an airfoil with synthetic jet control using Large-eddy simulation. Center for Turbulence Research-Annual Research Briefs 45: 311-321.

- [11] Jain M, Puranik B, Agrawal A. (2011). A numerical investigation of effects of cavity and orifice parameters on the characteristics of a synthetic jet flow. Sensor and Actuators A: Physical 165(2): 351-366. https://doi.org/10.1016/j.sna.2010.11.001
- [12] Lv Y, Zhang J, Shan Y. (2014). Numerical investigation for effects of actuator parameters and excitation frequencies on synthetic jet fluidic characteristics. Sensor and Actuators A: Physical 219: 100-111. https://doi.org/10.1016/j.sna.2014.08.009
- [13] Batikh A, Caen R, Colin S, Kourta A, Boisson H. (2008). Numerical and experimental study of micro synthetic jets for active flow control. International Journal of Heat and Technology 26(1): 139-145. https://doi.org/10.18280/ijht.260119
- [14] Mane P, Mossi K, Rostami A, Brayant R, Castro N. (2007). Piezoelectric actuators as synthetic jet cavity dimension effects. Journal of Intelligent Material System and Structure 18: 1175-1190. https://doi.org/10.1177/1045389X06075658
- [15] Tang H, Zhong S. (2005). 2D numerical study of circular synthetic jets in quiescent flows. The Aeronautical Journal 109(1092): 89-97. https://doi.org/10.1017/S0001924000000592

NOMENCLATURE

Dccavity width, mDoorifice width, m

f actuation frequency of diaphragm, m

h _c	height of cavity, m
\mathbf{h}_{o}	height of orifice, m
L	Stroke length, dimensionless
р	pressure, pa
Re	Reynolds number, dimensionless
Re _L	Reynolds number established on
	dimensionless Stroke length, dimensionless
S	Stokes number, dimensionless
$\mathbf{S}_{\mathbf{r}}$	Strouhal number, dimensionless
Т	time period, 1/s
t	time, s
u	radial velocity field, m/s
Uo	average velocity of synthetic jet, m/s
ut	instantaneous velocity of synthetic jet, m/s
u _{max}	peak velocity at orifice exit, m/s
B1	axial dimensions of quiescient air, mm

B2 lateral dimensions of quiescient air, mm

Greek symbols

ρ	density of fluid, kg/m ³	

- μT kinematic turbulent viscosty, m²/s μ dynamic viscosity, kg/ms
- μ dynamic viscosity, kg/ms
 ν kinematic viscosity, m²/s
- Δ diaphragm displacement, mm

Subscript

0	average
cl	centreline
t	instantaneous
max	maximum
i	inlet
W	wall