beam with transverse shear and transverse normal effect. Departmental Report No 4, Applied Mechanics Department, Government College of Engineering, Aurangabad, India, pp. 1-96. ## NOMENCLATURE | NOMENCLA | ΓURE | w'(x) | derivative of $w(x)$ with respect to x | |--|---|--|---| | l
b | length of beam width of beam | $\begin{array}{cccc} a_1 & a_2 \\ c_1 & c_2 & c_3 & c_4 \end{array}$ | constants of integration | | t
x, y, z
3D | thickness of beam
three dimensional Cartesian coordinate
three dimensional (three dimensions) | $p_0 P$ | intensity of uniformly distributed load point load | | $\varphi(x)$ | rotation due to shear deformation | J | integral | | γ_{xz} | transverse shear angle | \iint | double integral | | $\alpha(x)$ | rotation due to bending deformation longitudinal coordinate axis of beam | ∭ | triple integral or volume integral | | w $\varepsilon_{xx}, \varepsilon_{yy}, \varepsilon_{zz}$ | transverse deflection
normal strains | $\frac{d}{dx}$ | ordinary derivative with respect to x | | $\gamma_{xy}, \gamma_{yz}, \gamma_{xz}$ | shear strains | Subscripts | | | $\sigma_{xx}, \sigma_{yy}, \sigma_{zz}$ | normal stresses | • | | | $\tau_{xy}, \tau_{yz}, \tau_{xz}$ | shear stresses | f | flexural | | G
E
μ | shear modulus
Young's modulus of elasticity
Poisson's ratio | b
max | shear
bending
maximum | | u, v, w | displacement field components in the x , y , and z coordinate directions respectively | Superscripts | | | k | shear correction (modification) factor | c | corrected | | M(x) | bending moment
shear force | T | Timoshenko | | Q(x) U V | strain energy functional potential of external load | Abbreviations | | | Π $p(x)$ | total potential energy functional applied load distribution | EBT R^3 | Euler-Bernoulli beam theory three dimensional region of integration | A Ι F ∂ area of cross-section integrand in the total potential energy partial derivative with respect to w moment of inertia functional