beam with transverse shear and transverse normal effect. Departmental Report No 4, Applied Mechanics Department, Government College of Engineering, Aurangabad, India, pp. 1-96.

NOMENCLATURE

NOMENCLA	ΓURE	w'(x)	derivative of $w(x)$ with respect to x
l b	length of beam width of beam	$\begin{array}{cccc} a_1 & a_2 \\ c_1 & c_2 & c_3 & c_4 \end{array}$	constants of integration
t x, y, z 3D	thickness of beam three dimensional Cartesian coordinate three dimensional (three dimensions)	$p_0 P$	intensity of uniformly distributed load point load
$\varphi(x)$	rotation due to shear deformation	J	integral
γ_{xz}	transverse shear angle	\iint	double integral
$\alpha(x)$	rotation due to bending deformation longitudinal coordinate axis of beam	∭	triple integral or volume integral
w $\varepsilon_{xx}, \varepsilon_{yy}, \varepsilon_{zz}$	transverse deflection normal strains	$\frac{d}{dx}$	ordinary derivative with respect to x
$\gamma_{xy}, \gamma_{yz}, \gamma_{xz}$	shear strains	Subscripts	
$\sigma_{xx}, \sigma_{yy}, \sigma_{zz}$	normal stresses	•	
$\tau_{xy}, \tau_{yz}, \tau_{xz}$	shear stresses	f	flexural
G E μ	shear modulus Young's modulus of elasticity Poisson's ratio	b max	shear bending maximum
u, v, w	displacement field components in the x , y , and z coordinate directions respectively	Superscripts	
k	shear correction (modification) factor	c	corrected
M(x)	bending moment shear force	T	Timoshenko
Q(x) U V	strain energy functional potential of external load	Abbreviations	
Π $p(x)$	total potential energy functional applied load distribution	EBT R^3	Euler-Bernoulli beam theory three dimensional region of integration

A

Ι

F

 ∂

area of cross-section

integrand in the total potential energy

partial derivative with respect to w

moment of inertia

functional