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ABSTRACT
Higher interconnectivity among devices, machines, the cloud and humans is envisioned in the actual 
trend of automation, also known as Industrial Internet of Things (IIoT). These industrial control 
systems, which may require high availability and/or safety related capabilities, are no longer isolated 
from the corporate environment or Internet. Software updates will be needed during the product life 
cycle, due to the long service life, the increasing number of security related vulnerabilities discovered 
on these industrial control systems and the high interconnectivity desired in IIoT. These updates aim 
at fixing all these security weaknesses, bugs and vulnerabilities that could appear, while the required 
safety integrity levels are ensured. Security-related concerns have just been addressed by the safety 
engineering community, because of the increasing number of cyber-attacks against safety-critical 
systems, such as Stuxnet. Moreover, system shut-downs caused by software updates could not be 
plausible when high availability is required. Typically, in order to perform the software update, the 
whole industrial process or the production is halted, so that the software upgrade is safely applied. 
However, this scenario might not be applied in critical infrastructures, such as nuclear or hydro-
electrical power plants, where these production and service interruptions are not acceptable from the 
business and service point of view. This article presents an analysis of existing dynamic software 
updating techniques, which may be applied for safe and secure industrial control systems. These 
techniques aim at updating the running code, without the need of a halt and restart, increasing the 
availability of the industrial system.
Keywords: dynamic software updates, patches, safety, security, critical infrastructures

1 INTRODUCTION
In the actual trend of automation, also called Industrial Internet of Things (IIoT), high inter-
connectivity is requested. Sensors, actuators, processing units and people are connected to 
each other with the aim of conceiving a smart industrial system. Safety functions are carried 
out by some of the devices, so accidents and incidents which could impact on health are pre-
vented. However, due to the high inter-connectivity among these industrial control systems, 
security concerns gain importance, especially for safety-critical systems, since these systems 
are no longer isolated from the open communications channels.

The first significant cyber-attack compromising safety and security, which targeted indus-
trial control systems, was the Stuxnet computer virus. It was identified in 2010 and according 
to Ralph Langen it is possible to assume that the Natanz Uranium Enrichment plant in Iran 
was the only goal [1]. This malicious program targeted general-purpose and high-end Pro-
grammable Logic Controllers (PLC). Because of the increasing number of cyber-attacks 
against safety-critical systems, the safety engineering community has started to address those 
cyber-security threats, which can alter the proper functioning of safety-related systems [2, 3]. 
In this paper, the problem statement is first described and an analysis of existing dynamic 
software updating (DSU) techniques applicable to industrial systems then provided. A case 
study about nuclear reactor safety systems is finally given, where the need and use of DSU 
techniques is claimed.
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2 PROBLEM STATEMENT
New security flaws are discovered every day. As reported by Kaspersky lab, the number of 
vulnerabilities in industrial control systems keeps growing. In 2015, 189 vulnerabilities 
were published, where 42% of them had medium severity and 49% were critical [4]. Like-
wise, the number of reported cyber-security incidents by the Industrial Control Systems 
Cyber Emergency Response Team (ICS-CERT) has grown since the inauguration of the 
team in 2009. Figure 1 depicts the total number of registered incidents per year, while the 
amount of reported incidents on some of the critical infrastructure sectors are also 
illustrated.

In order to keep the security level through the product service life, the software within the 
system needs to be updated periodically, as the same time as security flaws are discovered. 
However, a system shutdown due to a software update could not be plausible when high-avail-
ability is demanded. Examples of such scenario are a complex and demanding production 
line, a hydro-electrical power plant or a nuclear reactor control and protection system. In 
these cases, halting the control systems because of a software update may lead to compro-
mise the safety properties of the process. This approach may not be practical from the 
business perspective. Moreover, if the shutdown process is not immediate, the system remains 
vulnerable until a safe power-off state is reached. This is the case when the safety-related 
system needs to actively maintain essential safety services. Cases of such scenarios are air-
craft and nuclear reactor safety-critical systems. These services shall also be held up in case 
of a cyber-attack, since absence of process control may lead to hazardous events and 
accidents.

Figure 1: Reported cyber-security incidents in critical infrastructures by ICS-CERT.
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3 DYNAMIC SOFTWARE UPDATING
Dynamic Software Updating (DSU) consists on updating a computer program while it is 
being executed without the need of a halt and restart. Redundant hardware is often used as an 
alternative to this approach to modify a running system on the fly. For this purpose, a second-
ary machine is employed. When a system update is desired, the new version of the code is 
loaded to the secondary system and the necessary state or information passed from the pri-
mary. After that, a role change between these machines is performed, where the primary 
machine is turned into the secondary, and the secondary into the primary one [5].

The execution of a computer program can be considered as a tuple ,P δ( ), where P is the 
program code and δ  is the current program state. The current program state δ  can include the 
state maintained by the operating system for the program P (such as file descriptors or open 
network connections), the heap, stack frames and program counters. In contrast, the program 
code P includes a set instructions executable by the system. The dynamic software updating 
mechanism transforms the actual running program P,δ( ) to a new version ,′ ′( )P δ . For this, 
the program code is first updated and the actual program state δ  then transformed to ’

δ , so it 
is coherent with the new program code ′P  [5, 6].

A dynamic software update process consists of three aspects, which are: code transforma-
tion, state transformation and the update point. The code transformation refers to the 
process of updating the executable code, while the state transformation stands for the pro-
cedure of transforming the actual state of the program, so it understandable by the new 
program. Finally, update point refers to the execution instance where the software update 
occurs. The term update time is also employed, which denotes the time instance when the 
update takes place. Both of them refer to the same execution/time occurrence. Figure 2 shows 
the process time-line of a dynamic software updating process:

In case that the application is multi-threaded, the process becomes more challenging. 
Firstly, the executable code and the program state from each thread needs to be transformed. 
Secondly, it is required that all threads to reach an update point and wait to the others. Nev-
ertheless, the possibility of unbounded delays of those threads when reaching an update point 
could lead to a service interruption from the application. Furthermore, a deadlock may occur, 
when a given thread is waiting for access given resource before reaching an update point, 
while another one has already reached it without releasing the resource. The application 
would then be halted [6, 7].

Figure 2: Dynamic Software Updating process time-line.
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4 ANALYSIS OF EXISTING SYSTEMS
Over the years, many DSU systems have been proposed. These systems target many kind of 
applications, from real-time control purposes to servers and databases [8, 9]. Moreover, for-
mal approaches have also been proposed, where DSU support at the programming language 
level is investigated. An underlying theory for programming languages which offer DSU 
features named Proteus is presented by Stoyle [10]. This theory is a calculus program and it 
was applied to the design and implementation of updatable C-programs. The most important 
challenges reside on how to address the unsafe features of C programming language, and how 
to design an efficient DSU feature.

Some of the actual programming languages already provide DSU support. Four program-
ming languages were analysed by de Pina [11], which are: Common LISP, Smalltalk, Erlang 
and UpgradeJ. Even that these programming languages provide high-level DSU features; the 
developer is required to write the target applications on those languages. Consequently, the 
usage of these approaches is restricted for those applications developed from scratch in these 
languages. Incompatibility issues while integrating already existing libraries with the target 
application written in such programming language may also arise.

Another approach was followed by P. Hosek and C. Cadar [12, 13]. In this case, taking 
advantage of virtualization technologies, the new program version is executed in parallel with 
the old one, where their executions are synchronized. The aim of this technique is to maintain 
the stability of the old version while new features and bug fixes from the new version are also 
offered. A prototype called MX was implemented, where several applications where exe-
cuted on multi-version mode. The system is composed upon three main components. The first 
one is the Static Executable Analyser (SEA), which performs a static analysis on both version 
binaries. The second one is the Multi-eXecution Monitor (MXM), where both versions are 
executed concurrently. Finally, the Runtime Execution Manipulator (REM) selects between 
the available behaviours and resynchronizes both versions in case of a divergence.

Commonly, the DSU systems provide a dynamic patch building system that generates a 
dynamic patch. It has to be noted that, as stated by Hicks [5], the concept of a dynamic patch 
differs from the regular static patch (diff and patch commands on UNIX), where it is described 
as the differences between sources of two program versions. A dynamic patch can consist on 
new updated executable code, new global variables, type/state transformers and additional 
meta-data. This information is then transferred to the DSU runtime system, where after 
receiving a DSU request, the DSU process is carried out [14]. These systems most often pro-
vide a set of tools, such as custom-compilers, source-to-source patch generators or source 
analysers in order to create dynamic patches. CIL [15] and LLVM [16] compilation, source 
analysis and transformation tools are commonly utilized [11].

In order to generate a dynamic patch, several tasks need to be accomplished by the dynamic 
patch building system [5, 11]. These activities are often monitored and/or aided by the devel-
oper. These tasks are:

1. Identification and syntactical comparison of the new program version against the old 
one(s).

2. Adaptation of the program (source and/or object) so it can be updatable.
3. Construct the type/state transformer functions (whenever possible).
4. DSU meta-data generation, where the information about current program version is de-

fined.
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A review of techniques, evaluation metrics and a survey of existing DSU systems have 
already been provided [8, 9]. These systems are categorized according to the used or charac-
terized code transformation, state transformation and update point techniques and 
attributes. The DSU mechanisms are also assessed and discussed against the defined evalua-
tion metrics. In this section, DSU systems which could be feasible for safe and secure 
industrial control applications are analysed. They have been divided into three categories, as 
similarly done by de Pina [11] and Seifzadeh et al. [8], which are:

•  Compiled application-oriented DSU systems which target applications compiled to an 
executable binary. These objects are then executed natively.

 • Kernel-oriented DSU systems which target the core of an operating system.

•  Real time-oriented DSU systems, which have specifically been created for real-time, em-
bedded or industrial control systems.

In the analysis carried out about DSU techniques by de Pina [11], compiled application and 
kernel groups were merged into a single one, since the core of an operating system can be 
considered a special purpose compiled application. Usually, the C programming language is 
used for this purpose. This programming language is usually also considered on compiled 
application-oriented DSU systems. The following Table 1 presents the analysed DSU sys-
tems. Note that the DSU systems are not ordered according to the date within each category. 
A similar arrangement used by de Pina [11] and Seifzadeh et al. [8] has been employed.

Table 1: Analysed DSU systems.

Name Target Date

DLpop

Compiled application

2001
Dynsec 2005
POLUS 2013
DynSec 2007
UpStare 2009
Ginseng 2008
Ekiden 2011
Kitsune 2012
Lucos

Kernel

2006
DynAMOS 2007
KSplice 2009
K42 2006
PROTEOS 2013
DURTS

Real-time

2004
EmbedDSU 2011
Gracioli 2014
EcoDSU 2008
Seif-Real 2009
Wahler 2009
FASA 2014
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At the time of writing, and to the best of our knowledge, KSplice and its successors KPatch 
and KGraft mechanisms are only the DSU systems, which are applied and offered commer-
cially for the Linux kernel. Live patching services are provided through these techniques, 
respectively, by Oracle Linux Premier Support, Red Hat and SUSE. The livepatch system 
was created in 2014 by Red Hat, unifying the KGraft and KPatch approaches, which is actu-
ally available at the mainstream kernel. In these DSU systems, only code transformations at 
function level are performed [17].

All the DSU systems targeting compiled applications perform dynamic updates in top of 
an UNIX-like operating system, usually GNU/Linux running on an x86 computer. Besides, 
UpStare has been tested on Linux 2.4–2.6 running on an i386 architecture computer, Solaris 
5.10 running on a SPARC computer and MAC OSX running on a PowerPC computer [6, 18, 
19]. However, none of these DSU systems provide real time features, which may be needed 
for an industrial control application. Except from DynSec, all the DSU systems targeting 
compiled applications present a dynamic patches building toolchain. In case of DSU systems 
designed for operating system kernels, LUCOS [20], DynAMOS [21] and KSplice [17, 22] 
(and its successors KGraph and KPatch) target the Linux kernel while K42 is the operating 
system kernel itself, designed to provide customizability, scalability and maintainability [23–
26]. PROTEOS [27, 28] is designed for the MINIX 3 operating system, which is compatible 
with the POSIX interface [29]. In this DSU system, where process level upgrades are per-
formed, automatic state transfers are provided. PROTEOS is executed on x86 computers and 
according to the author, the proposed technique can be easily applied to other operating sys-
tems, for example: L4, Integrity or QNX.

DURTS [30] is the only real-time DSU targeting a UNIX-like operating system, specifi-
cally, the RT-Mach operating system. Other specific operating systems where used on 
EmbedDSU [31] and Gracioli [32]. While EcoDSU [33] works purely on bare metal, without 
the support of an operating system, Wahler [34] and FASA (Future Automation System 
Architecture) [35–38] are operating system agnostics. This means that any operating system 
can be used. Nevertheless, they shall be POSIX-compatible.

None of the analysed DSU system provides a safety compliant solution. As stated by 
Wahler et al. [39], the biggest challenge for updating the software of real-time systems is that 
they often need to be certified according to standards such as the IEC 61508 [40]. If the soft-
ware of such system is updated, the system as a whole must be re-certified before it can be 
used in the field. Most of the DSU systems perform software upgrades on top of an UNIX-
like operating systems, which are not advised for safety-related systems, even that initiatives 
to evaluate and assess the Linux kernel against safety standards exist [41, 42].

Wahler, FASA and PROTEOS systems are the closest proposed solutions towards a safe-
ty-compliant DSU technique, since as stated by the authors, the described techniques are 
compatible with any POSIX-compliant operating system, where a safety certified one could 
be chosen. In case of PROTEOS, the core of the operating system needs to be modified. Con-
sequently, after the changes, it shall be re-certified. Nevertheless, Wahler and FASA take 
advantage of the operating system utilities, so the DSU is transparent to the underlying oper-
ating system. The application, libraries and the dynamic updating mechanism running on top 
of the operating system shall be then certified.

One of the requirements for the safety assessment is the schedulability analysis, where it is 
ensured that tasks are executed and completed according to their timing requirements. This 
property was examined from the DSU perspective in DURTS [30] and Seif-Real [43]. Just 
the main idea was presented in Seif-Real, without specifying any of the code transforma-
tion, state transformation and update point aspects.
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5 CASE STUDY
In 2010, the Stuxnet virus demonstrated that nuclear facilities are also exposed to cyber- 
security threats [44]. As shown in Fig. 1, a notorious increment of cyber-security incidents in 
nuclear sector (from 7 to 63) was registered last year by the Industrial Control Systems Cyber 
Emergency Response Team (ICS-CERT). Thus, due to the increasing number of vulnerabili-
ties on industrial control systems and long operational life of these installations software 
updates are necessary, so security weaknesses, bugs and vulnerabilities are resolved. In this 
case study, nuclear reactor safety systems are evaluated as far as security software updates are 
concerned. We claim that due to the complexity and criticality of nuclear processes, dynamic 
software updates are necessary.

5.1 Nuclear reactor safety systems

When an anomalous behavior or unsafe conditions of the reactor is detected, the Reactor 
Protection System (RPS) shall effectuate an emergency shutdown. The nuclear reaction chain 
is then broken through the insertion of control rods. In presence of failure of the RPS, a sec-
ondary shutdown mechanism, such as boron injection, is used. At this point, even the nuclear 
reactor is powered off, decay heat is still produced as an effect of radiation [45]. At the time 
instance that the reactor is shutdown, the decay heat is approximately the 6.5% of the previ-
ous reactor power, assuming that a steady and long power history was accomplished. The 
following Fig. 3 shows the decay heat decrease after one year of reactor operation from the 
time instance in which it was taken down [46].

Although the nuclear reactor is shutdown, because of the decay heat, essential safety func-
tions have to be carried out to cool down the reactor. If the decay heat is not removed, unsafe 
conditions of the reactor can be reached, which could lead to a nuclear disaster [44, 45]. For 
example, a partial meltdown of the unit 2 on the Three-Mile Island took place after reactor 
shutdown because equipment failure and operator fault. On the contrary, in Fukushima, even 
the reactors were turned off after the earthquake, the tsunami incapacitated all the emergency 

Figure 3: Nuclear reactor decay heat after 12 months of operation
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power supply generators necessary for the reactor cooling systems. In consequence, Units 1, 
2 and 3 were meltdown [47].

5.2 Security updates

If security weaknesses, bugs or vulnerabilities are discovered on the reactor safety systems, a 
decision of upgrading or not the affected equipment has to be taken. On the one hand, if the 
protection system is decided to be updated, the whole nuclear process shall be first halted, so 
the software upgrade is safely applied. This might not be conceivable from the business and 
service point of view. In contrast, the safety integrity level would be compromised if the 
update is applied while operation of the nuclear reactor, because the power-off of the safety 
system is required. On the other hand, if the decision of not updating the system is taken, the 
system would remain attackable. As the system is no longer secure, it is not safe either. Thus, 
the only approach which does not compromise safety is to halt the whole process, which it 
may not be acceptable from the service and business perspective. Note that, nuclear reactors 
are usually run without interruption for one or two years once the fuel is allocated.

The scenario get worse in case a cyber-attack is detected while the reactor safety systems 
continue being vulnerable. If the cyber-attack compromises the reactor protection systems, a 
nuclear accident might be unavoidable. On the assumption that the attack is identified in time, 
or provoked anomalies detected, the nuclear reactor would be powered-off by the reactor 
protection systems. In order to prevent any kind of software infection or other similar conse-
quences, these systems could also be halted afterwards. However, even the nuclear reactor is 
shutdown, other safety systems shall maintain essential services, such as cooling of the reac-
tor or the backup power supply. These safety systems are then totally at the mercy of the 
cyber-attack, since an appropriate operation of these systems is necessary in order to have 
under control the reactor. In absence of control, a nuclear disaster could be imminent. The 
attackers could also take down on purpose these safety-critical systems. Only those systems 
enabled with dynamic updating features could be upgraded in situ, so consequences of the 
cyber-attack could be mitigated. These techniques give the possibility of solving these 
cyber-security issues without the interruption of the service and safety properties.

6 CONCLUSIONS
Due to the increasing number of vulnerabilities in industrial control systems, software updates 
are needed. However, a system shutdown due to a software update is not acceptable for those 
applications where zero downtime is required, for example aircraft, hydro-electrical or nuclear 
safety-critical systems. In this article, an analysis of existing dynamic software updating tech-
niques for safe and secure industrial control systems is given. These mechanisms aim at 
upgrading the actual running program while it is executing without of need of halt and restart.

As claimed by Wahler et al. [39], software within safety-critical systems has to usually be 
certified according to safety standards. A high safety confidence level is also required for the 
software development and supporting tools. To the best of our knowledge, no applicable 
safety-compliant DSU mechanism exists, but Wahler, FASA and PROTEOS systems are the 
closest proposed solutions towards a safety-compliant one. Nevertheless, further work is nec-
essary, especially to ensure and validate the integrity and correctness of those software 
updates. Consequently, at the time of writing, the only approach to update safety-critical 
systems on-the-fly is redundancy.
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