFFECTIVE REPRODUCTION NUMBER 
 
The effective reproduction number R0 of the systemis 

obtained by using the next generation operator method to 

assess the stabilities of the DFE and the endemic equilibrium 
(EE) point and the computation of the Basic Reproduction 
Number is very essential. According to Dickman et al., the 
basic reproduction number is defined as the effective number 
of secondary infection caused by a typical infected individual 
during his/her entire period of infectiousness. This definition 
is given for the models that represent spread of infection in a 
population. It is obtained by taking the largest (dominant) 
Eigen value (Spectral radius) of; 

 

�
𝜕𝜕𝐹𝐹𝑖𝑖(𝑆𝑆0)
𝜕𝜕𝑋𝑋𝑗𝑗

� �
𝜕𝜕𝑆𝑆𝑖𝑖(𝑆𝑆0)
𝜕𝜕𝑋𝑋𝑗𝑗

�
−1

 (6) 

 
where, Fi is the rate of appearance of new infection in 
compartment i. 
𝑆𝑆𝑖𝑖+ is the transfer of individuals into compartment i. 
𝑆𝑆𝑖𝑖− is the transfer of individual out of the compartment i by 

all other means. 
E0 is the disease free equilibrium. 
If the DFE is locally asymptotically stable, then the disease 

cannot invade the population, that is R0<1 and if on the other 
hand, the infected individual in the population grows, that 
means the disease can spread fast in the population, then R0>1. 
where, G is given as, 

 

𝐺𝐺 =
𝑟𝑟𝑛𝑛1𝛽𝛽1𝑆𝑆∗𝑁𝑁𝑘𝑘4(𝑘𝑘6𝑘𝑘5 − 𝜏𝜏𝑐𝑐𝑚𝑚3) + 𝑟𝑟𝑛𝑛2𝛽𝛽2𝑆𝑆∗𝜙𝜙𝑘𝑘6𝑁𝑁𝑘𝑘4 + 𝑟𝑟𝑛𝑛3𝛽𝛽3𝑆𝑆∗𝜏𝜏𝑐𝑐𝜙𝜙𝑁𝑁𝑘𝑘4

𝑁𝑁𝑘𝑘42(𝑘𝑘6𝑘𝑘5 − 𝜏𝜏𝑐𝑐𝑚𝑚3)
 (7) 

 
Substituting the values of the variables as in equation above, 
then we have  
 

𝐺𝐺 =
𝑟𝑟𝑛𝑛1𝛽𝛽1(𝜙𝜙 + 𝜇𝜇)[((1 − 𝜎𝜎1) + 𝜇𝜇)(𝜏𝜏𝑐𝑐 + 𝜂𝜂𝑐𝑐 + 𝜇𝜇) − 𝜏𝜏𝑐𝑐(1 − 𝜎𝜎1)] + 𝑟𝑟𝑛𝑛2𝛽𝛽2𝜏𝜏𝑐𝑐𝜙𝜙(1 − 𝜎𝜎1 + 𝜇𝜇)(𝜙𝜙 + 𝜇𝜇) +  𝑟𝑟𝑛𝑛3𝛽𝛽3𝜏𝜏𝑐𝑐𝜙𝜙(𝜙𝜙 + 𝜇𝜇)

(𝜙𝜙 + 𝜇𝜇)[(1 − 𝜎𝜎1 + 𝜇𝜇)(𝜏𝜏𝑐𝑐 + 𝜂𝜂𝑐𝑐 + 𝜇𝜇) − 𝜏𝜏𝑐𝑐(1 − 𝜎𝜎1)]  (8) 

 
The basic reproduction number, which is given by the 

largest equation of the normalized model system (3) with 
vaccination strategies, condom usage, public health campaign 
and treatment, is given as in (25) above: 
𝐺𝐺 = 𝑅𝑅0. 
R0 measures the average number of new infections resulted 

by introducing one infected individual into the population of 
which are completely susceptible. Anderson (1) [8]. 

 
 

6. LOCAL STABILITY OF DISEASE FREE 
EQUILIBRIUM POINT 

 

Local stability of disease free equilibrium E0 is obtained by 
the variational matrix M0 of the normalized model system 
corresponding to E0 as given below. 

We set the systems by considering the normalized systems. 
 

𝑆𝑆0 =
𝑑𝑑𝑠𝑠
𝑑𝑑𝑡𝑡

,𝑃𝑃0 =
𝑑𝑑𝑣𝑣
𝑑𝑑𝑡𝑡

,𝐾𝐾0 =
𝑑𝑑ℎ
𝑑𝑑𝑡𝑡

,𝐺𝐺 =
𝑑𝑑𝑒𝑒
𝑑𝑑𝑡𝑡

,𝑋𝑋 =
𝑑𝑑𝑖𝑖
𝑑𝑑𝑡𝑡

,𝑌𝑌

=
𝑑𝑑𝑖𝑖2
𝑑𝑑𝑡𝑡

, 

𝑍𝑍 =
𝑑𝑑𝑎𝑎𝑖𝑖
𝑑𝑑𝑡𝑡

,𝑀𝑀 =
𝑑𝑑𝑎𝑎
𝑑𝑑𝑡𝑡

,𝑁𝑁 =
𝑑𝑑𝑎𝑎2
𝑑𝑑𝑡𝑡

 

(9) 

 
This implies that where �̅�𝜂𝑖𝑖 are the eigenvalues  

 

 (10) 

 
This follows that, since non ofl the eigenvalues of the 

characteristic equation have negative real parts, the disease 
free equilibrium E0is not locally asymptotically state in the 
region Ω. 

 
 

7. ENDEMIC EQUILIBRIUM AND LOCAL 
STABILITY 

 
From the equilibrium of the normalized system (3), we 

equate the right hand to zero and with the Basic reproduction 
number R0, where  

 

( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( )

1 2 3 4 51 3

6 7 81 2

, , , ,

1 , 1 ,

cc p cη θ δ ω µ η δ µ η ε µ η θ µ η τ η µ

η σ µ η σ µ η α µ

− − − − −

− − −

= + + + + = + = + = + = + +

= − + = − + = +
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𝑅𝑅0

=
𝑟𝑟𝑛𝑛1𝛽𝛽1(𝜙𝜙 + 𝜇𝜇)[((1 − 𝜎𝜎1) + 𝜇𝜇)(𝜏𝜏𝑐𝑐 + 𝜂𝜂𝑐𝑐 + 𝜇𝜇) − 𝜏𝜏𝑐𝑐(1 − 𝜎𝜎1)] + 𝑟𝑟𝑛𝑛2𝛽𝛽2𝜏𝜏𝑐𝑐𝜙𝜙(1 − 𝜎𝜎1 + 𝜇𝜇)(𝜙𝜙 + 𝜇𝜇) + 𝑟𝑟𝑛𝑛3𝛽𝛽3𝜏𝜏𝑐𝑐𝜙𝜙(𝜙𝜙 + 𝜇𝜇)

(𝜙𝜙 + 𝜇𝜇)[(1 − 𝜎𝜎1 + 𝜇𝜇)(𝜏𝜏𝑐𝑐 + 𝜂𝜂𝑐𝑐 + 𝜇𝜇) − 𝜏𝜏𝑐𝑐(1 − 𝜎𝜎1)]  (11) 

 
We can obtain the endemic equilibrium system of (3) 𝑆𝑆∗ =

�𝑠𝑠∗, ℎ
∗
, 𝑣𝑣∗, 𝑒𝑒∗, 𝑖𝑖∗, 𝑖𝑖2∗, 𝑎𝑎∗, 𝑎𝑎1∗, 𝑎𝑎2∗� Exists if R0>1 and 

�𝑠𝑠∗, ℎ
∗
, 𝑣𝑣∗, 𝑒𝑒∗, 𝑖𝑖∗, 𝑖𝑖2∗, 𝑎𝑎∗, 𝑎𝑎1∗, 𝑎𝑎2∗�  satisfies the following 

relations. 
 

 
 

Figure 1. Comparism of aids class, aids class with treatment and without treatment 
 

 
 

Figure 2. Comparism of infected class and infected class without treatment 
 

 
 

Figure 3. Effect of public health campaign on aids patient with treatment 
The unique endemic equilibrium 𝑆𝑆∗  of the normalized 

model exists and is locally asymptotically stable if R0>1 and 
unstable if R0<1. 

This show the interaction with various classes for more clear 
view. After a long period the AIDS with treatment rises above 
AIDS class without treatment indicating that the treatment has 
the power to prevent HIV/AIDS death. 
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Figure 2 shows the comparism between infected class and 
infected class without treatment. The population of the 
infected class without treatment is always on increase due to 
the fact that those infected and are not taken any therapy 
consciously will be on the increase and eventually death but 
those infected may go for therapy and may not die of 
HIV/AIDS death, this may be the reason for a drop in the graph 
of the infected class below the infected class without treatment 

using the parameters value as described earlier on the initial 
condition. 

The use of HAART reduces the viral load of AID patient 
who is taking therapy regularly. Therefore use of public health 
campaign on the use of therapy will reduce the effect of 
HIV/AIDS death within the population as we vary values of c 
from c=0.00, c=0.01, c=0.04, c=0.08 the increase in the public 
health campaign will to reduction in patient with HIV/AIDS 
with treatment. 

 

 
 

Figure 4. Effect of public health campaign on aids population without treatment 
 

 
 

Figure 5. Effect of public health campaign on the use of condom 
 

 
 

Figure 6. Variation on the change in public health campaign on infected population with treatment 
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Figure 4 indicate that increase in public health campaign 
from c=0.2, c=0.4, c=0.6, c=0.8 will lead to a significant 
decline in the number of people who will adamantly refuse to 
present themselves for screening and eventually therapy as 
you can see above public health campaign will force people 
out of this class and attendant consequences. 

Figure 5 shows the variation in public health campaign as 
c=0.0, c=0.1, c=0.4, c=0.8 indicating that increasing the public 
health education in the population on the need for anyone who 
may endure in legal or illicit sex to use condom will definitely 
reduce the number of people that will remain in this class for 
a long time after a period of 20 years using the parameter 
values  

 

 

 
Using the parameter values 
π=2000, δ2=0.5, c=0.5, ε=0.10, r=0.25, k=0.5, ρ=0.01, 

δ1=0.45, μ=0.02, φ=0.4, θ1=0.5, ϕ=0.743 τ=0.13, η=0.1, 
σ1=0.08, σ2=0.4, r1=0.05, r2=0.025, α1=0.45, α2=0.375, e=0.19 

 
As seen above, if the public health campaign increase it will 

lead to significant increase in the number of those that will 

present themselves for therapy with the variation in public 
health education as 𝑐𝑐 = 0.02. 

If we increase the public health campaign this will reduce 
the number of those to be infected, because with effective 
public health campaign (c), people will not go for vaccine or 
for condom use.  

 

 
 

Figure 7. Variation on the change in public health campaign on infected population with treatment  
 

 
 

Figure 8. Effect of campaign on infected population 
 

8. CONCLUSION 
 
In this paper, HIV/AIDS epidemic model was considered in 

which a nonlinear incidence rate was introduced. The general 
dynamic of our model is determined by the study of the basic 
reproduction number 𝑅𝑅0. Where the 𝑅𝑅0 < 1, the disease free 
equilibrium is globally asymptomatically stable and when the 

𝑅𝑅0 > 1 , the unique endemic equilibrium is globally 
asymptomatically stable.  

We finally suggest that the appropriate use of condom both 
by the female and male during sexual intercourse whether 
heterosexual or homosexual will combat the spread of 
HIV/AIDS within the population and sexual habits can reduce 
both the prevalence and incidence of the HIV/AIDS pandemic.  

2 1 1

1 2 1 2 1 2

2000,  0.5,  0.5,  =0.10, 0.25,  0.5 0.01,  0.45,  0.02,  0.4,  0.5,
0.743,  0.13,  0.1,  0.08,  0.4,  0.05,  0.025,  0.45,  0.375,
0.19

c r k
r r

e

π δ ε ρ δ µ ϕ θ
φ τ η σ σ α α
= = = = = = = = = =
= = = = = = = = =
=
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Empower people infected and affected by HIV/AIDS 
through training, consulting and education to cope with the 
circumstances. 

Develop standards and guidelines that can lead to the 
institutionalization of the best practices to mitigate the impact 
of AIDS. 

Ensure that prevention program are developed and targeted 
at vulnerable groups such as women and children adolescent 
and young adult, sex workers, long distance commercial 
vehicle driver, prison inmate’s migrant labour etc. 
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