the plate SAH, whereas this difference is not significant in comparison with the gain in the thermal performances.

ACKNOWLEDGMENT

The authors want to express their acknowledgment and gratitude to Mr. Youcef Bekkari and Mr. Rizq Abu-Hasnah (ex-master students at the University of Biskra) for their technical assistance in the preparation of the experimental setup.

REFERENCES

- Kuma, V., Prasad, L. (2018). Performance prediction of three sides hemispherical dimple roughened solar duct. Instrumentation Mesure Métrologie, 17(2): 273-293. https://doi.org/10.3166/I2M.17.273-293
- [2] Labed, A., Moummi, N., Aoues, K., Benchabane, A. (2016). Solar drying of henna (Lawsonia inermis) using different models of solar flat plate collectors: An experimental investigation in the region of Biskra (Algeria). Journal of Cleaner Production, 112: 2545-2552. https://doi.org/10.1016/j.jclepro.2015.10.058
- [3] Murmu, R., Kumar, P., Singh, H.N. (2018). Experimental investigation on heat transfer and friction factor for an inclined spherical ball roughened solar air heater. Instrumentation Mesure Métrologie, 17(1): 7-36. https://doi.org/10.3166/I2M.17.7-36
- [4] Blaise, K.K., Magloire, K.E.P., Prosper, G. (2018). Thermal performance evaluation of an indirect solar dryer. Instrumentation Mesure Métrologie, 17(1): 131-151. https://doi.org/10.3166/I2M.17.131-151
- [5] Labed, A., Moummi, N., Benchabane, A., Zellouf, M. (2015). Experimental analysis of heat transfer in the flow channel duct of solar air heaters (SAHs). International Journal of Heat and Technology, 33(3): 97-102. http://dx.doi.org/10.18280/ijht.330314
- [6] Gawande, V.B., Dhoble, A.S., Zodpe, D.B., Chamoli, S. (2016). Analytical approach for evaluation of thermo hydraulic performance of roughened solar air heater. Case Studies in Thermal Engineering, 8: 19-31. https://doi.org/10.1016/j.csite.2016.03.003
- [7] Sahu, M.K., Prasad, R.K. (2017). Thermohydraulic performance analysis of an arc shape wire roughened solar air heater. Renewable Energy, 108: 598-614. https://doi.org/10.1016/j.renene.2017.02.075
- [8] Gupta, D., Solanki, S.C., Saini, J.S. (1997). Thermohydraulic performance of solar air heaters with roughened absorber plates. Solar Energy, 61(1): 33-42. https://doi.org/10.1016/S0038-092X(97)00005-4
- [9] Prasad, B.N., Kumar, A., Singh, K.D.P. (2015). Optimization of thermo hydraulic performance in three sides artificially roughened solar air heaters. Solar Energy, 111: 313-319. https://doi.org/10.1016/j.solener.2014.10.030

- [10] Sharma, S.K., Kalamkar, V.R. (2015). Thermohydraulic performance analysis of solar air heaters having artificial roughness-a review. Renewable and Sustainable Energy Reviews, 41: 413-435. https://doi.org/10.1016/j.rser.2014.08.051
- [11] Mahboub, C., Moummi, N., Brima, A., Moummi, A. (2016). Experimental study of new solar air heater design. International Journal of Green Energy, 13(5): 521-529.

https://doi.org/10.1080/15435075.2014.968922

- Singh, A.P., Singh, O.P. (2018). Performance enhancement of a curved solar air heater using CFD. Solar Energy, 174: 556-569. https://doi.org/10.1016/j.rser.2014.08.051
- [13] Singh, A.P., Singh, O.P. (2019). Thermo-hydraulic performance enhancement of convex-concave natural convection solar air heaters Solar Energy, 183: 146-161. https://doi.org/10.1016/j.solener.2019.03.006
- [14] Singh, A.P., Singh, O.P. (2019). Curved vs. flat solar air heater: performance evaluation under diverse environmental conditions. Renewable Energy, 145: 2056-2073.

https://doi.org/10.1016/j.renene.2019.07.090

[15] Duffie, J.A., Beckman, W.A. (2013). Solar Engineering of Thermal Processes. Wiley, New York. https://doi.org/10.1002/9781118671603

NOMENCLATURE

Ι Solar radiation, W.m⁻² Mass flow rate of the air, kg.s⁻¹ ṁ Specific heat of the air, J. kg⁻¹. K⁻¹ C_P De Dean number $D_{\rm H}$ Hydraulic diameter, m Heat removal factor based on air outlet F_0 temperature \mathbf{P}_{m} Electrical power consumption, W Qsa Amount of heat absorbed, W.m⁻² Qu Amount of useful heat, W.m⁻² Amount of heat lost, W.m⁻² Qp Amount of stored heat, W.m⁻² Qsk $U_{\rm L}$ Overall loss coefficient, W.m-2.K-1 Reynolds number Re $R_{\rm C}$ Curvature radius, (m) S_{abs} Surface of the absorber, m² Ta Ambient temperature, °C T_{in} Air inlet temperature, °C T_{out} Air outlet temperature, °C V_v Wind speed, m.s⁻¹

Greek symbols

η_{th}	Thermal efficiency (%)
τ	Transmittance
α	Absorptance