
 

 

  

An Empirical Analysis on the Nonlinear Relationship Between Economic Growth and Carbon 

Dioxide Emissions in China 
 
Yiqiong Lu1,2 
 
1 School of Environment & Natural Resources, Renmin University of China, Beijing 100086, China 
2 Safety and Environmental Supervision Department, China Energy Investment Corporation, Beijing 100011, China 
 
Corresponding Author Email: yiqiong.lu@chnenergy.com.cn 
 

https://doi.org/10.18280/ijsdp.150210 

  

ABSTRACT 

   

Received: 20 May 2019 
Accepted: 8 January 2020 

 Based on the traditional theory of environmental Kuznets curve (EKC), this paper selects the 
panel data in 2000-2017 of 30 provincial administrative regions (provinces) in China as 
objects, and estimates the per capita carbon dioxide (CO2) emissions of each province. On 
this basis, an EKC econometric model with spatial effect was established, and used to 
empirically analyze the nonlinear relationship between economic growth and CO2 emissions. 
The main results are as follows: (1) The provinces differed greatly in per capita CO2 
emissions; the per capita CO2 emissions of Inner Mongolia, Ningxia, Shanxi, Tianjin, and 
Liaoning were relatively high, while those of Hunan, Jiangxi, Guangxi, Sichuan and Hainan 
were relatively low. (2) In addition to obvious spatial correlation, the per capita CO2 emissions 
of the provinces have spatial heterogeneity: most provinces belong to cluster areas, but only 
a few fall in the areas of spatial outliers. (3) The EKC spatial econometric model shows that 
the economic growth has a significant inverted U relationship with CO2 emissions. In other 
words, with the growth in economy, the CO2 emissions firstly increase and then decrease. (4) 
CO2 emissions are clearly promoted by industrial structure, energy consumption structure and 
environmental regulation, but suppressed by the level of opening. 
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1. INTRODUCTION 

 

Over the past four decades, the rapid economic growth is a 
mixed blessing to China. On the upside, a huge amount of 
economic wealth is accumulated; on the downside, lots of 
energy is consumed, emitting a massive amount of carbon 
dioxide (CO2). According to statistics from Carbon Brief, 
China released a staggering amount of 9.8 billion tons of CO2 
in 2017, up by 1.7% from the amount of the previous year. In 
2010, China surpassed the US for the first time as the largest 
carbon emitter in the world. Currently, the CO2 emissions of 
China accounts for 28% of the global total, more than those of 
the US (14%) and the EU (12%) combined. The heavy CO2 
emissions intensify the greenhouse effect and seriously affect 
our daily lives. On the UN Climate Change Conference 2009 
in Copenhagen, China promised to reduce the CO2 emission 
per unit of gross domestic product (GDP) by 40-45% before 
2020. To honor the promise, China must withstand a huge 
pressure on carbon reduction.  

Meanwhile, China’s economic growth is still featured by 
high investment, pollution and emissions, under the driving 
forces of investment and industrialization. These features are 
expected to remain for quite a long time. Therefore, it is a key 
issue for governments at all levels in China to strike a balance 
between economic growth and CO2 emissions. In other words, 
the governments and the academia must work together to 
ensure the healthy development of national economy, while 
slashing CO2 emissions. To formulate reasonable carbon 
reduction policies, the governments at all levels in China must 
explore deep into the following questions: What is the 

relationship between economic growth and CO2 emissions in 
China? Is it linear or nonlinear? What are the factors that affect 
CO2 emissions, other than economic growth? 

The relationship between economic growth and CO2 
emissions has long been a research hotspot. According to the 
relevant literature, there are four different conclusions about 
the relationship. Some scholars found that economic growth 
has a purely linear relationship with CO2 emissions, i.e. CO2 
emissions continue to increase with the growth of economy [1, 
2]. 

Some scholars held that economic growth has a typical 
nonlinear relationship with CO2 emissions. The most popular 
theory is the environmental Kuznets curve (EKC). Proposed 
by Grossma and Krueger [3], the EKC theory describes the 
relationship between economic growth and CO2 emissions as 
an inverted U curve. This description is widely received 
among scholars. For example, Lindmark [4], Nasir and 
Rehaman [5] established time series models for EKC-based 
empirical research, and validated the inverted U relationship 
between economic growth and CO2 emissions in countries like 
Sweden, Pakistan and Spain. Through empirical analyses on 
China, Jalil and Mahmud [6], Du and Wei [7], Wang et al. [8], 
and Hu et al. [9] confirmed that the relationship between 
economic growth and CO2 emissions in China also exhibits as 
an inverted U curve.  

Some scholars illustrated the relationship between 
economic growth and CO2 emissions as other types of curves. 
Dinda [10], McConnell [11], Stem [12], and Task and Zaim 
[13] suggested that the relationship between long-term 
economic growth and CO2 emissions takes the form of an 
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inverted N curve, a positive N curve or an M curve, rather than 
the inverted U curve. 

Some scholars argued that economic growth has nothing to 
do with CO2 emissions. For instance, Wang [14] carried out an 
EKC-based analysis on the panel data in 1971-2007 of 98 
countries, revealing that economic growth is not correlated 
with CO2 emissions. 

To sum up, Chinese and foreign scholars have explored 
deep into the relationship between economic growth and CO2 
emissions, especially from the angle of the EKC. However, 
there is a major defect with the EKC-based research: the 
traditional EKC theory assumes that regional CO2 emissions 
are spatially independent of each other. In simple terms, the 
CO2 emissions of a region have a significant impact on that 
region, but a negligible impact on the surrounding regions.  

Anselin and Rey [15] clearly pointed out that all data are 
correlated in space, especially CO2 emissions. As an important 
greenhouse gas (GHG), CO2 naturally has a certain degree of 
spatial spillover. The spatial correlation of CO2 emissions is 
enhanced by the pollution transfer policies between regions. 
Moreover, China is undergoing the rapid integration of 
regional economies. The spatial dependence between regions 
grows continuously, due to the environmental cooperation and 
technology diffusion across regions. 

Therefore, the spatial correlation between regions must be 
considered before examining the relationship between 
economic growth and CO2 emissions. Otherwise, there might 
be large errors in the research results. On this basis, this paper 
introduces the spatial correlation between regions to the 
empirical verification of the EKC assumption on the 
relationship between economic growth and CO2 emissions. 
 
 
2. METHODOLOGY 

 

2.1 Estimation method for CO2 emissions  

 

The annual report from the World Bank shows that, in most 
countries, 70% of CO2 emissions come from the consumption 
of fossil energy. The proportion is as high as 90% in China, 
for the energy structure is dominated by fossil energy like coal 
and petroleum. Since China’s National Bureau of Statistics has 
not released the data on CO2 emissions in each provincial 
administrative regions (hereinafter referred to as provinces), 
most Chinese scholars estimated CO2 emissions based on the 
consumption of fossil energy [16]. Following this best practice, 
this paper estimates CO2 emissions according to Section 6, Vol. 
2 of the IPCC 2006 Guidelines for National Greenhouse Gas 

Inventories: 
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where, CO2 is the CO2 emissions to be estimated; i is the type 
of energy; E  is the total consumption of all types of energies; 
NCV is the net calorific value of each type of energy; CEF is 
carbon emissions coefficient; COF is carbon oxidation factor 
of each type of energy; 44 and 12 are the molecular weights of 
CO2 and carbon, respectively. 

According to the consumption data released by China’s 
National Bureau of Statistics, i=1, 2, …, 14. Where, 1-14 
represent coal, coke, coke oven gas, blast furnace gas, 
converter gas, other gases, crude oil, gasoline, kerosene, diesel, 
fuel oil, liquefied petroleum gas, natural gas and liquefied 

natural gas, respectively. For simplicity, the consumptions of 
different types of energies, which are measured in different 
units, were converted by the standard coal coefficients (unit: 
10,000 TCE) and added up to obtain the E value. The NCV was 
obtained by converting the consumption of each type of energy 
to the unit TJ. 
 
2.2 Spatial autocorrelation coefficient and local indicators 

of spatial association (LISA) 

 

This paper mainly examines the relationship between 
economic growth and CO2 emissions. Here, CO2 emissions 
specifically refer to the per capita CO2 emissions in each 
province. To construct a robust EKC model, it is necessary to 
confirm whether the per capita CO2 emissions of different 
provinces have significant spatial correlation (spatial 
dependence). The spatial correlation is a spatial attribute of per 
capita CO2 emissions, that is, the clustering of provincial per 
capita CO2 emissions in space. In other words, the per capita 
CO2 emissions of neighboring provinces are highly similar, 
due to the spatial spillover effect.  

Generally, spatial correlation is measured by the spatial 
autocorrelation coefficient: Global Moran’s I [17]: 

 

1 1

2

1 1 1

( )( )
'

( )

n n

ij i j
i j

n n n

i ij
i i j

W x x x x
n

Moran s I

x x W

= =

= = =

− − 

=

−  

 (2) 

 
where, Wij is the spatial weight matrix consisting of zeros and 
ones; xi and xj are the observations of provinces i and j, 
respectively; �̅� =(ixi)/n is the mean observation of all 
provinces.  

Global Moran’s I generally falls within [-1, 1]. If the index 
is -1, the observations are completely negatively correlated in 
space; if the index is 1, the observations are completely 
positively correlated in space; if the index is 0, the 
observations are completely uncorrelated in space. 

Once its value is determined, Global Moran’s I must subject 
to authenticity test, using the Z-score normal distribution. The 
index will pass the authenticity test, if its value is significant 
on three levels: 10%, 5% and 1%. The Z-score can be 
expressed as: 
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Global Moran’s I demonstrates whether the provinces have 

spatial correlation in CO2 emissions on the global scale, failing 
to reflect the spatial distribution of each province in local areas. 
To solve the problem, Local Moran’s I, a.k.a. local indicators 
of spatial association (LISA), was introduced to disclose the 
distribution of each province in the four quadrants (H-H, L-H, 
L-L, H-L) of the spatial coordinate system [18]: 
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2.3 EKC Theory 

 

The relationship between economic growth and 
environmental pollution has always been in the limelight. In 
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1993, Grossman and Krueger proposed the EKC, attracting 
much attention from the academia. According to the EKC 
theory, a country or region has relatively light environmental 
pollution, when the economy just starts to develop. But as the 
economy takes off, both income and resource consumption 
will increase gradually, causing greater pollution to the 
environment. In this stage, economic growth is positively 
correlated with environmental pollution. With further growth 
in economy, the income will reach an inflection point or 
critical value. Then, people will realize the importance of 
environmental protection, and take multiple measures to curb 
the emissions of pollutants to the environment. In this stage, 
economic growth is negatively correlated with environmental 
pollution. Overall, the relationship between economic 
development and environmental pollution is not purely linear, 
but an inverted U curve. 

The EKC theory confirms the existence of a long-term 
internal relationship between economic growth and 
environmental protection. But this does not necessarily mean 
that environmental quality will improve with the rising income. 
The government’s economic measures or environmental 
policies also directly bear on the environment. 

In the light of Grossman and Krueger [3] and Coal [19], the 
traditional EKC model between economic growth and 
environmental pollution can be expressed as: 

 
2

0 1 2Y x x   = + + +  (5) 

 
where, Y is the index of environmental pollution (e.g. per 
capita CO2 emissions); x is the index of economic growth (e.g. 
per capita GDP;  is a random perturbation; 0 is a constant; 
1 and 2 are the parameters of the first- and second-order 
terms of economic growth, respectively.  

The relationship between environmental pollution and 
economic growth depends on the values of 0, 1 and 2: 

(1) If 00 and 20, there is a purely linear relationship 
between Y and x: with the growth in economy, environmental 
pollution either improves or worsens. 

(2) If 10 and 20, there is an inverted U relationship 
between Y and x: as the economy starts to develop, 
environmental pollutants increase with the rapid economic 
growth; once the economy reaches an advanced level, 
pollutant emissions will drop with further economic growth. 
This relationship is the basic form of the EKC model. 

(3) If 10 and 20, there is a U relationship between Y and 
x: as the economy starts to develop, economic growth 
alleviates environmental pollution; once the economy reaches 
an advanced level, economic growth causes environmental 
deterioration.  

(4) If 00 and 10, there is no correlation between Y and 
x: economic growth has no impact on environmental pollution. 
 
2.4 EKC spatial econometric model  

 

In the traditional EKC model, the relationship between 
economic growth and environmental pollution is discussed 
under the assumption that the objects are independent of each 
other, with no heterogeneity in spatial distribution. That is to 
say, the spatial correlation has no effect. The assumption 
obviously goes against the reality. What is worse, the 
traditional EKC model uses the ordinary least squares (OLS) 
method in regression estimation. Thus, the spatial 
autocorrelation test on model residuals is often ignored, 

leading to large deviations in the estimation results of the 
model. To overcome the above defects, the spatial effect 
should be included in the traditional EKC model, creating an 
EKC spatial econometric model. 

Currently, there are two main types of spatial econometric 
models: spatial autoregressive (SAR) model and spatial error 
model (SEM). The SAR model can be expressed as [20]: 
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where, y is the explained variable; X is the set of explanatory 
variables; ρ and λ are parameters of spatial weight matrix, 
reflecting the spatial autoregressive property of the model 
space; W is an nn spatial weight matrix of zeros and ones; W 

y is the product of spatial weight matrix and explained variable, 
i.e. the degree of influence of spatial correlation on model; ε is 
a random error. 

The SEM can be expressed as [21]: 
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where, λ is the spatial error coefficient of an n1-order space, 
reflecting the degree of spatial autocorrelation for the residual 
terms of the model; μ is a normally distributed random error; 
 is the estimation parameter of each explanatory variable, 
reflecting the degree of influence of each explanatory variable 
over the explained variable. 

Besides economic growth, CO2 emissions are also 
influenced by such factors as industry, energy and policy. 
Hence, four influencing factors were included in the EKC 
model as control variables:  

(1) Industrial structure (IND) 
The proportion of different industries in the national 

economy is closely related to CO2 emissions. The secondary 
industry consumes much more energy than primary and 
tertiary industries. Therefore, the proportion of secondary 
industry in the national economy is positively correlated with 
CO2 emissions. 

(2) Energy consumption structure (ECS)  
China is a large consumer of coal, a high-carbon energy 

source. The energy consumption structure can be measured by 
the proportion of coal in the total amount of energies being 
consumed. The greater the proportion is, the higher the CO2 
emissions. 

(3) Level of opening (OPL)  
The growing level of opening, especially the rise of 

import/export trade, helps the host country to introduce and 
absorb advanced low-carbon technologies and management 
skills. In this way, the regional energy consumption will 
become less intense, which promotes energy-saving and 
emissions reduction. 

(4) Environmental regulation (ERS) 
The Chinese government uses environmental regulation as 

a macro-control tool to protect the environment. In general, the 
CO2 emissions of enterprises are controlled by pollution 
charging system and emissions trading system. 
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Based on the above control variables and formulas (5)-(7), 
an EKC spatial econometric model (a general fixed spatial 
effect model) was established for the relationship between 
economic growth (per capita GDP) and environmental 
pollution (per capita CO2 emissions): 
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where, i and t are fixed spatial effect and fixed time effect, 
respectively;  and  are spatial autoregressive coefficient and 
spatial error coefficient, respectively. Both  and  are related 
to spatial correlation in the model. If  is zero and significant, 
then the model is an SEM; if  is zero and significant, then the 
model is an SAR model. 

The explained variable of the model is PCO2: the ratio of 
the estimated CO2 emissions of a province to the year-end 
resident population of that province. 

The main explanatory variables of the model are the first- 
and second-order terms of per-capita GDP (PGDP). The 
estimation coefficients of the two terms reflect the form of the 
EKC. 

The control variables of the model include industrial 
structure (IND) (the proportion of the total output of secondary 
industry in a province to the GDP of that province), energy 
consumption structure (ECS) (the proportion of coal 
consumption to the total energy consumption in each 
province), level of opening (OPL) (the ratio of the total 
import/output value, which is converted from USD into RMB 
at the mean exchange rate, to the GDP in each province), and 
environmental regulation (ERS) (the ratio of the investment on 
industrial pollution control to the total industrial output, 
measured in the unit of 104 yuan, in each province). 

 
2.5 Data sources 

 

Considering data availability and completeness, the panel 
data in 2000-2017 of 30 Chinese provinces were selected for 
our research. Tibet, Hong Kong, Macao and Taiwan were 

excluded, because the data on these provinces are incomplete. 
The research data were collected from the China Statistical 

Yearbook, China Statistical Yearbook on Environment, China 

Energy Statistical Yearbook, and local statistical yearbooks. 
The collected data mainly cover the following variables: 
different types of energies, GDP, per capita GDP, year-end 
resident population, total output of secondary industry, total 
import/export value, investment on industrial pollution control, 
and total industrial output. 
 
 
3. RESULTS 

 

3.1 Province difference in per capita CO2 emissions 

 

Based on the data of various energies, the CO2 emissions of 
the 30 provinces were estimated by formula (1). Then, the CO2 
emissions of each province were divided by the year-end 
resident population, yielding the per capita CO2 emissions of 
each province. The mean per capita CO2 emissions of each 
province in 2000-2017 is displayed in Figure 1. 

It can be seen that the provinces differed greatly in per 
capita CO2 emissions. The top 5 provinces in per capita CO2 
emissions are Inner Mongolia, Ningxia, Shanxi, Tianjin, and 
Liaoning. The per capita CO2 emissions of these provinces 
were all above 9.5 tons. The high per capita CO2 emissions can 
be explained as follows: Located in central and western 
regions, Inner Mongolia, Ningxia, and Shanxi are major coal 
producers in China. In recent years, a huge amount of coal has 
been consumed by the booming industry, emitting a lot of CO2. 
Tianjin and Liaoning are coastal provinces in the eastern 
region. The two provinces have a large demand for fossil 
energy, because their industrial systems are complete and 
dominated by heavy industry.  

Hunan, Jiangxi, Guangxi, Sichuan, and Hainan were the 
bottom five provinces in the ranking of per capita CO2 
emissions. The per capita CO2 emissions of these provinces 
were below 3.5 tons. The low per capita CO2 emissions are 
attributable to the following factors: The five provinces 
consume relatively little fossil energy, because of their 
relatively backward economy, late start of industrial system, 
and low proportion of heavy industry. Located in the southern 
region, these provinces boast abundant hydropower resources, 
and their energy structure is mainly supported by hydropower. 
 

 

 
 

Figure 1. The mean per capita CO2 emissions of each province in 2000-2017 (unit: ton) 
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3.2 Spatial effect of per capita CO2 

 

Based on the spatial weight matrix of zeros and ones, 
GeoDa software was adopted to compute the Global Moran’s 
I values of the per capita CO2 emissions of 30 provinces in 
2000-2017. The results in Table 1 show that the Global 
Moran’s I values of provincial per capita CO2 emissions were 
always positive, passing the significance test on the 5% or 1% 
level. This means the per capita CO2 emissions of different 
provinces have obvious spatial correlation, which greatly 

affect the changes in provincial per capita CO2 emissions. 
Further, it can be concluded that the provincial per capita CO2 
emissions are distributed as clusters, instead of a random and 
free form; the per capita CO2 emissions of neighboring 
provinces are similar to each other. Therefore, the spatial 
effect must be included in the traditional EKC model, before 
probing into the relationship between economic growth and 
CO2 emissions. Otherwise, the model estimation will have 
significant deviations. 

 
Table 1. Global Moran’s I values of provincial per capita CO2 emissions in 2000-2017 

 
Year Global Moran’s I Error (I) Standard deviation (I) Mean P-value 

2000 0.3841 -0.0345 0.1203 -0.0370 3.5004 
2001 0.3559 -0.0345 0.1233 -0.0329 3.1533 
2002 0.3298 -0.0345 0.1202 -0.0395 3.0724 
2003 0.2861 -0.0345 0.1179 -0.0356 2.7286 
2004 0.4201 -0.0345 0.1202 -0.0450 3.8694 
2005 0.4103 -0.0345 0.1249 -0.0280 3.5092 
2006 0.3293 -0.0345 0.1211 -0.0342 3.0017 
2007 0.3833 -0.0345 0.1159 -0.0394 3.6471 
2008 0.3586 -0.0345 0.1096 -0.0377 3.6159 
2009 0.3323 -0.0345 0.1093 -0.0321 3.3339 
2010 0.3814 -0.0345 0.1107 -0.0351 3.7624 
2011 0.3146 -0.0345 0.1065 -0.0375 3.3061 
2012 0.3197 -0.0345 0.1072 -0.0364 3.3218 
2013 0.3440 -0.0345 0.1093 -0.0330 3.4492 
2014 0.3412 -0.0345 0.1159 -0.0359 3.2537 
2015 0.3214 -0.0345 0.1105 -0.0344 3.2199 
2016 0.307 -0.0345 0.1137 -0.0316 2.9780 
2017 0.2621 -0.0345 0.1072 -0.0427 2.8433 
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Figure 2. The LISA scatter plot for the mean per capita CO2 emissions of each province in 2000-2017 

 
The next step is to observe the local distribution of 

provincial per capita CO2 emissions in space. The LISA scatter 
plot (Figure 2) was prepared for the mean per capita CO2 
emissions of each province. There are four quadrants in the 
scatter plot: the first quadrant is the cluster area of high values 
(HH); the second quadrant is an area of spatial outliers; the 
third quadrant is the cluster area of low values (LL); the fourth 
quadrant is another area of spatial outliers. 

In the first quadrant, the per capita CO2 emissions of a 
province and its neighbors are both high; in the second 
quadrant, the per capita CO2 emissions of a province are high, 
while those of its neighbors are low; in the third quadrant, the 

per capita CO2 emissions of a province and its neighbors are 
both low; in the fourth quadrant, the per capita CO2 emissions 
of a province are low, while those of its neighbors are high. 
The provinces falling in the first and third quadrants belong to 
typical cluster areas, while those falling in the second and 
fourth quadrants belong to atypical areas of spatial outliers. 

As shown in Figure 2, 30% of all provinces fell in the first 
quadrant, including Inner Mongolia, Ningxia, Tianjin, 
Shanghai, Jiangsu, Shanxi, Hebei, Liaoning and Jilin; these 
provinces belong to the typical cluster area of high values. 
16.67% of all provinces fell in the second quadrant, including 
Heilongjiang, Gansu, Beijing, Shaanxi and Henan; these 
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provinces belong to an atypical area of spatial outliers. 46.66% 
of all provinces fell in the third quadrant, including Qinghai, 
Zhejiang, Anhui, Chongqing, Fujian, Hubei, Guizhou, Jiangxi, 
Yunnan, Hunan, Guangdong, Hainan, Sichuan, and Guangxi; 
these provinces belong to the typical cluster area of low values. 
6.67% of all provinces fell in the fourth quadrant, including 
Shandong and Xinjiang; the two provinces belong to another 
atypical area of spatial outliers. 

To sum up, the per capita CO2 emissions of most (76.66%) 
provinces fell in the first and third quadrants, i.e. typical 
cluster areas, while only 23.34% provinces fell in the second 
and fourth quadrants. The results afford evidence as to the 
local spatial heterogeneity of provincial per capita CO2 
emissions in China. 

3.3 Empirical results of EKC spatial econometric model 

 

This paper first performs regression analysis on model (8) 
by the OLS, and then uses Matlab 7.12 to test the significance 
of the spatial autocorrelation of the residual terms of the model. 
The estimated results are listed in Table 2. 

To prove the necessity of controlling the fixed effects, Table 
2 also provides the estimated results of the non-fixed effect 
models, the spatial fixed effects model, the time fixed effects 
model and the two-way fixed effects model. The results of the 
four models were compared to reveal the importance of 
controlling the fixed effects to model accuracy.  

 

 

Table 2. Estimated and test results of general panel data models 
 

Variables Non-fixed effects model Spatial fixed effects model Time fixed effects model Two-way fixed effects model 

LnPGDP -0.1803 
(-0.4695) 

1.2823*** 
(6.8059) 

0.2101 
(0.5328) 

0.8187*** 
(4.3577) 

Ln(PGDP2)  0.0420** 
(2.1721) 

-0.0365*** 
(-3.8182) 

0.0371** 
(1.9031) 

-0.0196** 
(-1.9543) 

LnIND 0.2155*** 
(2.7100) 

0.3726*** 
(6.7890) 

0.1314* 
(1.7217) 

0.4572*** 
(6.5452) 

LnECS 0.6623*** 
(14.5124) 

0.3781*** 
(13.02886) 

0.6172*** 
(14.6187) 

0.4001*** 
(14.5715) 

LnOPL -0.0165 
(-1.0036) 

-0.0102 
(-0.5242) 

-0.1271*** 
(-5.3647) 

-0.0147 
(-0.7358) 

LnERS 0.2008*** 
(11.5285) 

0.0518*** 
(6.4450) 

0.2728*** 
(14.0328) 

0.0696*** 
(6.7079) 

R-squared 0.7642 0.9181 0.6985 0.9614 
Log-L 121.8205 398.1032 73.1410 437.2438 
DW 1.0181 2.0464 1.4857 2.3901 

LM-lag 74.1350*** 14.1730*** 62.7034*** 0.2481 
Robust LM-lag 1.7872 11.2657*** 25.9982*** 5.5222** 

LM-err 158.2981*** 4.7148** 38.2598*** 5.4157** 
Robust LM-err 85.9503*** 1.8075 1.5545 10.6898*** 

Note: The bracketed data are t-test results; *, **, and *** are significance levels of 10%, 5% and 1%; model estimation and spatial autocorrelation test were 
conducted on Matlab 7.12. 
 

Table 3. Estimated and test results of spatial econometric models with two-way fixed effects 
 

Variables SAR SEM 

LnPGDP 0.8621*** 
(4.4232) 

0.9528*** 
(5.5463) 

Ln(PGDP2) -0.0217** 
(-2.1132) 

-0.0282*** 
(-3.0526) 

LnIND 0.4513*** 
(6.4189) 

0.4721*** 
(6.7460) 

LnECS 0.4020*** 
(14.6359) 

0.4032*** 
(15.2782) 

LnOPL -0.0155 
(-0.7773) 

-0.0384** 
(-1.9955) 

LnERS 0.0694*** 
(6.7283) 

0.0667*** 
(6.5721) 

W*dep.var.  -0.0299 
(-0.6442) 

 

spat.aut.   -0.2100*** 
(-3.4133) 

R-squared 0.9703 0.9702 
Log-L 437.3773 441.4579 

Note: The bracketed data are t-test results; *, **, and *** are significance levels of 10%, 5% and 1%. 
 

As shown in Table 2, the coefficients of determination, i.e. 
R-squared, of the non-fixed effect models, the spatial fixed 
effects model, the time fixed effects model and the two-way 
fixed effects model were 0.7642, 0.9181, 0.6985 and 0.9614, 
respectively. The two-way fixed effects model had the largest 

coefficient of determination, and thus the best goodness of fit. 
The two-way fixed effects model also achieved the largest 
value, in terms of log-likelihood (Log-L) and Durbin -Watson 
(D-W) statistic. The above results show that the two-way fixed 
effects model has better estimation results than the other three 
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models. Therefore, this model was adopted to interpret the 
relationship between variables. 

The lower half of Table 2 presents the test results on the 
spatial autocorrelation of the residual terms of the model. The 
lag of the Lagrange Multiplier (LM) test, denoted as LM-lag, 
was 0.2481, failing to pass the significance test; the LM-error, 
denoted as LM-err, was 5.4157, which passed the significance 
test on the level of 5%. The results show that the residual terms 
have obvious spatial autocorrelation. If not resolved, the 
spatial autocorrelation will lead to bias in model estimation. 

The spatial autocorrelation of the residual terms cannot be 
eliminated by general models. Hence, spatial econometric 
models with two-way fixed effects were adopted to re-
simulate model (8). The estimated results of the SAR model 
and the SEM are compared in Table 3. 

As shown in Table 3, the SAR model’s spatial lag, 
W*dep.var., was -0.0299, failing to pass the significance test. 
Thus, the SAR model is not suitable for this research. By 
contrast, the SEM had a spatial error, W*dep.var., of -0.2100, 
which passed the the significance test on the level of 1%. The 
comparison proves that the SEM is the best form of our spatial 
econometric model. 

Compared with general models, the SEM output very large 
R-squared and Log-L, the same sign of the estimation 
coefficient of each variable, and a large t-statistic. This means 
the spatial econometric model optimized the results of general 
models. Therefore, the SEM was selected to interpret the 
estimation coefficient of each variable.   

As shown in Table 3, the estimation coefficient of LnPGDP  
and that of Ln (PGDP2) of the SEM were positive and negative, 
respectively. Thus, there must be one inflection point of the 
EKC spatial model, which is in line with the basic form of the 
traditional EKC: economic growth has an inverted U 
relationship with CO2 emissions. The relationship is divided 
by the inflection point into two stages (Figure 3). 
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Figure 3. The inverted U relationship between per capita 
GDP and per capita CO2 emissions 

 
In the first stage, the estimation coefficient of LnPGDP

was 0.9528 and significant on the 1% level. This means the 
rapid economic growth brings lots of CO2 emissions, when the 
economy just starts to develop. In general, economic growth is 
reflected in three dimensions: scale, structure and technology. 
When the economy just starts to develop, the government 
emphasizes the expansion of economic scale over the 
structural upgrading and the technical progress. That is why 
China’s economic growth is featured by high investment, 

pollution and emissions. Under this extensive growth mode, 
the fast growing economy must be backed up by lots of 
production factors. The consumption of fossil energy takes up 
a large portion of production factors, which obviously increase 
the intensity of CO2 emissions. 

In the second stage, the estimation coefficient of Ln (PGDP2) 
was -0.0282 and also significant on the 1% level. This means, 
with the continuous growth of per capita GDP, further 
economic growth suppresses CO2 emissions. It can be seen 
that, once economy surpasses a threshold, the environmental 
awareness will grow with the rising income, i.e. people will 
raise higher demand for high-quality eco-environment. 
Meanwhile, the government will gradually recognize the 
importance of low-carbon transformation of economic 
development, and promote the shift from scale to quality. At 
this time, the government will vigorously implement industrial 
upgrading and transformation, eliminate backward industries 
and reduce excess capacity. In addition, the government will 
encourage enterprises to adopt new low-carbon technologies 
and upgrade production equipment, thereby reducing the 
intensity of energy consumption and controlling emissions. 
Overall, CO2 emissions are cut down by structural 
optimization and advanced technologies, indicating that 
economic growth in the second stage helps to reduce CO2 
emissions. 

Judging by the estimated results, the control variables have 
different degrees of impact on CO2 emissions. 

The industrial structure (IND) had a positive impact on per 
capita CO2 emissions on the significance level of 1%, 
indicating that the proportion of the output of secondary 
industry in GDP promotes the per capita CO2 emissions. The 
result indicates that China is still in the stage of rapid 
industrialization, and industry takes and will take a large 
portion in national economy. This also means that fossil 
energy consumption remains high. 

The energy consumption structure (ECS) had a positive 
impact on per capita CO2 emissions on the significance level 
of 1%, indicating that the proportion of coal in the energy 
structure promotes the per capita CO2 emissions. This finding 
echoes with the relevant data: In 2017, coal took up 62% of all 
energies being consumed, while clean energies like nuclear 
power and hydropower occupied less than 20%. As a 
traditional coal consumer, China still has a coal-dominated 
energy structure, which clearly promotes CO2 emissions. 

The level of opening (OPL) had a negative impact on per 
capita CO2 emissions on the significance level of 5%, 
indicating that import/export trade suppresses the per capita 
CO2 emissions. The result validates the previous assumption 
that: As China deepens foreign trade, the trade products will 
gradually shift from low-end products to high-tech products. 
The gradual shift promotes the low-carbon upgrading of 
regional industry, and lowers the intensity of energy 
consumption. 

The environmental regulation (ERS) had a positive impact 
on per capita CO2 emissions on the significance level of 1%, 
indicating that the rise in the investment on industrial pollution 
control actually promotes CO2 emissions. A possible reason is 
the immature system of environmental regulation in China. 
The excessive government intervention has not forced 
enterprises to reduce emissions, but distorted the resource 
allocation, creating the environmental paradox. 

Figure 3 also compares the estimated results of general 
model and our spatial model. It can be seen that the estimated 
results of both models exhibited as inverted U curves. 
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However, the inverted U curve of our spatial model was higher 
and steeper than that of the general model. Therefore, the 
economic growth in our spatial model has greater impact on 
CO2 emissions than that in the general model. Moreover, the 
inflection point of our spatial model appeared earlier than that 
of the general model. Thus, the general model has a certain lag 
in EKC estimation, inducing errors in environmental policies. 

 
 

4. DISCUSSION 

 

Over the past 40 years, China has developed into the second 
largest economy in the world, with an annual economic growth 
rate of 9.5%. The economic growth is accompanied by heavy 
energy consumption and severe eco-environmental problems. 
Being the largest CO2 emitter, China must take more energy-
saving and emissions reduction measures to achieve the goal 
of reducing the CO2 emission per unit of GDP by 40-45% 
before 2020. Unfortunately, neither the intensity of energy 
consumption nor that of CO2 emissions is expected to decline, 
for the country is striving to build a well-off society in an all-
round and further promoting industrialization and urbanization. 

Against this backdrop, the Chinese government is faced 
with an arduous task: Under the premise of maintaining the 
healthy economic growth, controlling CO2 emissions within a 
reasonable range, without severely affecting energy supply 
and daily lives. To effectively promote energy-saving and 
emissions reduction, it is critical to explore the internal 
relationship between economic growth and CO2 emissions, 
and identify the influencing factors of CO2 emissions. 

The traditional EKC model ignores the spatial dependence 
in the relationship between economic growth and CO2 
emissions, which leads to errors in research conclusions. 
Referring to theories of spatial econometrics, this paper 
introduces the spatial effect into the traditional EKC model, 
and takes industrial structure, energy consumption structure, 
level of opening and environmental regulation as control 
variables. On this basis, an EKC spatial econometric model 
was established with multiple control variables, and used to 
verify if the relationship between economic growth and CO2 
emissions in China satisfies the EKC model. 

From a fresh perspective, this research validates the 
assumption that the relationship between economic growth 
and CO2 emissions can be illustrated as an EKC, estimates the 
EKC of the CO2 emissions in China in an accurate manner, 
and correctly predicts the form and inflection point of the 
curve. In addition, the influencing factors (other than 
economic growth) of CO2 emissions and their degree of 
impacts were analyzed accurately, enabling governments at all 
levels to formulate reasonable carbon reduction policies. 
 

 

5. CONCLUSIONS 

 

Energy depletion and environmental pollution are two 
major bottlenecks of sustainable development of economy in 
China. Thus, it is of great significance to coordinate the 
development of economy, energy and environment. This paper 
selects the panel data in 2000-2017 of 30 provinces as objects, 
estimates the CO2 emissions of each province, and calculates 
provincial per capita CO2 emissions. Next, the spatial 
autocorrelation coefficient and the LISA scatter plot were 
adopted to study the spatial effect of per capita CO2 emissions. 
Finally, the spatial effect was introduced to the traditional 

EKC model, creating an EKC spatial econometric model about 
the relationship between economic growth and CO2 emissions. 
The research results are as follows: 

First, the provinces differed greatly in per capita CO2 
emissions. Based on the mean value in 2000-2017, the per 
capita CO2 emissions of Inner Mongolia, Ningxia, Shanxi, 
Tianjin, and Liaoning were all above 9.5 tons, while those of 
Hunan, Jiangxi, Guangxi, Sichuan and Hainan were all below 
3.5 tons. 

Second, the Global Moran’s I values show a significant 
spatial correlation between provincial per capita CO2 
emissions. The LISA scatter plot indicates that, in terms of per 
capita CO2 emissions, most provinces belong to the cluster 
areas of high values (H-H) and low values (L-L), while only a 
few belong to the areas of spatial outliers. The results indicate 
the local spatial heterogeneity of provincial per capita CO2 
emissions. 

Third, the EKC spatial econometric model outperforms the 
general econometric model in estimation accuracy. Besides, 
the EKC spatial econometric model shows that the economic 
growth has a significant inverted U relationship with CO2 
emissions. In other words, with the growth in economy, the 
CO2 emissions firstly increase and then decrease. The two-
stage relationship obeys the basic form of the traditional EKC. 

Fourth, the estimated results of control variables indicate 
that CO2 emissions are clearly promoted by industrial structure, 
energy consumption structure and environmental regulation, 
but suppressed by the level of opening. 
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