
MHD FREE AND FORCED CONVECTION AND MASS TRANSFER FLOW PAST A 

POROUS VERTICAL PLATE 

 

N. Ahmed*and G.C. Hazarika 
Department of Mathematics 

*Gauhati University, Guwahati -781014, Assam, India 
e-mail: saheel_nazib@yahoo.com 

and  
G.C. Hazarika 

Department of Mathematics 
Dibrugarh University, Dibrugarh-786004, Assam, India 

e-mail: gchazarika@gmail.com 
 

 
 
 

 
ABSTRACT 
A parametric study to investigate  the effects of magnetic field, chemical reaction, thermal radiation, thermal 
diffusion (Soret effect) and diffusion – thermal (Dufour effect) on a free and forced convective fully developed 
boundary layer mass transfer flow of an electrically conducting viscous incompressible optically thick fluid past 
a semi-infinite vertical porous plate is presented. A magnetic field of uniform strength is assumed to be applied 
normal to the plate directed into the fluid region. The non-linear partial differential equations, governing the flow 
and heat and mass transfer have been transformed by a similarity transformation into a system of non-linear 
ordinary differential equations. The resulting system of ordinary non-linear differential equation is then solved 
numerically by adopting shooting method. The profiles of the dimensionless velocity, temperature and 
concentration distributions are demonstrated graphically for various values of the parameters involved in the 
problem.Finally, the corresponding local skin-friction co-efficient, local Nusselt number and local Sherwood 
number are also presented in tabular form. Some of the results of the present work are compared with that of 
Alam et al. [22] and found to be in good agreement 
 
 

1. INTRODUCTION 
 

       MHD is concerned with the study of the interaction of 
magnetic fluids and electrically conducting fluids in motion. 
There are numerous examples of application of MHD 
principles, including MHD generators, MHD pumps and 
MHD flow meters, etc. Convection problems of electrically 
conducting fluid in presence of transverse magnetic field 
have got much importance because of its wide application 
in Geophysics, Astrophysics, Plasma Physics, and Missile 
Technology etc. MHD principles also find its application in 
medicine and Biology. The present form of MHD is due to 
the pioneer contribution of several notable authors like 
Alfven [1], Cowling [2], Ferraro and Pulmption [3], 
Shercliff [4] and Crammer and Pai [5]. 
       Model studies on MHD heat and mass transfer 
problems have been carried out by many authors due to 
their applications in many branches of science and 
technology. Some of them are Singh and Singh [6], Singh et 
al. [7] and Ahmed [8]. 
       In many times, it is observed that the foreign mass 
reacts with the fluid and in such a situation chemical 
reaction plays an important role in chemical industry. The 
study of the effect of chemical reaction on heat and mass 
transfer in a flow is of great practical importance to the 
Engineers and Scientist because of its almost universal 

occurrence in many branches of science and technology. In 
processes such as drying, distribution of temperature and 
moisture over agricultural fields and graves of fruit trees, 
damage of crops due to freezing, evaporation at the surface 
of a water body, energy transfer in a wet cooling tower, and 
flow in a desert cooler, heat and mass transfer occur 
simultaneously. Possible applications of this type of flow 
can be found in many industries. Many investigators have 
studied the effect of chemical reaction on different 
convective heat and mass transfer flows, of whom Apelblat 
[9], Andersson et al. [10], Muthucumaraswamy et al. [11], 
Kundasamy et al. [12],  Rajeswari et al. [13] and worth 
mentioning. 
       Radiation is a process of heat transfer through 
electromagnetic waves. Radiative convective flows are 
encountered in countless industrial and environment 
processes e.g. heating and cooling chambers, fossil fuel 
combustion energy processes, evaporation from large open 
water reservoirs, astrophysical flows, and solar power 
technology and space vehicle re-entry. Radiative heat and 
mass transfer play an important role in manufacturing 
industries for the design of reliable equipment. Nuclear 
power plants, gas turbines and various propulsion devices 
for aircraft, missiles, satellites and space vehicles are 
examples of such engineering applications. If the 
temperature of the surrounding fluid is rather high, radiation 
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effects play an important role in space related technology. 
The effect of radiation on various convective flows under 
different conditions has been studied by many researchers 
including Hossain and Takhar[14], Ahmed and Sarmah [15] 
, Beg and Ghosh[16] and Kesavaiah et al. [17]. 
       Thermal- diffusion (Soret effect) and diffusion-thermo 
(Dufour effect) concern with the methods of separating 
heavier gas molecules from lighter ones by maintaining 
temperature and composition gradients respectively over a 
volume of a gas containing particles of different masses. 
These methods are also used for separating the isotopes of 
an element. When heat and mass transfer occur 
simultaneously in a moving fluid, the relations between the 
fluxes and the driving potentials are of more intricate 
nature. It has been found that an energy flux can be 
generated not only by temperature gradient but by 
composition gradient as well. The energy flux caused due to 
composition gradient is called the Dufour or diffusion -
thermo effect whereas the mass flux created by temperature 
gradient is termed as Soret or thermal -diffusion effect. In 
general, Soret and Dufour effects are of a smaller order of 
magnitude than the effects described by Fourier’s or Fick’s 
laws and are often neglected in heat and mass transfer 
processes. There are, however, exceptions. The Soret effect 
is utilized for isotope separation, and in mixtures between 
gases with very light molecular weight (H2, He). For 
medium molecular weight (N2, air), the Dufour effect is 
found to be of a considerable magnitude such that it can not 
be neglected as emphasized by Eckert and Drake [18]. In 
view of the importance of these above effects, several 
authors have carried out their reasonable works to 
investigate the thermal – diffusion and diffusion – thermo 
effects on various mass transfer related problems. Some of 
them are Kafoussias and Williams [19], Anghel et al. [20] 
Postenlnicu [21], Alam et al. [22], Ahmed [23], Ahmed and 
Sengupta [24] and Reddy and Reddy [25]. Recently 
Lorenzini et al.[26] have investigated the constructal design 
applied to the Geometric Optimization of Y-shaped cavities 
embedded in a conducting medium.  The contribution of  
Bejan and Lorente[27] on Constructal Theory is worth 
mentioning. As far as the present authors are aware no 
attempt has been made till now to study the combined effect 
of magnetic field, chemical reaction, thermal radiation, 
thermal-diffusion and diffusion – thermo on a two 
dimensional boundary layer flow of an incompressible 
viscous electrically conducting fluid past a semi-infinite 
porous vertical plate with variable suction in presence of a 
uniform transverse magnetic field. Such an attempt has been 
made in the present work. 
 
2. MATHEMATICAL FORMULATION 
 
       The equations governing the steady motion of an 
incompressible viscous electrically conducting radiating and 
chemically reacting fluid in presence of magnetic field are-  
The continuity equation:  
div 0=q
�

                           (2.1)                                                                                           

The momentum equation: 
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 The species continuity equation: 
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The Gauss’s law of magnetism: 
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                                                                         (2.5)                  
The Ohm’s law: 
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The physical quantities involved in the above equations are 
defined in the Nomenclature. 
  We now consider a fully developed steady two-
dimensional free and forced convective mass transfer flow 
of an incompressible viscous electrically conducting 
radiating having optically thick limit property and 
chemically reacting fluid past a semi-infinite vertical porous 
plate in presence of a transverse applied magnetic field 
taking into account the thermal – diffusion (Soret effect) 
and the diffusion thermo (Dufour ) effects. Our 
investigation is restricted to the following assumptions. 

(1) All the fluid properties are constant except that 
of the influence of the density variation with 
temperature and concentration in the buoyancy 
force term. 

(2) The magnetic Reynolds number is so very small 
to neglect the induced magnetic field. 

(3)  The surface of the plate is maintained at a 

constant temperatureWT , which is higher than 

the constant temperature ∞T  of the fluid far 

away from the plate. 
(4) The surface of the plate is maintained at a 

uniform constant concentrationWC , of a 

foreign fluid which is higher than the constant 

concentration ∞C of the fluid far away from the 

plate. 

(5) The free stream velocity ∞U  parallel to the 

vertical porous plate is constant. 
(6) The plate is electrically non-conducting.                      
(7) There is no applied electric field, and     

hence 0=E
�

 . 
 
      We now introduce a co-ordinate system ( )x,y,z  with 

X–axis vertically upwards along the plate, Y-axis normal to 
the plate directed into the fluid region and Z-axis along the 
width of the plate.  

Let ( )ovuq ,,=�  denote the fluid velocity at a point 

( )zyx ,,  in the fluid and ( )00 0B ,B ,=
�

 be the applied 

magnetic field.  
 
      With the foregoing assumptions and under usual 
boundary layer and Boussinesq of approximations, the 
governing equations reduce to:  
The continuity equation: 

0=
∂
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∂
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Physical model of the problem 

The momentum equation: 
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The energy equation: 
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For quantification, the thermal radiation effect from an 

optically thick layer in terms of the rediative heat flux rq  

under Rosseland approximation is given by  
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 Assuming the temperature differences within the flow to be 
sufficiently small, 4T  may be expressed as a linear function 
of the temperatureT , and expanding4T   in Taylor’s series 
about T∞  and neglecting the higher order terms, we thus 

derive 
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The equations (11) and (12) give, 
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The equation (2.9) yields, 
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The relevant boundary conditions for the problem are as 
follows: 

0u = , ( )0v v x= − , w wT T ,C C= = at 0=y      (2.15) 

u U∞= , 0v = ,T T ,C C∞ ∞= = at y → ∞                        (2.16) 

In the equation (2.9), the terms 
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signify the diffusion –thermo effect and the 

thermal radiation respectively. On the other the last term 
and the last but one term on the right hand side of the 
equation (2.10) refer to the chemical reaction and Soret 
effect respectively. 
      The equations (2.7), (2.8), (2.10) and (2.14) are coupled, 
parabolic and non-linear partial differential equations and 
hence it is very difficult to have an analytical solution. 
Therefore numerical technique is employed to obtain the 
required solution. Numerical computations are greatly 
fascinated by non-dimensionalization of the equations. In 
order to convert the partial differential equations (2.8), 

(2.14) and (2.10) from two independent variables ( )yx,  to 

a system of coupled, non-linear ordinary differential 
equations in a single variableη , we introduce the following 

similarity transformations, dimensionless variables and non-
dimensional parameters: 
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The non dimensional form of the equations (2.8), (2.14) and 
(2.10) are as follows: 
f ff Mf M Gr Gmθ φ′′′ ′′ ′+ − = − − −    (2.17)                                                     
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Subject to the boundary conditions: 

wff = , 0f ′ = , 1=θ , 1=φ at 0=η   (2.20) 

1f ′ = , 0=θ , 0=φ  at ∞→η    (2.21) 
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3. METHOD OF SOLUTION 
 
       The non-linear ordinary differential equations (2.17) - 
(2.19) subject to the boundary conditions (2.20) and (2.21) 
are solved numerically using shooting iteration technique. 
In shooting method, the boundary value problem is 
converted to initial value problem by assigning some initial 
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condition at the initial point of the interval. In order to 
check the accuracy of the missing initial condition, the 
value of the dependent variable at the terminal point is 
calculated and this value is compared with the given value 
there. An another missing initial condition is inserted 
provided a difference between the two values exists and this 
process is repeated until a suitable agreement between the 
calculated value and given value is achieved. In case of this 
type of iteration approach, it is required whether there is a 
systematic way of finding each succeeding value of missing 
initial condition. The boundary conditions (2.20) and (2.21) 
associated with the resulting governing equations are the 
two -point asymptotic classes. By the two point boundary 
conditions, it is meant that the dependent variable has 
values at two different values of the independent variable. 
In an asymptotic boundary condition, the first derivative or 
higher derivatives of the dependent variable approaches 
zero as the outer specified value of the independent variable 
is approached. In the numerical solution of a two-point 
asymptotic boundary value problem of boundary – layer 
type, the initial – value method is almost similar to an initial 
value problem. Therefore, for this type of solution, it is 
necessary to impose as many boundary conditions at the 
surface as were previously given at infinity. The system of 
the governing differential equations is then solved with 
these assumed surface conditions. If the required outer 
boundary is found to be satisfied, a solution is derived. 
However this cannot be treated as a general case. Hence, a 
method is to be devised so that new surface boundary 
conditions may be assumed for next trial integration. The 
asymptotic boundary value problems are further 
complicated by the fact that the outer boundary condition is 
specified at infinity. In the trial solution, infinity is 
numerically approximated by some large value of the 
independent variable. There is no priori rule of selecting 
these values. These values should be selected in such a way 
that the solution is allowed to asymptotically convergence 
and the procedure of integration is not so expensive in terms 
of computer time. 
      The shooting iteration method used in the present work 
is developed in such a way that the above criteria are 
fulfilled. 
 
4. SKIN FRICTION 
 
The skin friction at the plate in the direction of the free 
stream is given by 

( )2
0

0

0

0

y x

U fu

y Re

ρ
τ µ

=

′′∂= =∂ 
    (4.1) 

The local skin friction co-efficient Cf at the plate which 

signifies the surface shear stress is as defined as follows:
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5. NUSSELT NUMBER 
 
The heat flux wq  at the plate is given by the Fourier law of 

heat conduction 
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6. SHERWOOD NUMBER: 
 
The mass flux wM  at the plate is determined by the Fick’s 

law of mass diffusion. 

0
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∂= − ∂ 
 which yields 

( ) ( )2 0w M w xxM D C C Reφ∞ ′= − −    (6.1)                        

The local co-efficient of the rate of mass transfer at the plate 
in terms of the Sherwood number which embodies the ratio 
of convective to diffusive mass transport and simulates the 
surface mass transfer rate, is defined by 

( )
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7. RESULTS AND DISCUSSION 
 
       In order to get clear insight of the physical problem, 
numerical computations for the representative velocity field, 
temperature field, concentration field and the co-efficient of 
the skin friction and the rates of heat and mass transfer in 
terms of Nusselt number and Sherwood number 
respectively at the plate have been carried out for different 
values of the magnetic parameter M, Soret number Sr, 
Dufour number Df, chemical reaction parameter ξ , 

radiation parameter N, free convection parameter Gr , and 
Gm, the Prandtl number Pr  and Schmidt number Sc

 
keeping the value of wf  fixed at 0.51. In the most of the 

cases the value of Pr  is taken equal to 0.71 which 
corresponds physically to air and the value of Sc has been 
chosen to represent hydrogen at 025Tm C=  and 1 
atmosphere pressure. That is in the most of the cases of our 
parametric study, it is assumed that Hydrogen is diffused in 
air. Indeed, as we are interested in the investigation of the 
chemical reaction and thermal radiation also on the flow 
and transport characteristics, some arbitrary values of Pr  
and Sc are also considered. Throughout our investigation 
the values of the other parameters involved are chosen 
arbitrarily. 
      With the above mentioned flow parameters, the 
numerical results are illustrated for uniform wall 
temperature and species concentration in the figures 1-12 
and tables 1-8, for the velocity, temperature and 
concentration profiles and the co-efficient of local skin 
friction fC  and the co-efficient of local rates of heat and 

mass transfer. 
       The figures 1-6 exhibit the behavior of the velocity 
field u due to variations of the parameters 
M , N , , Df , Gm,Grξ respectively. The figures 1, 2 and 3 

show that an increase in the values of the 
parametersM , N ,ξ  leads to a decrease in the velocity field 

indicating the fact that the flow field is retarded due to the 
imposition of the transverse magnetic field, thermal 
radiation and chemical reaction. As such the magnetic field 
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is an effective regularity mechanism for stabilizing the flow. 
On the other hand, it is observed from the figures 4, 5 and 6, 
that the flow is accelerated for the increasing values of 
Df , Gm, Gr respectively. The observations from the 

figures 1– 6 reveal the fact that the velocity boundary 
growth may be inhibited mainly under the effect of the 
transverse magnetic field. This phenomenon is consistent 
with the well known boundary layer theory and MHD 
principle. All the above figures further indicate that the 
velocity field u first increases from its zero value in a thin 
layer adjacent to the wall and there after it decreases 
asymptotically to its potential value as η → ∞ , establishing 

the fact that the buoyancy force has an significant role in 
controlling the flow field near the plate and its effect is 
almost nullified in the fluid region far away from the wall. 
       It is inferred from figures 7 and 10 that the temperature 
distribution θ  falls down monotonically under the effects of 
thermal radiation and increasing Prandtl number. This result 
is in a good agreement to the fact that the growth of the 
thickness of the thermal boundary layer may be prevented 
with increasing Prandtl number.  
      The figures 8 and 9 establish that the fact that the effect 
of chemical reaction and Dufour effect have some 
contributions in raising the fluid temperature substantially. 
Further it is marked in figures 7–10 that the temperature 
field θ  sharply and asymptotically decreases from its 
maximum value 1θ =   at 0η =   to 0θ =  asη → ∞ . 

      The variation of the concentration field φ  under the 

effects of the parameters involved in the problem is 
presented in figures 11 and 12. These two figures establish 
the fact that there is a steady fall in the concentration of the 
fluid indicating reduction in the thickness of the 
concentration boundary layer due to chemical reaction. This 
phenomenon is substantially supported from physical 
reality. Like the temperature field, the concentration field φ  

also falls down asymptotically from its maximum value 
1φ =  at 0η = to 0φ =  asη → ∞ . 

      The tables 1–8 exhibit how the co-efficient of the skin 
friction fC at plate, the co-efficient of the rate of heat 

transfer from the plate to the fluid in term of the Nusselt 
member Nu and the co-efficient of the rate of mass transfer 
from the plate to the fluid in term of the Schmidt number Sh 
are affected by the parameters entering into the problem 
under consideration for investigation. We infer from these 
tables that the viscous drag on the plate is increased under 
the effects of diffusion–thermo, free convections for both 
heat and mass transfer and for increasing Schmidt number. 
On the other hand the effects of chemical reaction, thermal 
diffusion, thermal radiation and the applied magnetic field 
contribute on steady fall in the internal friction on the plate 
due to viscosity. 
 
 
 
 
 
 
 
 
 
 
 

 
 

                                                  
 
 
                                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The velocity u versus η  under the 

Hartmann number M for Pr=0.71, Gr=15.00, 
Gm=10.00, fw=0.51, Sc=0.22, Sr=1.00, Df =1.00, 
N=1.00, ξ =1.00 

η

 

η  

Figure 2: The velocity u versus η  under the 

radiation parameter N for M=0.50, Pr=0.71, 
Gr=15.00, Gm=10.00, fw=0.51, Sc=0.22, Sr=1.00, 
Df =1.00, ξ =1.00 
 

η  

Figure 3: The velocity u versus η  under the 

chemical reaction parameter ξ  for M=0.50, 

Pr=0.71, Gr=15.00, Gm=10.00, fw=0.51, Sc=0.22, 
Sr=1.00, Df=1.00, N=1.00  
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η  

Figure 4: The velocity u versus η  under the Dufour 

number Df for M=0.50, Pr=0.71, Gr=15.00, 
Gm=10.00, fw=0.51, Sc=0.22, Sr=1.00, N=1.00, 
ξ =1.00 
 

η  

Figure 5: The velocity u versus η  under the Solutal 

Graashof number Gm for M=0.50, Pr=0.71, 
Gr=15.00, fw=0.51, Sc=0.22, Sr=1.00, Df=1.00, 
N=1.00, ξ =1.00 
 

η  

Figure 6: The velocity u versus η  under the 

Thermal Grashof number Gr for M=0.50, Pr=0.71, 
Gm=10.00, fw=0.51, Sc=0.22, Sr=1.00,Df=1.00,  
N=1.00, ξ =1.00 
 

η  

θ  

Figure 7: The temperature θ  versus η  under the 

radiation parameter N for M=0.50, Pr=0.71, 
Gr=15.00, Gm=10.00, fw=0.51, Sc=0.22, Sr=1.00, 
Df=1.00, ξ =1.00 
 

η  

θ  

Figure 8: The temperature θ versus η  under the 

chemical reaction parameter ξ  for M=0.50, 

Pr=0.71, Gr=15.00, Gm=10.00, fw=0.51, Sc=0.22, 
Sr=1.00, Df=1.00, N=1.00  
 

η  

θ  

Figure 9: The temperature θ  versus η  under the 

radiation parameter N for M=0.50, Pr=0.71, 
Gr=15.00, Gm=10.00, fw=0.51, Sc=0.22, Sr=1.00, 
Df=1.00, ξ =1.00 
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Table -1 
The skin friction co-efficient Cf , Nusselt number    Nu and 
the Sherwood number Sh under Df for M=0.50 Pr=0.71 
Gr=15.00  Gm=10.00 fw=0.51 Sc=0.22 Sr=1.00 , N=1.00 
ξ =1.00 

=============================== 
 Df        Cf                    Nu               Sh 
=============================== 
0.10    11.375250      0.864415      1.139354  
0.50    11.486044      0.794277      1.152486  
1.00    11.630275      0.701488      1.169866  
1.20    11.689820      0.662671      1.177140  
1.50    11.781186      0.602507      1.188419  
1.80    11.875072      0.539898      1.200165  
2.00    11.939097      0.496728      1.208268  
2.50    12.104321      0.383467      1.229551  
2.80    12.207089      0.311600      1.243075  
3.00    12.277154      0.261948      1.25242 
 
 

  
 
 
 

Table -2 
The skin friction co-efficient Cf ,Nusselt number Nu and the 
Sherwood number Sh under Gr for M=0.50,Pr=0.71 
,Gm=10.00,fw=0.51,Sc=0.22,Sr=1.00,Df=1.00,N=1.00,ξ
=1.00 
==================================   
 Gr            Cf                   Nu                 Sh 
==================================   
01.00      05.727627      0.669091      1.176298  
03.00      06.585573      0.679344      1.177978  
05.00      07.421717      0.689109      1.179588  
07.00      08.238006      0.698438      1.181135  
09.00      09.036138      0.707371      1.182625  
11.00      09.817601      0.715946      1.184063  
12.00      10.202499      0.720110      1.184765  
13.00      10.583710      0.724196      1.185454  
14.00      10.961371      0.728208      1.186133  
15.00      11.335619      0.732148       1.186802 
 

 
 

θ  

η  

Figure 10: The temperature θ  versus η  under the 

Prandtl number Pr for M=0.50,Gr=15.00, 
Gm=10.00,fw=0.51,Sc=0.22,Sr=1.00,Df=1.00,  
N=1.00  ,ξ =1.00 
 

η  

φ  

Figure 11: The concentration φ  versus η  under 

the chemical reaction parameter ξ  for M=0.50, 

Pr=0.71, Gr=15.00, Gm=10.00, fw=0.51, Sc=0.22, 
Sr=1.00, Df=1.00, N=1.00  
 

η  

φ  

Figure 12: The concentration φ  versus η  under the 

Schmidt number Sc for M=0.50, Pr=0.71, Gr=15.00, 
Gm=10.00, fw=0.51, Sr=1.00,   
Df=1.00,  N=1.00, ξ =1.00 
 

Figure 13. Temperature profiles for different 
values of Sr and Df of the paper by Alam et al. 
[22]  
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Table -3 
The skin friction co-efficient Cf , Nusselt number    Nu and 
the Sherwood number Sh under Gm for M=0.50, Pr=0.71 
,Gr=15.00,fw=0.51,Sc=0.22,Sr=1.00,Df=1.00,N=1.00ξ =1

.00 
================================ 
Gm        Cf                   Nu                 Sh 
================================ 
01.00    08.204772      0.699239      1.181207  
03.00    08.913775      0.706866      1.182497  
05.00    09.614893      0.714305      1.183758  
07.00    10.308503      0.721566      1.184994  
09.00    10.994965      0.728661      1.186205  
10.00    11.335619      0.732148      1.186802  
11.00    11.674609      0.735597      1.187393  
12.00    12.011972      0.739009      1.187979  

 
Table-4 

The skin friction co-efficient Cf , Nusselt number    Nu and 
the Sherwood number Sh underξ  for M=0.50 Pr=0.71, 

Gr=15.00 , Gm=10.00, fw=0.51, Sc=0.22 ,Sr=1.00 , 
Df=1.00 , N=1.00 
=============================== 
  ξ          Cf                  Nu                 Sh 

=============================== 
0.10    11.905527      0.831755      0.748441  
0.40    11.802663      0.784522      0.900980  
0.80    11.683467      0.727701      1.084874  
1.00    11.630275      0.701488      1.169866  
1.20    11.580736      0.676532      1.250882  
1.50    11.512455      0.641177      1.365827  
1.80    11.450457      0.608000      1.473876  
2.00    11.412175      0.586944      1.542542  
2.20    11.376070      0.566651      1.608790  
2.50    11.325575      0.537504      1.704064  
2.80    11.278983      0.509743      1.794935  
3.00    11.249854      0.491927      1.853314 
 

Table-5 
The skin friction co-efficient Cf , Nusselt number Nu and 
the Sherwood number Sh under Sr  for M=0.50, Pr=0.71 
Gr=15.00  Gm=10.00 ,fw=0.51,Sc=0.22 ,  Df=1.00  
N=1.00, ξ =1.00 

============================= 
 Sr          Cf                  Nu                  Sh 
============================= 
0.10    11.656624      0.696642     1.160349  
0.50    11.645263      0.698721     1.164459  
0.80    11.636379      0.700358     1.167665  
1.00    11.630275      0.701488     1.169866  
1.50    11.614334      0.704460     1.175598  
1.80    11.604276      0.706350     1.179207  
2.00    11.597348      0.707658     1.181687   
2.50    11.579211      0.711111     1.188166  
2.80    11.567728      0.713317     1.192257  
3.00    11.559803      0.714847     1.195075 
 

 
 
 
 
 
 

Table-6 
The skin friction co-efficient Cf , Nusselt number Nu and 
the Sherwood number Sh under Sc  for M=0.50,Pr=0.71, 
Gr=15.00,Gm=10.00,fw=0.51,Sr=1.00,Df=1.00,N=1.00, 
ξ =1.00 

=============================== 
Sc          Cf                  Nu                  Sh 
=============================== 
0.10    11.628894      0.727459      1.122136  
0.20    11.630043      0.705941      1.161659  
0.30    11.631191      0.683155      1.203756  
0.40    11.632266      0.659010      1.248651  
0.50    11.633178      0.633405      1.296600  
0.60    11.633822      0.606227      1.347894  
0.70    11.634066      0.577349      1.402866  
0.80    11.633755      0.546624      1.461904  
0.90    11.632702      0.513887      1.525455  
1.00    11.630685      0.478946      1.594041  
 

Table-7 
The skin friction co-efficient Cf , Nusselt number Nu and 
the Sherwood number Sh under N for M=0.50,Pr=0.71, 
Gr=15.00, Gm=10.00, fw=0.51, ,Sc=0.22,Sr=1.00 
,Df=1.00,  ξ =1.00 

===============================  
 N          Cf                  Nu                    Sh 
=============================== 
0.10    11.991333      0.636216      1.162532  
0.50    11.785865      0.671849      1.166873  
0.80    11.683358      0.691127      1.168867  
1.00    11.630275      0.701488      1.169866  
1.50    11.531854      0.721374      1.171672   
1.80    11.488611      0.730388      1.172452  
2.00    11.464327      0.735525      1.172886  
2.50    11.415230      0.746074      1.173761  
2.80    11.391734      0.751200      1.174178  
3.00    11.377962      0.754229      1.174423 
 

Table-8 
The skin friction co-efficient Cf , Nusselt number Nu and 
the Sherwood number Sh under M for 
Pr=0.71,Gr=15.00,Gm=10.00,fw=0.51, ,Sc=0.22,Sr=1.00 
,Df=1.00, N=1.00  ξ =1.00 

=============================== 
 M        Cf                     Nu                 Sh 
=============================== 
0.10    11.910067      0.706214      1.170552  
0.50    11.630275      0.701488      1.169866  
0.80    11.436852      0.698170      1.169387  
1.00    11.315167      0.696060      1.169083  
1.50    11.034371      0.691120      1.168375  
1.80    10.880657      0.688369      1.167983  
2.00    10.783829      0.686619      1.167735  
2.50    10.559919      0.682514      1.167153  
2.80    10.437012      0.680224      1.166830  
3.00    10.359447      0.678764      1.166625 
 
8. COMPARISON OF RESULTS   
 
      To compare the results, the work by Alam et al. [22] is 
considered. Their work concerns with the combined effects 
of Thermal diffusion and Diffusion-thermo on a steady two-
dimensional MHD mixed convection and mass transfer flow 
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past a semi infinite vertical plate. On the other hand, the 
present Paper deals with two dimensional boundary layer 
flow of an incompressible viscous electrically conducting 
fluid past a semi-infinite porous vertical plate with variable 
suction in presence of a uniform transverse magnetic field 
with Thermal diffusion, Diffusion-thermo, Chemical 
reaction and Thermal radiation past an infinite vertical 
porous plate. Comparing fig 9 with fig 13(fig 9 of the work 
of Alam et.al. [22]), we observe that the two figures 
uniquely indicate that an increase in Dufour number causes 
an increase in fluid temperature. Hence there is a good 
agreement between the results obtained by Alam et al. [22] 
and the present authors. 
 
 
9. NOMENCLATURE 
 
Symbol     Quantity                                                SI unit 

0B       Strength of the applied magnetic field         Tesla   

B
�

       Magnetic induction vector                           ---- 

SC      Concentration susceptibility                     ( )2 2Kmol s  

C        Dimensional concentration                           
3

Kmol

m
 

pC      Specific heat at constant pressure              /J kg K×  

wC     Species concentration near the plate               
3

Kmol

m
 

∞C     Species concentration in the free stream         
3

Kmol

m
 

fC     Local skin friction co-efficient                          --- 

MD     Co-efficient of mass diffusion                         2 1m s−  

Df     Dufour number    - 

wf     Dimensionless suction velocity   - 

g
�

    Acceleration due to gravity                               m/s2 

Gr    Thermal Grashof number   - 

Gm  Solutal Grashof number   - 

kji
⌢⌢⌢

,,   Unit vectors along the coordinate axes          --- 

J
�

     Current density                                                     --- 

k       Thermal conductivity                                       
W

mK  

1K Absorption co-efficient  

TK    Thermal diffusion ratio                                Kmol  

M     Local Hartmann number 

wM
  
 Mass flux from the plate to the fluid          

sm

kmol
2

 

N     Radiation parameter                                             --- 

Nu    Nusselt number     - 

Pr     Prandtl number    - 

p      Pressure                                                     Pa  (Pascal) 

wq     Heat flux from plate to the fluid                 
 

2

W

m
 

rq     Radiative flux                                           
 

2
W

m
 

q
�

     Velocity vector                                              --- 

Q    Constant first order homogeneous reaction rate  
 

1
s  

xRe   Local Reynolds number   - 

Sh  Sherwood number    - 

Sc  Schmidt number    - 

Sr   Soret number    - 

wT   Temperature at the plate                                0K or C  

∞T   Temperature in the free stream                     0K or C  

T   Dimensional temperature   - 

MT   Mean fluid temperature                                0K or C  

oU   Free stream velocity; m/s 

( )ovu ,,      Velocity components                             m/s 

( )0v η           Suction velocity                                     m/s 

( )zyx ,,      Cartesian co-ordinates                           m 

 
Greek            Quantity                                            SI unit    
Symboles      
 

nδ     An element of the normal to the surface          m 

ρ      Density                                                         3/kg m  

υ       Kinematic viscosity                                        2 /m s 

α      Thermal diffusivity                                       2 /m s 

β       Co-efficient of volume  

          expansion for thermal expansion                  1K  

β       Co-efficient of volume  

          expansion for mass transfer                      
1

Kmol
 

σ       Electrical conductivity;
               ( ) 1

ohm meter
−×  

1σ      Stefan-Boltzamann constant 

η        Similarly variable                                    ---- 

ξ       Chemical reaction parameter                     --- 
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ψ       Stream function                                     ---- 

θ        Dimensionless temperature              0K or C  

φ        Dimensionless species  

           Concentration    - 

0τ       Local skin friction at the plate         (Pascal)
 

2

N

m
  - 
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