model. IEEE Transactions on Neural Networks and Learning Systems, 23(1): 97-107. https://doi.org/10.1109/TNNLS.2011.2178443

 [6] Bouzid, M., Champenois, G., Bellaaj, M., Signac, L., Jelassi, K. (2008). An effective neural approach for the automatic location of stator inter turn faults in induction motor. IEEE Transactions on Industrial Electronics, 55(12): 4277-4289.

https://doi.org/10.1109/TIE.2008.2004667

- [7] Dash, R.N., Subudhi, B. (2010). Stator inter-turn fault detection of an induction motor using neuro - fuzzy techniques. Archives of Control Sciences, 20(LVI3): 363-376. https://doi.org/10.2478/v10170-010-0022-7
- [8] Zidani, F., El Hachemi Benbouzid, M., Diallo, D., Nait-Said, M.S. (2003). Induction motor stator faults diagnosis by a current Concordia pattern-based fuzzy decision system. IEEE Transactions on Energy Conversion, 18(4): 469-475. https://doi.org/10.1109/TEC.2003.815832
- [9] Menacer, A., Nait-Said, M., Drid, S. (2004). Stator current analysis of incipient fault into asynchronous motor rotor bars using fourier fast transform. Journal of Electrical Engineering, 55(6): 122-130.
- [10] Kechida, R., Menacer, A., Benakcha, A. (2010). Fault detection of broken rotor bars using stator current spectrum for the direct torque control induction motor. International Journal of Electrical and Computer Engineering, 4(6): 988-993.
- [11] Menacer, A., Moreau, S., Benakcha, A., Nait-Said, M. (2006). Effect of the position and the number of broken bras on asynchronous motor stator current spectrum. EPE-Power Electronics and Motion Control, Portoroz, Slovenia, pp. 973-978.
- [12] Djafar, D., Belhamdi, S. (2018). Speed control of induction motor with broken bars using sliding mode control (SMC) based to on Type-2 fuzzy logic controller (T2FLC). Advances in Modelling and Analysis C Journal, 73(4): 197-201. https://doi.org/10.18280/ama_c.730409
- [13] Chen, S., Zivanovic, R. (2010). Modelling and simulation of stator and rotor fault conditions in induction machines for testing fault diagnostic

techniques. European Transactions on Electrical Power, 20: 611-629.

- [14] Khodja, D.E., Kheldoun, A. (2009). Three-phases model of the induction machine taking account the stator faults. International Science, 3(4): 124-127.
- [15] Khodja, D.E., Chetate, B. (2008). ANN based double stator asynchronous machine diagnosis taking torque change into account. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 55(12): 1125-1129. https://doi.org/10.1109/speedham.2008.4581174

APPENDIX

Table 4. Appendix for simulation broken bar

Symbol	Definition	Value	
Pn	output power	1.1	kW
Vs	stator voltage per phase	220	V
Fs	stator frequency	50	Hz
р	poles pair number	1	
Ŕs	stator resistance	7.58	Ω
Rr	rotor resistance	6.3	Ω
Rb	rotor bar resistance	0.15	m Ω
Re	resistance of end ring segment	0.15	m Ω
Lb	rotor bar inductance	0.1	μH
Le	inductance of end ring	0.1	μH
Lsf	leakage inductance of stator	0.0265	Η
Nr	number of rotor bars	16	
Ns	number of turns per stator phase	160	
J	moment of inertia	0.0054	kg m ²
e	Air-gap mean diameter	2	mm

Table 5. Appendix for simulation short-circuit between coils

Symbol	Definition	Value	
Rs	stator resistance	1.633	Ω
Rr	rotor resistance	0.93	Ω
Lr	inductance of rotor	0.076	Н
Ls	inductance of stator	0.142	Н
J	moment of inertia	0.0111	kg m ²
Ms	mutual inductance stator nets	0.099	Н