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 The subject dealt with is an accurate semi-analytical modeling of two-dimensional radiative 

heat transfer. The semi-transparent medium is gray and has an absorbing-emitting 

rectangular shape hollowed by internal square fluid cavity, bounded by black surfaces.   

The aim is to establish some benchmark results either for radiative intensity, or flux and 

temperature field, from which forwards analysis will be compared. Hence, analytical 

incoming radiative intensity, flux and temperature fields inside the gray medium are 

established, in function of the center coordinates of the fluid cavity. Only radiative transfer 

mode is considered at equilibrium state. Therefore, radiative quantities are spatially and 

angularly integrated using special functions in order to avoid ray effects on results. Thanks 

to double Gauss quadrature, which will allow to obtain numerically the radiative equations. 

Finally, results validation is done when the size of internal hollowed cavity becomes very 

small and expected results remain with good agreement with literature. 
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1. INTRODUCTION 

 

Prediction of radiative heat transfer in semi-transparent 

media with complex geometries remains one of the major 

challenges of scientists nowadays [1-2]. Because it 

applications give rise to many industrial interests, like solar 

energy system [3], thermal barriers coating, float and foams, 

in aerospace engineering, several techniques of predictions are 

used. Since, this kind of energy transfer involves both 

conduction and radiation transfer equations [4], only radiation 

transfer energy is taken in consideration here. Hence, in case 

of the full parallelogram shape geometry, no pure exact 

analytical solutions are already found, but different methods 

are already developed using either semi-analytical or/and 

numerical approximations of resolution [5-7]. This lack of 

analytical solutions comes from the complex geometry of 

media concerned. However, among some approaches 

developed for various geometries, the most accurate used is 

based on Monte-Carlo [8-9], also known as ray tracing method. 

Although, ray effect problem was solved, solutions were 

optimized later by introducing a new specific analytical 

function [10-11], in evaluation process of radiation quantities 

for better estimations. 

Although, it presents some advantages on analytical point 

of view, it carries also several difficulties on numerical 

implementation because ray effect is observed.   

Furthermore, considering the high quadrature dependence 

in spatio-angular integral approximations, that yields 

sometime to ray-effect phenomenon on results expected, a 

Discrete Ordinate Method (DOM) was implemented to solve 

the problem, regarding it simplicity, fastlness and accuracy. In 

order to reduce the ray effect impact on solutions, it has also 

been perfomed [12], by adding a new set of particular spatial-

angular Gaussian quadrature to attenuate degree of ray effect 

in the medium. Despite the fact DOM method was developed 

and used, other more accurate numerical and experimental 

tools have been also established, like finite and volume finite 

element method [13-14], used for their excellent prediction 

results. In the same category of finite elements, Meshless 

method based on Petrov-Galerkin technic was done [15-16]. 

This paper focus on high analytical development in order to 

produce accurate benchmark results in case of rectangular gray 

semi-transparent medium, hollowed by internal rectangular 

cavity containing a static fluid flow. The results will enable 

other methods to compare with. Until now, no exact analytical 

solutions have been proposed on macroscopic dimensions, 

despite some numerical results existing in the literature 

developed on microscopic aspect. The method used in this 

work is quite similar of the method used in [1, 5] at radiative 

equilibrium. Nevertheless radiation intensity, flux and 

temperature field are calculated for each subdomain of ray 

attenuation in the medium, since internal rectangular cavity 

behaves like obstacle for ray propagation. 

Thereby, for the proposed geometry, analytical calculations 

of radiative intensity and flux field are done for all incoming 

radiation from Eastern, Northern, Western and Southern 

radiations, at any attenuated point in the medium. 

The final results are deduced from numerical resolution of 

discretization form. Hence, radiation integrals are transformed 

by Altaç special functions [10-11] using both angular and 

spatial gauss quadrature. Consequently temperature field in 

the medium is obtained by interation process until 
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convergence.  

 

 

2. MATHEMATICAL MODELLING 

 

2.1 Geometry and governing equations 

 

Consider a two dimensional solid /fluid semi-transparent 

gray medium, where, the solid matrix simultaneously emits, 

absorbs but does not scatter radiation, whereas the fluid, is in 

this study under steady state conditions. External 𝜕𝐷𝑒𝑥𝑡  and 

internal 𝜕𝐷𝑖𝑛𝑡 boundary domains are at imposed temperature, 

and are assumed as black surfaces Figure 1. For this purpose, 

let  𝑘𝑎  denotes absorption coefficient, 𝑛 as refractive index, 

where 𝐼  is the radiation intensity in one direction and  𝑇 as 

temperature field in solid medium. Therefore, only radiative 

heat transfer is considered as energy transfer mode at steady 

conditions, and given by the differential equation: 

 
𝜕𝐼(𝑠,Ω)

𝜕𝑠
= −𝑘𝑎𝐼(𝑠, Ω)  + 𝑛2. 𝑘𝑎 . 𝐼𝑏(𝑇(𝑠))                        (1) 

 

where, 𝑠 represents the curvilinear abscissa, Ω the direction of 

radiation propagation inside the medium, 𝐼𝑏 the Planck’s black 

body radiative intensity depending of temperature medium. 

 

 
 

Figure 1. Solid / fluid semi-transparent medium 

 

Incident radiation at each point of the solid matrix is 

calculated by solving Eq. (1), which yields the result in the 

form: 

 

𝐼(𝑠, Ω) = 𝐼0(𝑠)𝑒−𝑘𝑎.𝛿 +
𝑛2𝑘𝑎.𝜎

𝜋
∫ 𝑇4𝑠

𝑠=0
(𝑠′)𝑒−𝑘𝑎.𝑠

′
𝑑𝑠           (2) 

 

where, 𝐼0(𝑠)  is radiation intensity leaving each boundary 

surface situated at position 𝑠 , 𝜎  is the Stephan-Boltzman 

constant, 𝛿 is the path length followed by the ray from either 

external or internal boundaries to the various attenuation 

points in the absorbing medium.   

Inside the medium, the overall radiative intensity 𝐺(𝑠) is 

evaluated for all directions Ω, hence: 

 

𝐺(𝑠) = ∫ 𝐼(𝑠, Ω)𝑑Ω
 

Ω=4𝜋
                                                    (3) 

 

The radiative flux, is deduced from  𝐺(𝑠) by: 

 

�⃗�𝑟(𝑠) = ∫ 𝐼(𝑠, Ω)Ω⃗⃗⃗𝑑Ω
 

Ω=4𝜋
                                      (4) 

While temperature field is calculated from radiative flux 

divergence relation at radiative equilbrium state condition, 

playing the role of radiation source in the medium. It is done 

by: 

 

∇⃗⃗⃗. �⃗�𝑟 = 𝑘𝑎 (4𝜋𝑛2𝐼𝑏(𝑇(𝑠)) − 𝐺(𝑠))                                    (5) 

 

2.2 Evaluation of radiative quantities 

 

(1) Geometry of the problem 

The rectangular semi–transparent medium designed with 

external and internal surfaces, having respectively 𝐻𝑥 × 𝐻𝑦 

and ℎ𝑥 × ℎ𝑦  dimensions in (𝑥, 𝑦)  reference Figure 1. The 

radiation propagates though (𝑒𝑥, 𝑒𝑦) plane and z-direction are 

infinite, consequently no variations over this z-axis affects any 

calculation. Moreover, radiation propagation is explained in 

terms of azimuth angle 𝜑  which represents angle yields by 

orthogonal projection of rays on x-axis, such 0 ≤ 𝜑 ≤ 2𝜋 and 

zenith angle 𝜃 represent deviation between z-axis and the ray, 

such 0 ≤ 𝜃 ≤ 𝜋 in this plane Figure 1. Therefore, the relation 

links them to direction vector  Ω⃗⃗⃗ = (
𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃

). 

Neither radiative intensity, radiative flux nor temperature 

depends of z-axis components. 

 

 
 

Figure 2. Attenuation of rays inside the semi-transparent 

medium 

 

(2) Radiation intensity 

In the present study, fluid cavity and solid semi-transparent 

media are located at the same center coordinate: 𝑎 =
𝐻𝑥

2
 and 

𝑏 =
𝐻𝑦

2
. Hence, evaluation of radiative quantities becomes 

highly dependent of ratios 
𝐻𝑥

ℎ𝑥
 and 

𝐻𝑦

ℎ𝑦
. So, there are five 

positions depending of that ratios, 
𝐻

ℎ
|

𝑥,𝑦
< 3; 

𝐻

ℎ
|

𝑥,𝑦
= 3; 3 <

𝐻

ℎ
|

𝑥,𝑦
< 2 + √5; 

𝐻

ℎ
|

𝑥,𝑦
= 2 + √5 and  

𝐻

ℎ
|

𝑥,𝑦
> 2 + √5. When a 

set of equations modelling the different radiative energy is 

calculated at one position, the other set can be deduced from 

the previous one. 

To evaluate radiation quantities exactly from all internal and 

external boundary surfaces in the solid matrix, the ratio choice 

for this application is 
𝐻𝑥

ℎ𝑥
= 3, and 

𝐻𝑦

ℎ𝑦
= 3. The solid matrix is 

divided into several sub-regions, Figure 2 over which 
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calculations are performed for each ray attenuated. 

The modeling principle is shown there, only for an external 

southern-Est boundary surface (𝑆1) , view from 𝜑𝑆1
 and 

carrying an imposed temperature 𝑇𝐸1
. Radiation intensity 

expected at attenuation point 𝑀 due to absorption follows the 

same path length as the one coming from this point and 

diverges to boundary surface, due to emission of radiations in 

the medium [1]. Therefore, in one direction of propagation, let 

consider any point 𝑀′ belonging to that boundary surface, the 

following relations are developed: 

 

{
𝑀𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝑆1
′ = 𝛿Ω⃗⃗⃗  , 𝑀𝑆1

′ 𝜖  𝜕𝐷𝑆𝑜𝑢𝑡ℎ,1

𝑀𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ′ = 𝑠′ Ω⃗⃗⃗  ,           𝑀′ 𝜖 𝐷 
                                           (6) 

 

where,  𝛿 =
0−𝑦

𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜃
 and 𝑠′ =

𝑦′−𝑦

𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃
, are respectively a 

ray path length from Southern boundary at temperature 𝑇𝑆1
 

and from any source of radiation in the medium to the 

attenuation, due to absorption effect. Therefore 

 

{
𝑥′ = 𝑥 ± (0 − 𝑦)𝑡𝑎𝑛𝜑 , 𝑀𝑆1

′ 𝜖  𝜕𝐷𝑆𝑜𝑢𝑡ℎ,1   

𝑥′ = 𝑥 ± (𝑦′ − 𝑦)𝑡𝑎𝑛𝜑 ,              𝑀′𝜖 {𝐷}  
                        (7) 

 

These previous relations in (𝑥, 𝑦) reference coordinates are 

replaced inside Eq. (2). Hence, contribution of radiative 

intensity in one direction from this boundary becomes, 

 

𝐼𝑆1
(𝑥, 𝑦, 𝜃, 𝜑) =    

𝜎𝐵𝑇𝑆1
4

𝜋
. 𝑒

−𝑘𝑎{
𝑦

𝑐𝑜𝑠(𝜑−
3𝜋
2

)𝑠𝑖𝑛𝜃
}

 

 +  
𝑘𝑎.𝜎

𝜋
∫ 𝑇4(𝑥′, 𝑦′)

𝑦′=𝑦

𝑦′=0

 

× 𝑒
−𝑘𝑎{

𝑦−𝑦′

𝑐𝑜𝑠(𝜑−
3𝜋
2 )𝑠𝑖𝑛𝜃

}
𝑑𝑦′

𝑐𝑜𝑠(
3𝜋

2
−𝜑)𝑠𝑖𝑛𝜃

                                                      (8) 

 

However, radiative intensity coming from all directions 

belonging southern-Est surface covers the sum of angles 𝜑𝑆1
 

and 𝜑𝑆2
, while: 

 

𝐺𝑆1
(𝑥, 𝑦) = 2 ∫ ∫ 𝐼𝑆1

(𝑥, 𝑦, 𝜃, 𝜑)𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑
𝜃=

𝜋

2
𝜃=0

𝜑=
3𝜋

2
+𝜑𝑆2

𝜑=
3𝜋

2
−𝜑𝑆1

      (9) 

 

where, 𝜑𝑆1
= 𝑡𝑎𝑛−1 {

𝑥−(𝑎+
ℎ𝑥
2

)

𝑦−(𝑏−
ℎ𝑦

2
)
} and 𝜑𝑆2

= 𝑡𝑎𝑛−1 {
𝐻𝑥−𝑥

𝑦
} 

Firstly, let introduce one set of Bickley’s Naylor function 

[17], for integration of Eq.10, and given by:  

 

𝐾𝑖𝑛
(𝑢) = ∫ 𝑒−

𝑢

𝑠𝑖𝑛𝜃(𝑠𝑖𝑛𝜃)𝑛−1𝑑𝜃
𝜃=

𝜋

2
𝜃=0

 , 𝑛 ∈ ℕ, 𝑢 ∈ ℝ+        (10) 

 

In order to transform angular integral dependence in terms 

of  𝜃 to spatial one, a change of variable is done, and a new 

relation is obtained:  

 

𝐺𝑆1
(𝑥, 𝑦)  =  

2𝜎𝐵𝑇𝑠1
4

𝜋
∫ 𝐾𝑖2

(
𝑘𝑎𝑦

𝑐𝑜𝑠𝜑
)

𝜑=+𝜑𝑆1
𝜑=0

𝑑𝜑 

                 +
2𝜎𝐵𝑇𝑠1

4

𝜋
∫ 𝐾𝑖2

(
𝑘𝑎𝑦

𝑐𝑜𝑠𝜑
)

𝜑=+𝜑𝑆2
𝜑=0

𝑑𝜑  

                 + 
2𝑘𝑎.𝜎𝐵

𝜋
∫ ∫ 𝑇4(𝑥′, 𝑦′ )

𝑦′=𝑦

𝑦′=0

𝜑=𝜑𝑆2
𝜑=−𝜑𝑆1

 

              × 𝐾𝑖1
(

𝑘𝑎(𝑦−𝑦′)

𝑐𝑜𝑠𝜑
) 𝑑𝑦′ 𝑑𝜑

𝑐𝑜𝑠𝜑
                                      (11) 

 

Secondly, Altaç function [17], is used for 𝑛 ∈ ℕ, 𝑢 ∈ ℝ+, 

given by: 

 

𝐵𝑖𝑠𝑛
(𝑢, 𝜃) = ∫ 𝐾𝑖𝑛

(
𝑢

𝑐𝑜𝑠𝜑
) (𝑐𝑜𝑠𝜑)𝑛−2𝜑=𝜃

𝜑=0
𝑑𝜑                     (12) 

 

By taking in consideration the 𝐾𝑖𝑛
 parity function, radiation 

intensity for all radiations coming from eastern boundary 

surface and attenuated by absorption process inside each point 

of the solid matrix is performed by: 

 

𝐺𝑆1
(𝑥, 𝑦) =  

2𝜎𝐵𝑇𝑆1
4

𝜋
{𝐵𝑖𝑠2

(𝑘𝑎𝑦, 𝑡𝑎𝑛−1 {
𝑥−(𝑎+

ℎ𝑥
2

)

𝑦−(𝑏−
ℎ𝑦

2
)
})}  

                 +  
2𝜎𝐵𝑇𝑆1

4

𝜋
 {𝐵𝑖𝑠2

(𝑘𝑎𝑦, 𝑡𝑎𝑛−1 {
𝐻𝑥−𝑥

𝑦
})}  

                 + 
2𝑘𝑎.𝜎𝐵

𝜋
∫ ∫ 𝑇4(𝑥1

′ , 𝑦′)
𝑦′=+𝑦

𝑦′=0

𝜑=𝑡𝑎𝑛−1{
𝑥−(𝑎+

ℎ𝑥
2 )

𝑦−(𝑏−
ℎ𝑦
2 )

}

𝜑=0
 

                 × 𝐾𝑖1
(

𝑘𝑎(𝑦−𝑦′)

𝑐𝑜𝑠𝜑
)

𝑑𝑦′𝑑𝜑

𝑐𝑜𝑠𝜑
                               

                + 
2𝑘𝑎.𝜎𝐵

𝜋
∫ ∫ 𝑇4(𝑥2

′ , 𝑦′)
𝑦′=+𝑦

𝑦′=0

𝜑=𝑡𝑎𝑛−1{
𝐻𝑥−𝑥

𝑦
}

𝜑=0
 

× 𝐾𝑖1
(

𝑘𝑎(𝑦−𝑦′)

𝑐𝑜𝑠𝜑
)

𝑑𝑦′𝑑𝜑

𝑐𝑜𝑠𝜑
                                                        (13) 

 

with,  𝑥1
′  and 𝑥2

′  equivalent to 𝑥 − (𝑦′ − 𝑦)𝑡𝑎𝑛𝜑  and 𝑥 +
(𝑦′ − 𝑦)𝑡𝑎𝑛𝜑 respectively. 

 

(3) Radiative flux 

The relation given for southern boundary surface is: 

 

�⃗�𝑟
𝑆1 = 2 ∫ ∫ 𝐼𝑆1

(𝑥, 𝑦, 𝜃, 𝜑)
𝜃=

𝜋

2
𝜃=0

𝜑=
3𝜋

2
+𝜑𝑆2

𝜑=
3𝜋

2
−𝜑𝑆1

     

       × (𝑠𝑖𝑛𝜃)2 (
𝑐𝑜𝑠𝜑
𝑠𝑖𝑛𝜑) 𝑑𝜃𝑑𝜑                                             (14) 

 

Further let perform with the same approach used in the case 

of 𝐺𝑆1
(𝑥, 𝑦) calculations. Following x-axis, it leads to: 

 

𝑞𝑥
𝑆1 =

2𝜎𝐵𝑇𝑆1
4

𝜋
(−𝐶𝑖𝑠3

(𝑘𝑎𝑦, 𝑡𝑎𝑛−1 {
𝑥−(𝑎+

ℎ𝑥
2

)

𝑦−(𝑏−
ℎ𝑦

2
)
}))     

       + 
2𝜎𝐵𝑇𝑆1

4

𝜋
(𝐶𝑖𝑠3

(𝑘𝑎𝑦, 𝑡𝑎𝑛−1 {
𝐻𝑥−𝑥

𝑦
}))  

       − 
2𝑘𝑎.𝜎𝐵

𝜋
∫ ∫ 𝑇4(𝑥1

′ , 𝑦′)
𝑦′=𝑦

𝑦′=0

𝜑=𝑡𝑎𝑛−1{
𝑥−(𝑎+

ℎ𝑥
2 )

𝑦−(𝑏−
ℎ𝑦
2 )

}

𝜑=0
    

       × 𝐾𝑖2
(

𝑘𝑎(𝑦−𝑦′)

𝑐𝑜𝑠𝜑
)

𝑠𝑖𝑛𝜑

𝑐𝑜𝑠𝜑
𝑑𝑦′𝑑𝜑 

       + 
2𝑘𝑎.𝜎𝐵

𝜋
∫ ∫ 𝑇4(𝑥2

′ , 𝑦′)
𝑦′=𝑦

𝑦′=𝑦

𝜑=𝑡𝑎𝑛−1{
𝐻𝑥−𝑥

𝑦
}

𝜑=0
    

  × 𝐾𝑖2
(

𝑘𝑎(𝑦−𝑦′)

𝑐𝑜𝑠𝜑
)

𝑠𝑖𝑛𝜑

𝑐𝑜𝑠𝜑
𝑑𝑦′𝑑𝜑                                            (15)  

 

with,  𝑥1
′  and 𝑥2

′  playing the same role in radiation intensity 

𝐺𝑆1
(𝑥, 𝑦) . 𝐶𝑖𝑠𝑛

 , 𝑛 ∈ ℕ is a modified Bessel function set by:  

 

𝐶𝑖𝑠𝑛
(𝑢, 𝜃) = ∫ 𝐾𝑖𝑛

(
𝑢

𝑐𝑜𝑠𝜑
) (𝑐𝑜𝑠𝜑)𝑛−3𝑠𝑖𝑛𝜑

𝜑=𝜃

𝜑=0
𝑑𝜑            (16) 
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Following y-axis, radiative flux is given by: 

 

𝑞𝑦
𝑆1 = −

2𝜎𝐵𝑇𝑆1
4

𝜋
(𝐵𝑖𝑠3

(𝑘𝑎𝑦, 𝑡𝑎𝑛−1 {
𝑥−(𝑎+

ℎ𝑥
2

)

𝑦−(𝑏−
ℎ𝑦

2
)
}))  

           − 
2𝜎𝐵𝑇𝑆1

4

𝜋
(𝐵𝑖𝑠3

(𝑘𝑎𝑦, 𝑡𝑎𝑛−1 {
𝐻𝑥−𝑥

𝑦
}))  

            − 
2𝑘𝑎.𝜎𝐵

𝜋
∫ ∫ 𝑇4(𝑥1

′ , 𝑦′)
𝑦′=𝑦

𝑦′=0

𝜑=𝑡𝑎𝑛−1{
𝑥−(𝑎+

ℎ𝑥
2 )

𝑦−(𝑏−
ℎ𝑦
2 )

}

𝜑=0
 

            × 𝐾𝑖2
(

𝑘𝑎(𝑦−𝑦′)

𝑐𝑜𝑠𝜑
) 𝑑𝑦′𝑑𝜑 

            − 
2𝑘𝑎.𝜎𝐵

𝜋
∫ ∫ 𝑇4(𝑥2

′ , 𝑦′)
𝑦′=𝑦

𝑦′=0

𝜑=𝑡𝑎𝑛−1{
𝐻𝑥−𝑥

𝑦
}

𝜑=0
  

          × 𝐾𝑖2
(

𝑘𝑎(𝑦−𝑦′)

𝑐𝑜𝑠𝜑
) 𝑑𝑦′𝑑𝜑                                            (17) 

 

However, the rest of equations generated both from internal 

and external contributions of boundary surfaces inside the 

medium are performed using the same approach. The overall 

radiation intensity and flux are the sum of all the contributions.   

 

2.3 Discretization forms of radiation quantities 

 

Let mesh the semi-transparent medium, by isothermal mesh 

grids surfaces of ∆𝑥 × ∆𝑦  dimensions, express in terms of 

geometry length of the medium by  
𝐻𝑥

𝑁𝑥−1
×

𝐻𝑦

𝑁𝑦−1
, where 𝑁𝑥 

and 𝑁𝑦 are respectively the mesh positions inside the external 

cavity following 𝑥 and 𝑦 directions.  

Hence, each point 𝑀𝑖𝑗 inside the medium is located by its 

positions (𝑖, 𝑗) ∈ [2, 𝑁𝑥 − 1] × [2, 𝑁𝑦 − 1] , that corresponds 

to its mesh center coordinates (�̅�𝑖 , �̅�𝑗) , through which 

radiation quantities have to be estimated; it is given in function 

of the geometry by ((𝑖 −
3

2
)

𝐻𝑥

𝑁𝑥−2
 , (𝑗 −

3

2
)

𝐻𝑦

𝑁𝑦−2
). 

For external boundary positions, when 𝑖 = 1,�̅�𝑖 = 0;  𝑖 =
𝑁𝑥, �̅�𝑖 = 𝐻𝑥; 𝑗 = 1, �̅�𝑗 = 0; 𝑗 = 𝑁𝑦, �̅�𝑗 = 𝐻𝑦 . 

For internal boundary positions, when 𝑖 = 𝐸 {
𝑎−

ℎ𝑥
2

∆𝑥
}, 

�̅�𝑖 = 𝑎 −
ℎ𝑥

2
; 𝑖 = 𝐸 {

𝑎+
ℎ𝑥
2

∆𝑥
}, �̅�𝑖 = 𝑎 +

ℎ𝑥

2
 ; 𝑗 = 𝐸 {

𝑏−
ℎ𝑦

2

∆𝑦
}, 

�̅�𝑗 = 𝑏 −
ℎ𝑦

2
;  𝑗 = 𝐸 {

𝑏+
ℎ𝑦

2

∆𝑦
},  �̅�𝑗 = 𝑏 +

ℎ𝑦

2
. where 𝐸  denotes 

integer part of the real concerned. 

 

(1) Radiation intensity  

Radiation coming from eastern boundary surface, 

propagates following some conditions, like: 

 

𝑦𝑗
′ = (1 − 𝛿𝑚)𝑦𝑗                                                                 (18)  

 

where, 𝛿𝑚 ∈ [0,1]  represents quadrature abscissa, 𝑚  is the 

abscissa number, such 1 ≤ 𝑚 ≤ 𝑀, and 𝑀 the is total number 

of quadrature. In the same order, it implies consequently that, 

 

𝑥𝑖
′ = 𝑥𝑖 ± 𝛿𝑚𝑦𝑗𝑡𝑎𝑛𝜑                                                          (19)  

 

To estimate a path length between any source points to 

attenuation one in the medium, there exist some particular 

positions link to a couple (𝑝, 𝑞) ∈ ℕ2 , that obeys to 𝑥𝑖
′ ∈

[𝑥𝑝 −
∆𝑥

2
, 𝑥𝑝 +

∆𝑥

2
] and 𝑦𝑗

′ ∈ [𝑦𝑞 −
∆𝑦

2
, 𝑦𝑞 +

∆𝑦

2
 ].  

Therefore, it yields to a couple of points (𝑥𝑝, 𝑦𝑞), located 

by it coordinates ((𝑝 −
3

2
)

𝐻𝑥

𝑁𝑥−2
 , (𝑞 −

3

2
)

𝐻𝑦

𝑁𝑦−2
) . While, the 

conditions that satisfy these coordinates is summarized by: 
 

{

𝑝 ≤ 𝑖 +
1

2
± (𝑗 −

3

2
) 𝛿𝑚𝑡𝑎𝑛𝜑

 

𝑞 ≤ 𝑗 +
1

2
− (𝑗 −

3

2
) 𝛿𝑚

                                           (20) 

 

The final discretized form of solutions of radiation transfer 

equation for numerical implementation are set by the use of 

angular and spatial Legendre Gauss quadrature such as: 

 

𝑑𝜑 = (𝜑𝑚𝑎𝑥 − 𝜑𝑚𝑖𝑛)𝛽𝑙 , 𝑙 ∈ {1,2, … , 𝑁𝜑} , 𝜑𝑙 ∈ {0,1}    (21) 

 

with, 𝜑𝑚𝑎𝑥  and 𝜑𝑚𝑖𝑛 respectively the maximun and minimum 

values of the integral to discretize. 𝛽𝑙 is an angular abscissa, 

and 𝑁𝜑 the number of gaussian quadrature set to approximate 

integrals. 

Knowing radiations quantities to be evaluated are calculated 

at the center of each mesh grid, radiation intensity from 

Southern boundary is discretized like: 
 

𝐺𝑆1
(�̅�𝑖 , �̅�𝑗) =

2𝜎𝐵𝑇𝑆1
4

𝜋
{𝐵𝑖𝑠2

(𝑘𝑎�̅�𝑗, 𝑡𝑎𝑛−1 {
�̅�𝑖−(𝑎+

ℎ𝑥
2

)

�̅�𝑗−(𝑏−
ℎ𝑦

2
)
})}  

               +
2𝜎𝐵𝑇𝑆1

4

𝜋
 {𝐵𝑖𝑠2

(𝑘𝑎�̅�𝑗, 𝑡𝑎𝑛−1 {
𝐻𝑥−�̅�𝑖

�̅�𝑗
})}    

               +
2𝑘𝑎.𝜎𝐵

𝜋
(𝑡𝑎𝑛−1 {

�̅�𝑖−(𝑎+
ℎ𝑥
2

)

�̅�𝑗−(𝑏−
ℎ𝑦

2
)
}) (�̅�𝑗) ∑ 𝜔𝑙  

𝑁𝜑

𝑙=1   

               × ∑
𝜔𝑚

𝑐𝑜𝑠𝜑𝑙1

𝑀
𝑚=1  𝑇4(𝑥𝑝 , 𝑦𝑞) 𝐾𝑖1

(
𝑘𝑎�̅�𝑗𝛿𝑚

𝑐𝑜𝑠𝜑𝑙
) 

               +
2𝑘𝑎.𝜎𝐵

𝜋
(𝑡𝑎𝑛−1 {

𝐻𝑥−�̅�𝑖

�̅�𝑗
}) (�̅�𝑗) ∑ 𝜔𝑙  

𝑁𝜑

𝑙=1   

          × ∑
𝜔𝑚

𝑐𝑜𝑠𝜑𝑙2

𝑀
𝑚=1 𝑇4(𝑥𝑝 , 𝑦𝑞)𝐾𝑖1

(
𝑘𝑎�̅�𝑗𝛿𝑚

𝑐𝑜𝑠𝜑𝑙
)                    (21) 

 

(2) Temperature field 

After performed incident radiation intensity coming from 

over all boundary surfaces, temperature field power four is 

obtained after several numerical iterations processes. It is 

iterated by solving divergence equation Eq. (5) at radiative 

equilibrium. However, 

 

𝑇4(𝑖, 𝑗) =
1

4𝜎𝐵
  ∑ 𝐺𝑘(𝑖, 𝑗)8

𝑘=1                                               (22) 

 

where, 𝑘  represents the number of all external and internal 

boundary emissive radiations, and 𝐺𝑘(𝑖, 𝑗)  is the 

corresponding incoming radiation from the entire boundary 

surface concerned. 
 

(3) Radiative flux  

Following the same process like radiation intensity, instead, 

temperature is obtained by iteration process and newly 

replaced inside expression of radiative flux, it gives following 

x-axis: 
 

𝑞𝑥
𝑆1 = −

2𝜎𝐵𝑇𝑆1
4

𝜋
(𝐶𝑖𝑠3

(𝑘𝑎�̅�𝑗, 𝑡𝑎𝑛−1 {
�̅�𝑖−(𝑎+

ℎ𝑥
2

)

�̅�𝑗−(𝑏−
ℎ𝑦

2
)
}))     
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           + 
2𝜎𝐵𝑇𝑆1

4

𝜋
(𝐶𝑖𝑠3

(𝑘𝑎�̅�𝑗, 𝑡𝑎𝑛−1 {
𝐻𝑥−�̅�𝑖

�̅�𝑗
}))  

           − 
2𝑘𝑎.𝜎𝐵

𝜋
(𝑡𝑎𝑛−1 {

�̅�𝑖−(𝑎+
ℎ𝑥
2

)

�̅�𝑗−(𝑏−
ℎ𝑦

2
)
}) (�̅�𝑗) ∑  

𝑁𝜑

𝑙=1
𝜔𝑙   

           × ∑ 𝜔𝑚𝑇4(𝑥𝑝, 𝑦𝑞)𝑀
𝑚=1 𝐾𝑖2

(
𝑘𝑎�̅�𝑗𝛿𝑚

𝑐𝑜𝑠𝜑𝑙
)

𝑠𝑖𝑛𝜑𝑙

𝑐𝑜𝑠𝜑𝑙
  

           + 
2𝑘𝑎.𝜎𝐵

𝜋
 (𝑡𝑎𝑛−1 {

𝐻𝑥−�̅�𝑖

�̅�𝑗
}) (�̅�𝑗) ∑  𝜔𝑙

𝑁𝜑

𝑙=1
 

      × ∑ 𝑇4(𝑥𝑝 , 𝑦𝑞)𝑀
𝑚=1 𝜔𝑚𝐾𝑖2

(
𝑘𝑎�̅�𝑗𝛿𝑚

𝑐𝑜𝑠𝜑𝑙
)

𝑠𝑖𝑛𝜑𝑙

𝑐𝑜𝑠𝜑𝑙
                    (23) 

 

Following y-axis by:  

 

𝑞𝑦
𝑆1 = −

2𝜎𝐵𝑇𝑆1
4

𝜋
(𝐵𝑖𝑠3

(𝑘𝑎�̅�𝑗, 𝑡𝑎𝑛−1 {
�̅�𝑖−(𝑎+

ℎ𝑥
2

)

�̅�𝑗−(𝑏−
ℎ𝑦

2
)
}))     

           − 
2𝜎𝐵𝑇𝑆1

4

𝜋
(𝐵𝑖𝑠3

(𝑘𝑎�̅�𝑗, 𝑡𝑎𝑛−1 {
𝐻𝑥−�̅�𝑖

�̅�𝑗
}))  

           − 
2𝑘𝑎.𝜎𝐵

𝜋
(𝑡𝑎𝑛−1 {

�̅�𝑖−(𝑎+
ℎ𝑥
2

)

�̅�𝑗−(𝑏−
ℎ𝑦

2
)
}) (�̅�𝑗) ∑ 𝜔𝑙

𝑁𝜑

𝑙=1   

           × ∑ 𝑇4(𝑥𝑝, 𝑦𝑞)𝑀
𝑚=1 𝜔𝑚𝐾𝑖2

(
𝑘𝑎�̅�𝑗𝛿𝑚

𝑐𝑜𝑠𝜑𝑙
)  

           − 
2𝑘𝑎.𝜎𝐵

𝜋
{(𝑡𝑎𝑛−1 {

𝐻𝑥−�̅�𝑖

�̅�𝑗
}) (�̅�𝑗) ∑ 𝜔𝑙

𝑁𝜑

𝑙=1 }  

        × ∑ 𝑇4(𝑥𝑝 , 𝑦𝑞)𝜔𝑚
𝑀
𝑚=1 𝐾𝑖2

(
𝑘𝑎�̅�𝑗𝛿𝑚

𝑐𝑜𝑠𝜑𝑙
)                          (24) 

 

For this purpose, the size and the location of internal cavity 

variate inside the medium, and all these boudary surfaces are 

supposed to be black and at imposed temperatures. While the 

use of black body radiation 𝜎𝐵𝑇𝑘{1≤𝑘≤8}

4 , is implemented to 

evaluate radiation intensity at these positions. 

 

 

3. CONCLUSIONS 

 

In this paper, a semi-analytical model of semi-transparent 

medium has been obtained in the case of a two dimensional 

enclosure, with internal fluid cavity. The aim was to establish 

by high analytical calculations, radiation intensity, radiative 

flux and temperature field inside the medium for a variating 

position of the internal fluid cavity. It is interesting to note that, 

a ratio (
𝐻

ℎ
) plays an important role in the evaluation of these 

radiation quantities. In this study, the case of ratio value equal 

to 3  was developed, but similar calculations could be 

performed when the value is equal to 2 + √5. Hence, exact 

explicit analytical expressions have been obtained, thanks to 

Specific Functions, and Gauss quadrature for discretization. 

Result obtained behaves the in good agreement with the 

literature, when the length of internal cavity becomes closed 

to zero. Of course, the next step of this study will be to perform 

computations of the expressions obtained here, to present 

simulations results. 
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NOMENCLATURE 

(𝑎, 𝑏) center coordinate of fluid matrix (m) 
𝑘𝑎 absorption coefficient (𝑚−1)
(𝑒𝑥, 𝑒𝑦)   unit vectors of 𝑥, 𝑦 directions     

𝐵𝑖𝑠𝑛
, 𝐶𝑖𝑠𝑛

            ALtaç modified Bessel functions     

𝐺         volumic incoming radiation (𝑊𝑚−3)
𝐺𝑆1

     volumic radiation incoming from 

southern boundary surface (𝑊𝑚−3)
𝐻𝑥 length of external cavity along 𝑥 

direction (𝑚)   

𝐻𝑦 length of external cavity along 𝑦 

direction (𝑚)   

ℎ𝑥 length of internal cavity along 𝑥 

direction (𝑚)   

ℎ𝑦 length of internal cavity along 𝑦 

direction (𝑚)   

(𝑖, 𝑗) cells numbering 

𝐼 one directional radiation 

intensity(𝑊𝑚−2𝑆𝑟)
𝐼0 Black body radiation intensity (𝑊𝑚−2)
𝐼𝑆1

one directional radiation intensity from 

southern boundary surface (𝑊𝑚−2𝑆𝑟)
𝐾𝑖𝑛

 Bickley-Naylor functions 

𝑙 angular numbering quadrature 
𝑚 Spatial numbering quadrature 

𝑁𝑥 number of cells along 𝑥 direction 

𝑁𝑦 number of cells along 𝑦 direction 

𝑁𝜑 number of angular quadrature  

(𝑝, 𝑞) cells numbering at which radiative 

quantities are being evaluated 

�⃗�𝑟 radiative flux vector  

𝑞𝑥
𝑆1 radiative flux from southern boundary 

surface, along 𝑥 direction (𝑊𝑚−2)

𝑞𝑦
𝑆1 radiative flux from southern boundary 

surface, along 𝑦 direction(𝑊𝑚−2)
𝑠′, 𝑠 radiative path length from any source 

point to attenuated point in the medium 

𝑇 radiation temperature in the medium 

𝑇𝑆1
radiation temperature at southern 

boundary surface 

𝑢 real number at which 𝐵𝑖𝑠𝑛
is evaluated 

Greek symbols 

∆𝑥 length of the cell following x-axis (𝑚) 
∆𝑦 length of the cell following y-axis (𝑚) 
𝛽𝑙 quadrature angular abscissa 
𝜎𝐵 Stephan-Boltzmann constant 

(5.67 10−8𝑊. 𝑚−2. 𝐾−4)
𝜑, 𝜃 azimuthal and zenith angle of unit vector 

�⃗⃗� 

�⃗⃗�         unit radiation propagation vector 

𝜕𝐷𝑒𝑥𝑡 , 𝜕𝐷𝑖𝑛𝑡 external and internal boundary surface 

cavity 
𝜕𝐷𝑠𝑜𝑢𝑡ℎ,1 external southern boundary surface 

∇⃗⃗⃗. �⃗�𝑟 radiative flux divergence(𝑊𝑚−3)

𝛿 radiative path length from boundary 

surface to attenuated point in the 

medium 
𝛿𝑚 Gaussian quadrature abscissa 

𝜑
𝑚𝑖𝑛

, 𝜑
𝑚𝑎𝑥

minimum and maximum boundary 

integrals to be discretized 
𝜑𝑙 azimuthal angle at position 𝑙 

Subscripts 

𝐸1, 𝑁1, 𝑊1, 𝑆1 Eastern, Northern, Western, and 

Southern boundaries of external cavity. 

𝐸2, 𝑁2, 𝑊2, 𝑆2 Est, North, West, and South boundaries 

of internal cavity. 
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