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The objective of this study is to present artificial intelligence (AI) technique for detection and 

localization of fault in induction machine fault, through a multi-winding model for the 

simulation of four adjacent broken bars and three-phase model for the simulation of short-

circuit between turns. In this work, it was found that the application of artificial neural 

networks (ANN) based on Root mean square values (RMS) plays a big role for fault detection 

and localization. The simulation and obtained results indicate that ANN is able to detect the 

faulty with high accuracy. 
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1. INTRODUCTION

With the advantages of induction machine especially in 

durability and cost, it has recently become the most widely 

used in the field of control systems with fault detection and 

diagnosis. Studies in this area have evolved considerably in 

order to avoid recurrent malfunctions that occur in the machine. 

Thus, no control system is safe from failure. Therefore, it is 

very important to pre-detect the various defects that may occur 

in these systems through the use of traditional or modern 

methods that allow us to monitor and control by taking 

preventive action to detect these incidents sudden accidents on 

the machine [1]. 

The diagnosis of stator turns short-circuit faults and broken 

bars at rotor level during the operation of induction machine is 

assignment difficult. Thus the major problem is connected 

how to detect faults. Therefore, early detection of turns short-

circuits and broken bars during machine operation would 

remove following harm to adjacent coils and the stator and 

bearing at rotor [2, 3]. In this context, during the last two 

decades, the fault diagnosis of in asynchronous machine has 

turn on interest great from researchers. Main research has been 

executed for the development of various techniques and 

methods for fault detection and diagnosis. It has proposed an 

algorithm for the online detection of rotor bar breakage in 

induction motors based on the use of wavelet packet 

decomposition and neural networks [4]. A new set of feature 

coefficients is obtained by the WPD of the stator current, 

during used to build a neural network for fault detection, so 

thus accurately differentiates between healthy and faulty 

conditions. The algorithm analyzes rotor bar faults by WPD of 

the induction motor stator current. Whereas Seera et al., [5] 

suggest the insert a novel approach to detect and classify 

comprehensive fault conditions of induction motors using a 

hybrid fuzzy min–max (FMM) neural network and 

classification and regression tree (CART) is proposed based 

on MCSA technique used for stator-current signal acquisition, 

where by the motor current signature analysis method is 

applied to form a database comprising stator current signatures 

under different motor conditions. Among the works for turns 

in short-circuit for detection and locate faults is the work [6, 

7] Bouzid et al., and Dash, et al., present the importance of

using a technique neural network (NN) by a feed forward

multilayer-perceptron trained by back propagation. While

Zidani et al. [8], which proposes the problem of detection and

diagnosis of induction motor faults introducing the fuzzy logic

strategy, based on the stator current Concordia patterns on and

a better understanding of heuristics underlying the motor faults

detection and diagnosis.

To solve these defects, this paper establishes a tow model 

based on a multi-winding and three-phase, to simulate broken 

bars and turns in short-circuit, with the aim faults diagnosis at 

an early stage. The findings extraction gives light new to the 

application of neural networks based on RMS to facilitate 

detection and localization. 

This paper is organized as follows: Section 1 introduces two 

models multi-winding and three-phase, Section 2 describes the 

way neural networks work by dependence on RMS values. 

Finally, we present the obtained results and verification of 

induction machine behavior using artificial neural networks 

(ANN). 

2. INDUCTION MACHINE FAULTY MODEL

To generate the healthy and faulty states, we use two models: 

multi winding and three-phase of induction machine. As 

described below. 

2.1 Multi winding model 

The equations of model fault of induction motor can be 

written as [9, 10]: 

[L]
dI

dt
= [V] − [R][I]          (1) 
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Iqs
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With defect model of the rotor in order to simulate the defect 

of rotor broken bars, a fault resistance RRF is given: 

 

[RRF] = [RR] +

[
 
 
 
 
 
 
0 ⋯ 0
⋮ … ⋮
0 ⋯ 0

0 0 ⋯
⋮ ⋮ ⋮
0 0 0

⋯
…
⋯

0 … 0
0 ⋯ 0
0 ⋯ 0

−
Rbk −Rbk 0
Rbk Rbk 0
0 0 0

⋯
⋯
⋯

⋮ ⋯ ⋮        ⋮              ⋮       ⋮ …]
 
 
 
 
 
 

 

 

where, the four terms of this matrix are [11, 12]: 

 

𝐑𝐫𝐝𝐝 =  𝟐𝐑𝐛(𝟏 − 𝐜𝐨𝐬(𝐚)) + 𝟐
𝐑𝐞

𝐍𝐫
+

𝟐

𝐍𝐫
(𝟏 −

𝐜𝐨𝐬(𝐚))∑ 𝐑𝐛𝐤𝐟(𝟏 − 𝐜𝐨𝐬 (𝟐𝐤 − 𝟏)𝐚 )𝐤                                     (2) 

 

𝐑𝐫𝐝𝐪 = −
𝟐

𝐍𝐫
(𝟏 − 𝐜𝐨𝐬(𝐚))∑ 𝐑𝐛𝐤𝐟𝐬𝐢𝐧 (𝟐𝐤 − 𝟏)𝐚)𝐤     (3) 

 

𝐑𝐫𝐪𝐝 = −
𝟐

𝐍𝐫
(𝟏 − 𝐜𝐨𝐬(𝐚))∑ 𝐑𝐛𝐤𝐟𝐬𝐢𝐧 (𝟐𝐤 − 𝟏)𝐚)𝐤     (4) 

 

And 

 

Rrqq = 2Rb(1 − cos(a)) + 2
Re
N r

+
2

Nr
(1 − cos(a))∑Rbkf(1 + cos(2k − 1) a)

k

 

 

2.2 Three-phase model 

 

Another method for modeling of the induction machine is 

presented. The defects of short-circuit between coils, taking 

into account the changing parameters such as resistors and 

inductors based on the classics assumptions. The machine can 

be modeled by the following equations [13]: 

 

[Vs] = [Rs][Is] +
d

dt
[Φs]                              (5) 

 

[0] = [Rr][Ir] +
d

dt
[Φr]                                (6) 

 
[𝛷𝑠] = ([𝑀𝑠𝑠] + [𝐿𝑠])[𝐼𝑠] + [𝑀𝑠𝑟][𝐼𝑟])          (7) 

 
[𝛷𝑟] = [𝑀𝑟𝑠][𝐼𝑠] + ([𝑀𝑟𝑟] + [𝐿𝑟])[𝐼𝑟]           (8) 

 

The following matrices represent voltages, currents, and 

fluxes at the stator: 

[𝑉𝑠] = [

𝑉𝑠𝑎
𝑉𝑠𝑏
𝑉𝑠𝑐

] ; [𝐼𝑠] = [

𝐼𝑠𝑎
𝐼𝑠𝑏
𝐼𝑠𝑐

] ; [𝛷𝑠] = [

𝛷𝑠𝑎
𝛷𝑠𝑏
𝛷𝑠𝑐

] 

 

The matrices represent voltages, currents, and fluxes at the 

rotor, the coefficients of short–circuit as following: 

Short-circuit coefficient relative to the 1st stator phase: 

 

𝐾𝑠𝑎 =
𝑁𝑐𝑐1
𝑁𝑠

 

 

Short-circuit coefficient relative to the 2nd stator phase: 

 

𝐾𝑠𝑏 =
𝑁𝑐𝑐2
𝑁𝑠

 

 

Short-circuit coefficient relative to the 3nd stator phase: 

 

𝐾𝑠𝑐 =
𝑁𝑐𝑐3
𝑁𝑠

 

 

With Ncc: The number of turns in short-circuit. 

The number of useful turns for the three stator phases, is 

then given by: 

 

𝑁1 = 𝑁𝑠 −𝑁𝑐𝑐1 = (1 − 𝐾𝑠𝑎)𝑁𝑠 = 𝑓𝑠𝑎𝑁𝑠 
 

𝑁2 = 𝑁𝑠 − 𝑁𝑐𝑐2 = (1 − 𝐾𝑠𝑏)𝑁𝑠 = 𝑓𝑠𝑏𝑁𝑠 
 

𝑁3 = 𝑁𝑠 − 𝑁𝑐𝑐3 = (1 − 𝐾𝑠𝑐)𝑁𝑠 = 𝑓𝑠𝑐𝑁𝑠 

 

The matrixes [𝑅𝑠], [𝐿𝑠𝑓], [𝑀𝑠𝑠], [𝑀𝑠𝑟], [𝑀𝑟𝑠]  depend of 

three coefficient 𝑓𝑠𝑎 , 𝑓𝑠𝑏 , 𝑓𝑠𝑐 are given by the following terms: 

 

[𝐿𝑠𝑓] = [

𝑓𝑠𝑎
2𝐿𝑠𝑓 0 0

0 𝑓𝑠𝑎
2𝐿𝑠𝑓 0

0 0 𝑓𝑠𝑎
2𝐿𝑠𝑓

]             (9) 

 

[𝑀𝑠𝑠] = 𝑀𝑠

[
 
 
 
 𝑓𝑠𝑎

2 −
𝑓𝑠𝑎𝑓𝑠𝑏

2
−
𝑓𝑠𝑎𝑓𝑠𝑐

2

−
𝑓𝑠𝑎𝑓𝑠𝑏

2
𝑓𝑠𝑏

2 −
𝑓𝑠𝑐𝑓𝑠𝑏

2

−
𝑓𝑠𝑎𝑓𝑠𝑐

2
−
𝑓𝑠𝑐𝑓𝑠𝑏

2
𝑓𝑠𝑐

2
]
 
 
 
 

       (10) 

 
[𝑀𝑠𝑟]

=  𝑀

[
 
 
 
 
 𝑓𝑠𝑎 𝑐𝑜𝑠 𝜃 𝑓𝑠𝑎 𝑐𝑜𝑠 (𝜃 +

2𝜋

3
) 𝑓𝑠𝑎 𝑐𝑜𝑠 (𝜃 −

2𝜋

3
)

𝑓𝑠𝑏 𝑐𝑜𝑠 (𝜃 −
2𝜋

3
) 𝑓𝑠𝑏 𝑐𝑜𝑠 𝜃 𝑓𝑠𝑏 𝑐𝑜𝑠 (𝜃 +

2𝜋

3
)

𝑓𝑠𝑐 𝑐𝑜𝑠 (𝜃 +
2𝜋

3
) 𝑓𝑠𝑐 𝑐𝑜𝑠 (𝜃 −

2𝜋

3
) 𝑓𝑠𝑐 𝑐𝑜𝑠 𝜃 ]

 
 
 
 
 

 

 

With [𝑀𝑠𝑟] = [𝑀𝑟𝑠]
𝑡. 

The matrix of stator resistances [𝑅𝑠] is given by: 

 

[𝑅𝑠] = 𝑅𝑠 [

𝑓𝑠𝑎 0 0
0 𝑓𝑠𝑏 0

0 0 𝑓𝑠𝑐

]                   (11) 

 

The set of rotor variables (flows and currents) can be 

changed to new variables with the same pulsation as the stator 

variables. Thus, all the parameters of the model will be 

independent of the angular position "θ" the transformation is 

428



 

given by the following matrix [14] 

 

[𝑇] =

[
 
 
 
 
 𝑐𝑜𝑠(𝜃 +

1

2
) 𝑐𝑜𝑠(𝜃 +

2𝜋

3
) +

1

2
𝑐𝑜𝑠 (𝜃 −

2𝜋

3
) +

1

2

𝑐𝑜𝑠(𝜃 −
2𝜋

3
) +

1

2
𝑐𝑜𝑠(𝜃 +

1

2
) 𝑐𝑜𝑠(𝜃 +

2𝜋

3
) +

1

2

𝑐𝑜𝑠(𝜃 +
2𝜋

3
) +

1

2
𝑐𝑜𝑠(𝜃 −

2𝜋

3
) +

1

2
𝑐𝑜𝑠(𝜃 +

1

2
) ]

 
 
 
 
 

 

 

It is easy to show that this matrix is orthogonal: 

 

[𝑇]−1 = [𝑇]𝑇                                    (12) 

 

Considering the Eq. (7) using the matrices T as: 

 
[𝛷𝑠]  = [𝑀𝑠][𝐼𝑠] + [𝑀𝑠𝑟][𝐼𝑟] 
= [𝑀𝑠][𝐼𝑠] + [𝑀𝑠𝑟][𝑇]

−1[𝑇][𝐼𝑟]            (13) 

 

When Simplify the equation written: 

 
[𝛷𝑠] = [𝑀𝑠][𝐼𝑠] + [𝑀𝑠𝑟

𝑠 ][𝐼𝑟
𝑠]                         (14) 

 

where, 

 
[𝑀𝑠𝑟

𝑠 ] = [𝑀𝑠𝑟
𝑠 ][𝑇]−1 and [Ir

s] = [𝑇][𝐼𝑟] 
 

With: 

 

[𝑀𝑠𝑟
𝑠 ] =

[
 
 
 
 𝑓𝑠𝑎𝑀 −𝑓𝑠𝑎

𝑀

2
−𝑓𝑠𝑐

𝑀

2

−𝑓𝑠𝑏
𝑀

2
𝑓𝑠𝑏𝑀 −𝑓𝑠𝑐

𝑀

2

−𝑓𝑠𝑐
𝑀

2
−𝑓𝑠𝑐

𝑀

2
𝑓𝑠𝑐𝑀 ]

 
 
 
 

            (15) 

 

The global model of the induction machine in the presence 

of stator failures. 

 

Flux equations: 

 
𝑑𝛷𝑟𝑎
𝑑𝑡

= 𝛿 (𝑓𝑠𝑎𝑖𝑠𝑎 −
𝑓𝑠𝑏
2
𝑖𝑠𝑏 −

𝑓𝑠𝑐
2
𝑖𝑠𝑐) −

𝑅𝑟𝐴

𝐶
𝛷𝑟𝑎 

−(
𝑅𝑟𝐵

𝐶
+

√3

3
𝜔𝑟)𝛷𝑟𝑏 − (

𝑅𝑟𝐵

𝐶
+

√3

3
𝜔𝑟)𝛷𝑟𝑐               (16) 

 
𝑑𝛷𝑟𝑏
𝑑𝑡

= 𝛿 (−
𝑓𝑠𝑎
2
𝑖𝑠𝑎+𝑓𝑠𝑏𝑖𝑠𝑏 −

𝑓𝑠𝑐
2
𝑖𝑠𝑐) 

  −(
𝑅𝑟𝐵

𝐶
+

√3

3
𝜔𝑟)𝛷𝑟𝑎 −

𝑅𝑟𝐴

𝐶
𝛷𝑟𝑏 − (

𝑅𝑟𝐵

𝐶
+

√3

3
𝜔𝑟)𝛷𝑟𝑐      (17) 

 
𝑑𝛷𝑟𝑐
𝑑𝑡

= 𝛿 (−
𝑓𝑠𝑎
2
𝑖𝑠𝑎 −

𝑓𝑠𝑏
2
𝑖𝑠𝑏+𝑓𝑠𝑐𝑖𝑠𝑐) 

−(
𝑅𝑟𝐵

𝐶
+

√3

3
𝜔𝑟)𝛷𝑟𝑎 − (

𝑅𝑟𝐵

𝐶
+

√3

3
𝜔𝑟)𝛷𝑟𝑏 −

𝑅𝑟𝐴

𝐶
𝛷𝑟𝑐    (18) 

 

Stator current equations: 

 

 
𝑑𝑖𝑠𝑎
𝑑𝑡

= 𝑉𝑆𝐴 + 𝐾𝐴1𝑖𝑠𝑎 + 𝐾𝐴2𝑖𝑠𝑏 + 𝐾𝐴3𝑖𝑠𝑐 + 

𝐾𝑓𝑠𝑎𝑓𝑠𝑏
2 𝑓𝑠𝑐

2 (𝐺𝛷𝑟𝑎 + (
√3

2
𝜔𝑟 −

𝐺

2
)𝛷𝑟𝑏 − (

√3

2
𝜔𝑟 −

𝐺

2
)𝛷𝑟𝑐)  (19) 

 
𝑑𝑖𝑠𝑏
𝑑𝑡

= 𝑉𝑆𝐵 + 𝐾𝐵1𝑖𝑠𝑎 + 𝐾𝐵2𝑖𝑠𝑏 + 𝐾𝐵3𝑖𝑠𝑐 + 

𝐾𝑓𝑠𝑎𝑓𝑠𝑏
2 𝑓𝑠𝑐

2 (−(
√3

2
𝜔𝑟 −

𝐺

2
)𝛷𝑟𝑎 + 𝐺𝛷𝑟𝑏 + (

√3

2
𝜔𝑟 −

𝐺

2
)𝛷𝑟𝑐)(20) 

 

𝑑𝑖𝑠𝑐
𝑑𝑡

= 𝑉𝑆𝐶 + 𝐾𝐶1𝑖𝑠𝑎 + 𝐾𝐶2𝑖𝑠𝑏 + 𝐾𝐶3𝑖𝑠𝑐 + 

𝐾𝑓𝑠𝑎𝑓𝑠𝑏
2 𝑓𝑠𝑐

2 ((
√3

2
𝜔𝑟 −

𝐺

2
)𝛷𝑟𝑎 − (

√3

2
𝜔𝑟 +

𝐺

2
)𝛷𝑟𝑏 +𝛷𝑟𝑐)   (21) 

 

Used coefficients: 

 

𝑉𝑆𝐴 = 𝑑1𝑓𝑠𝑎
2 𝑓𝑠𝑐

2𝑢𝑠𝑎 + 𝑑2𝑓𝑠𝑎𝑓𝑠𝑏𝑓𝑠𝑐
2𝑢𝑠𝑏 + 𝑑2𝑓𝑠𝑎𝑓𝑠𝑏

2 𝑓𝑠𝑐𝑢𝑠𝑐 
 

𝑉𝑆𝐵 = 𝑑2𝑓𝑠𝑎𝑓𝑠𝑏𝑓𝑠𝑐
2𝑢𝑠𝑎 + 𝑑1𝑓𝑠𝑎

2 𝑓𝑠𝑐
2𝑢𝑠𝑏 + 𝑑2𝑓𝑠𝑎

2 𝑓𝑠𝑏𝑓𝑠𝑐𝑢𝑠𝑐 
 

𝑉𝑆𝐴 = 𝑑2𝑓𝑠𝑎𝑓𝑠𝑏
2 𝑓𝑠𝑐𝑢𝑠𝑎 + 𝑑2𝑓𝑠𝑎

2 𝑓𝑠𝑏𝑓𝑠𝑐𝑢𝑠𝑏 + 𝑑1𝑓𝑠𝑎
2 𝑓𝑠𝑏

2 𝑢𝑠𝑐 
 

𝐴 = (𝑙𝑟𝑓 +𝑀𝑟)
2
−

𝑀𝑟
2

4
; 𝐵 =

𝑀𝑟𝑙𝑟𝑓

2
+

3𝑀𝑟
2

4
; 

𝐶 = 𝑙𝑟𝑓
3 + 3𝑙𝑟𝑓

2𝑀𝑟 +
9

4
𝑀𝑟

2𝑙𝑟𝑓; 𝛿 =
𝑀𝑠𝑟𝑅𝑟(𝐴−𝐵)

𝐶
; 

𝑇 =
𝑀𝑠𝑟

2𝑅𝑟(𝐴−𝐵)
2

𝐶2
; 𝑧 = 𝑀𝑠𝑟 −

3𝑀𝑠𝑟
2𝑅𝑟(𝐴−𝐵)

2𝐶
; 

𝜆 = 𝑧 + 𝑙𝑠𝑓; 𝐻 = 𝜆2 −
𝑧𝜆

2
−
𝑧2

4
 

 

|𝛤| = 𝑓𝑠𝑎
2𝑓𝑠𝑏

2𝑓𝑠𝑐
2 (𝜆3 −

3𝑧2𝜆

2
−

  𝑧3

4
); 𝑑1 = (𝑧 + 𝑙𝑠𝑓)

2
−

  𝑧2

4
; 

𝑑2 = 𝑧(𝑧 + 𝑙𝑠𝑓)
2
+

  𝑧2

4
; 𝐾 =

𝑀𝑠𝑟𝐻(𝐴−𝐵)

𝐶|𝛤|
; 𝐺 =

𝑅𝑟(𝐴−𝐵)

𝐶
 

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 𝐾𝐴1= −

3

2
(𝑑1 + 𝑑2)𝑇𝑓𝑠𝑎

2𝑓𝑠𝑏
2𝑓𝑠𝑐

2 + 𝑅𝑠𝑑1𝑓𝑠𝑎𝑓𝑠𝑏
2𝑓𝑠𝑐

2

𝐾𝐴2= −
3

2

(𝑑1 + 3𝑑2)

2
𝑇𝑓𝑠𝑎𝑓𝑠𝑏

3𝑓𝑠𝑐
2 + 𝑅𝑠𝑑2𝑓𝑠𝑎𝑓𝑠𝑏

2𝑓𝑠𝑐
2

𝐾𝐴3= −
3

2

(𝑑1 + 3𝑑2)

2
𝑇𝑓𝑠𝑎𝑓𝑠𝑏

2𝑓𝑠𝑐
3 + 𝑅𝑠𝑑2𝑓𝑠𝑎𝑓𝑠𝑏

2𝑓𝑠𝑐
2

𝐾𝐵1= −
3

2

(𝑑1 + 3𝑑2)

2
𝑇𝑓𝑠𝑎

3𝑓𝑠𝑏𝑓𝑠𝑐
2 + 𝑅𝑠𝑑2𝑓𝑠𝑎

2𝑓𝑠𝑏𝑓𝑠𝑐
2

𝐾𝐵2= −
3

2
(𝑑1 + 𝑑2)𝑇𝑓𝑠𝑎

2𝑓𝑠𝑏
2𝑓𝑠𝑐

2 + 𝑅𝑠𝑑1𝑓𝑠𝑎
2𝑓𝑠𝑏 𝑓𝑠𝑐

2

𝐾𝐵3= −
3

2

(𝑑1 + 3𝑑2)

2
𝑇𝑓𝑠𝑎

2𝑓𝑠𝑏𝑓𝑠𝑐
3 + 𝑅𝑠𝑑2𝑓𝑠𝑎

2𝑓𝑠𝑏 𝑓𝑠𝑐
2

𝐾𝐶1= −
3

2

(𝑑1 + 3𝑑2)

2
𝑇𝑓𝑠𝑎

3𝑓𝑠𝑏
2 𝑓𝑠𝑐 + 𝑅𝑠𝑑2𝑓𝑠𝑎

2𝑓𝑠𝑏
2  𝑓𝑠𝑐

𝐾𝐶2= −
3

2

(𝑑1 + 3𝑑2)

2
𝑇𝑓𝑠𝑎

  2 𝑓𝑠𝑏
3𝑓𝑠𝑐 + 𝑅𝑠𝑑2𝑓𝑠𝑎

2𝑓𝑠𝑏
2  𝑓𝑠𝑐

𝐾𝐶3= −
3

2
(𝑑1 + 𝑑2)𝑇𝑓𝑠𝑎

2𝑓𝑠𝑏
2𝑓𝑠𝑐

2 + 𝑅𝑠𝑑1𝑓𝑠𝑎
2 𝑓𝑠𝑏

2  𝑓𝑠𝑐

 

 

The torque equation is given by: 

 

𝐶𝑒 = 𝑃
𝑀𝑠𝑟

𝐿𝑟
[(𝐼𝑠𝑏𝛷𝑟𝑐 − 𝐼𝑠𝑐𝛷𝑟𝑏) − (𝐼𝑠𝑎𝛷𝑟𝑐 − 𝐼𝑠𝑐𝛷𝑟𝑎) +

 (𝐼𝑠𝑎𝛷𝑟𝑎 − 𝐼𝑠𝑏𝛷𝑟𝑏)]                             (22) 

 

In this case, the more frequent bar breaks at the rotor level, 

we will present the rotor defects at the instant: t=1s break a bar, 

t=2s break two bars, t=3s break three bars, and t=4s break four 

bars, we apply a load of Cr=3.5Nm at t=0.5s, the value of the 

resistance of the broken bar will be considered equal to eleven 

(11) times, the value of the initial resistance. The currents of 

the stator phases are always out of phase by 120°. The 

modulation of the envelope of the stator current after the 

breaks of the bars is also noted, the increase of the amplitude 

of proportional to the number of broken bars which appears in 

the figures (1-2). With regard to the simulation of short-circuit 

faults between coils in an induction machine, in a first case, 

we presented the shapes of the stator currents in the case 

operation and with short-circuit-type faults between 40 turns 
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(25%), and the second case we apply short circuit faults 

between 20 turns (12.5%). As shown in Figures (3-4 -5-6). 

 

 
 

Figure 1. Stator current in case broken four bar   

 

 
 

Figure 2. Stator phase current (a,b,c)  

 

 
 

Figure 3. Stator current in case type short-circuit faults 

between 40 turns (25%) 

 

 

 
 

Figure 4. Stator phase current (a,b,c) in case of short-circuit 

faults between 40 turns (25%) 

 

 
 

Figure 5. Stator current in case of short-circuit faults 

between 20 turns (12.5%) 

 

 
 

Figure 6. Stator phase current (a,b,c)  in case  of short-circuit 

faults between 20 turns (12.5%) 
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3. APPLICATION OF NEURAL NETWORKS 
 

To application of neural networks to solve the problem of 

the diagnosis of failures of an electromechanical system, two 

major steps must be applied [15]: 

• The first consists of studying the problem to be solved to 

validate its adaptability with a resolution by neural networks 

and define the objectives to be achieved in order to be able to 

control the quality of the chosen solution. 

• The second is focused on the technique of neural network; 

it includes the choice of the type of network and its 

implementation (the type of learning and the number of hidden 

layers) depending on the characteristics of the problem studied 

and the objectives set. 

The learning base of the ANN is put in the form of a file or 

table (matrix). The latter is represented by classes of vectors, 

where each class represents a type of operation, and each 

vector is represented by the effective values. In this case, each 

vector consists of 7 parameters (Ia, Ib, Ic, Va, Vb, Vc and w). 

These represent the input layer of the ANN. In fact, to go to 

the classification stage, for each we have parameters of 7 types 

of operation including normal operation. 

Very rich databases (normal and abnormal operations), 

which have a lot of information about the defect. For this phase 

the following tasks have been realized: 

• The machine was simulated in normal operation (healthy 

state); 

• The machine has been simulated in abnormal mode (in the 

presence of defects: one broken bar, two bars, three bars, and 

four bars); 

• The machine has been simulated in abnormal mode (in the 

presence of defects: short-circuit between 40 and 20 turns). 

The Table 1 shows the classification step that, we have got in 

case of healthy and faulty state. 

 

Table 1. Classification of the several faults 

 
Fault Type Symbol Code 

  S1 S2 S3 S4 

Healthy state HS 0 0 0 0 

One broken bar BO 1 0 0 0 

Two broken bars BT 0 1 0 0 

Three Broken bars BTH 0 0 1 0 

Four broken bars BF 0 0 0 1 

Short circuit between 40 coils SCBT1 1 0 1 0 

Short circuit between 20 coils SCBT2 1 1 0 0 

 

For artificial neural networks (ANN) Block construction 

using multilayer perceptrons have been shown to be effective 

for form classification. The neural network we tested is 

multilayer network that use the back propagation algorithm for 

their learning. The purpose of this algorithm is to fit the 

synaptic weights so as to minimize the average value of the 

error on the set of drives. Therefore, the use of a layered neural 

network is preferable to try to solve the problem. The networks 

used are multi-layer networks, comprising an input layer that 

corresponds to the retina, an output layer that corresponds to 

the decision, and a number of so-called hidden layers. These 

hidden layers constitute the variables of internal representation 

of the problems. The network construction steps can be 

divided as follows: 

• Choice of the inputs of the network, we use the effective 

values of the variables (Isa, Isb, Isc, Va, Vb, Vc and W) to 

determine the number of entries of the network (number of 

neurons of the hidden layer), which indicate that the number 

of entries in this network is equal to 7 variables 

• Choice of the outputs, i.e. determination of the number of 

outputs and their nature, to facilitate the interpretation of the 

results of the output of the network by the expert system, our 

choice was oriented on the binary numbers (0,1) As the outputs 

are binary and the actual inputs, the output function will be a 

linear function and the activation function a sigmoid function. 

• Determination of the number of hidden neurons and the 

number of hidden layers: they will be determined by trial and 

error from a learning algorithm. As illustrated in the following 

Figure 7: 

 

 
 

Figure 7. Detection and localization defects by neural 

networks 

 

 

4. CALCULATION OF ROOT MEAN SQUARE (RMS) 

 

The effective value of a quantity is the square root of the 

sum of the squares of the constant term and the effective values 

of the various sinusoidal terms of the development in series: 

 

𝑅𝑀𝑆 = √
1

𝑡
∫ 𝑢(𝑡)2𝑑𝑡
𝑡

0
                             (23) 

 

For a signal sampled by a sampling step Te. 𝑢(𝑡)2 will be 

known only at the sampling instants: ∫ 𝑢(𝑡)2𝑑𝑡
𝑡

0
 and can be 

approximated by the area between 𝑢(𝑡)2 discretized and the 

time axis. 

For N samples: ∫ 𝑢(𝑡)2𝑑𝑡
𝑡

0
 ≅  ∑ 𝑢𝑖

2 × 𝑇𝑒𝑁−1
𝑖=0 so: 𝑅𝑀𝑆 ≅

√
1

𝑁×𝑇𝑒
∑ 𝑢𝑖

2 × 𝑇𝑒𝑁−1
𝑖=0  

𝑅𝑀𝑆 ≅ √
1

𝑁
∑𝑢𝑖

2

𝑁−1

𝑖=0

 

 

The results for the different types of input signals are 

detailed in the following graph, see Figure 8.  

These graphs show the performance of the calculation 

method of RMS for square signal and sine signal.  

 

 
 

Figure 8. Result of RMS calculation 
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5. NETWORK TEST  

 

Neural network tests concern the verification of the 

performance of a network and its learning capacity. Once the 

network has been calculated, it is always necessary to carry 

out tests to verify that our network reacts correctly, the 

learning is a very important phase for the deployment of a 

neural network during which the behavior of the network is 

changed until the desired behavior is achieved In fact, these 

examples belong to two databases, the first one being the 

learning base and the second one being the test base of the 

neuron network on the case that belonged to the learning base 

of the neuron network the give better results and allows to 

estimate the generalization capacity of the network by evaluate 

types of functioning in case (healthy and defects) and the 

identified exactly by the three networks, this can be explained 

by the results obtained in the learning phase of the three 

networks (whose mean squared error values are close to zero). 

Regarding the test, the three networks on the examples are 

presented in the tables below. 
 

Table 2. Test three networks 
 

Number of 

neurons 

Entry 

layer 

Hidden 

layer 

Exit 

layer 

Mean 

square 

error 

ANN 1 7 8 4 6.23xe-16 

ANN 2 7 7 4 5.18xe-12 

ANN 3 7 6 4 9.64xe-12 

 

By learning the three networks using MTLAB software 

where we obtain the smallest quadratic error. For the first 

network we obtained the smallest error after 135 iterations, 

and for the second network after 22 iterations, and for the third 

network after 21 iterations According to the following Figure 

9. 
 

 
ANN 1 

 
ANN 2 

 
ANN 3 

 

Figure 9. Evaluation of the quadratic error as a function of 

the number of learning iterations 

Note that the mean quadratic values of the networks studied 

are very close to zero, which means that the three neuron 

networks give better performance in the learning phase. At this 

phase we applied the defects at the rotor level (adjacent bar 

breakage) on ANN1 neuron networks and stator levels (short 

circuit between 40 and 20 turns) on ANN2 and ANN3 in 

several times as illustrated in the following tables: 

 

Table 3. Application of the different defects 

   
Application time Fault type 

ANN1 

At t =1s Broken one bar 

At t =2s Broken two bar 

At t =3s Broken three bar 

At t =4s Broken four bar 

ANN2 At t =1s Short circuit between 40 turns 

ANN3 At t =1s Short circuit between 20 turns 

 

The results of the outputs of the three neuron networks 

(ANN1, ANN2, and ANN3) are presented in the following 

Figures (10-11). 

 

 

 
 

Figure 10. Evolution of the stator current and test of ANN1 

in the case of four adjacent broken bars 

 

For identify defects in a system, the diagnosis made by 

neural networks must have a sufficient number of examples 

during operation in a healthy case and defects to be able to 

learn, through the learning function, the examples are 

presented to the input network with the diagnostics 

corresponding to the output. After learning, the network not 

only recognizes the examples learned but also models 

resembling them, which corresponds to a certain robustness 

compared to signal deformations by the defect. When 
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detecting a defect, the neural network ANN 1, present a 

change in Figure 10 at the moment of the application of the 

defect, for example, in time t=1s introduces first fault the 

outputs: S1, S2, S3, S4, respectively indicate the values: (1, 0, 

0, 0) so the broken bar fault corresponding for other cases the 

outputs S1, S2, S3, S4 corresponding 

• At t = 2 s represents (0, 1, 0, 0) break two bars; 

• At t = 3 s represents (0, 0, 1, 0) three bar break; 

• At t = 4 s represents (0, 0, 0, 1) four bar break. 

For the neuron network ANN 2and ANN 3 apply the fault 

at time t=1 s, we see that the graphs change in Figure 11 in the 

case of short circuit 40 and 20 turns, so this case the outputs: 

S1, S2, S3, S4, corresponding: 

• At t = 1 s represents (1, 0, 1, 0) short circuit 40 turns; 

• At t = 1 s represents (1, 1, 0, 0) short circuit 20turns. 

 

 

 
 

Figure 11. Evolution of the stator current and test of the 

outputs of the second RNA2 and third RNA3 in the case of 

short-circuit 40 and 20 turns 

6. CONCLUSIONS 

 

The detection and early diagnosis allow reducing damage 

and maintaining other components of induction machine, 

through the study of defects influence and the behavior of the 

machine in case of operation fault. In this paper we presented 

the induction machine fault by using multi-winding model for 

simulation of broken bars and three-phase model for 

simulation of short- circuit between 20-40 turns. The new 

features are presented by multi layers neural network trained 

by retro-propagation algorithm. The RMS values of measured 

machine parameters are extracted by processing and 

monitoring of machine behavior in the presence of faults in 

order to obtain the indicators values 

The proposed diagnosis method could be applied by 

artificial intelligence represented neural networks (ANN) on 

induction machine during several parametric studies (selection 

of the type of network, choice of inputs, and choice of 

outputs ...). With the data acquisition operation, this aims to 

establish the network learning base. To be reliable indicators 

for detection and location of fault broken bars and inter-turns 

short-circuit fault. These results clearly indicate that the 

proposed neural networks have a great importance for fault 

identification and capable to reduce the failure severity. 

Furthermore, it has been manifest that this approach is 

accurate and simple in the process implement diagnosis. 
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APPENDIX 

 

Table 4. Appendix for simulation broken bar 

 
Symbol Definition Value 

Pn output power  1.1  kW 

Vs stator voltage per phase 220  V 

Fs stator frequency 50  Hz 

p poles pair number 1  

Rs stator resistance 7.58 Ω 

Rr rotor resistance 6.3    Ω 

Rb rotor bar resistance 0.15 m Ω 

Re resistance of end ring segment 0.15 m Ω 

Lb rotor bar inductance 0.1 μH 

Le inductance of end ring 0.1 μH 

Lsf leakage inductance of stator 0.0265  H 

Nr number of rotor bars 16  

Ns  number of turns per stator phase 160  

J moment of inertia 0.0054 kg m2 

e Air-gap mean diameter 2  mm 

 

Table 5. Appendix for simulation short-circuit between coils 

 
Symbol Definition Value 

Rs stator resistance 1.633 Ω 

Rr rotor resistance 0.93 Ω 

Lr inductance of rotor 0.076  H 

Ls inductance of stator 0.142 H 

J moment of inertia 0.0111 kg m2 

Ms mutual inductance stator nets 0.099 H 
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