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 Complex system engineering often has high fuzziness and multiple constraints. In this case, it 

is difficult to achieve consistent results through predictive analysis. To solve the problem, this 

paper explores the key techniques and methods for predictive analysis on complex systems, 

and puts forward an improved strategy for multi-constrained fuzzy predictive analysis. The 

author explained the normalization, weighting, granularity setting and classic domain of the 

attributes of multiple constraints, introduced the calculation of the fuzzy distance and fuzzy 

closeness for the attributes of multiple constraints, and detailed the realization of our algorithm 

and model multi-constrained fuzzy predictive analysis. The effectiveness and feasibility of our 

algorithm and model were demonstrated through comparison with relevant data in the 

literature. The results show that the results of our approach agree with those of the literature. 

The proposed algorithm and model provide a good theoretical basis to predictive analysis of 

complex system engineering, especially that with multiple fuzzy constraints. 
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1. INTRODUCTION 

 

The problem with multiple constraints (multi-constrained 

problem) is a difficulty in system engineering analysis. In 

many fields of engineering, multi-constrained problem calls 

for optimal design and analysis, especially for complex system 

engineering [1, 2]. To make matters worse, the presence of 

multi-constrained problem adds to the unpredictability in the 

development of complex systems. Thus, it is very difficult to 

predict the trend of complex systems in a scientific, accurate 

and reliable manner [3, 4]. To overcome the difficulty, the key 

lies in capturing the constraints, especially when they are 

fuzzy and uncertain, accurately, and using them to make 

effective predictions of the trend of complex systems. Doing 

so could provide powerful support to the design, maintenance 

and repair of complex systems, making them more applicable 

in engineering cases. 

Currently, fruitful results have been achieved on the 

prediction and analysis of fuzzy systems. Some scholars 

predicted the trend of fuzzy systems based on the gray theory. 

Lu [5] discussed the multi-attribute prediction of complex 

systems based on grey relational analysis (GRA), and 

presented a grey prediction model for the implicit associations 

in complex systems. Through the GRA, Javed et al. [6] 

optimized the shape and analyzed the thermal properties of 

heat exchangers, providing an important reference for 

industrial thermal analysis and gray multi-objective 

optimization. Based on the gray model, Bezuglov and Comert 

[7] predicted the traffic parameters (e.g. speed, travel time and 

flow) in smart transport system in an accurate manner. Memon 

et al. [8] combined the gray system theory with the uncertainty 

theory to study the supplier selection problem with random 

uncertainty and identifiable uncertainty. 

Some scholars predicted the trend of fuzzy systems based 

on neural networks (NNs). Vukovic et al. [9] analyzed a 

Sharpe ratio prediction NN model, and proved that the NN can 

successfully forecast the nonlinear time lag sequences. Navas 

et al. [10] applied different artificial neural networks (ANNs) 

and empirical classification regression models to predict wind 

speed, and estimated the wind speed using the SPSS software. 

Using the growing and pruning method, Akyol [11] 

determined the ideal parameters (i.e. the optimal number of 

hidden layers, the optimal number of hidden layer neurons, 

and the activation function) of deep NNs and extreme learning 

machines, and verified the prediction ability of the designed 

model. Liu et al. [12] implemented the uncertain genetic neural 

network in the prediction of landslide risk, and achieved good 

engineering application effect. 

Some scholars predicted the trend of fuzzy systems based 

on support vector machine (SVM). Wadkar et al. [13] adopted 

SVM-based technique to detect malwares. Hou et al. [14] 

developed a projection nonparallel SVM for pattern 

classification, and applied it to recognize and analyze the 

patterns of complex systems. Lukmanto et al. [15] integrated 

feature selection and fuzzy SVM for early detection and 

prediction of diabetes mellitus. Gangsar et al. [16] studied the 

fault diagnosis and prediction of induction motors based on the 

SVM.  

Some scholars predicted the trend of fuzzy systems based 

on the genetic algorithm (GA), and applied the results in the 

combinatory optimization and decision-making of complex 

systems. Lee [17] reviewed the applications of the GA in 

operations management. Iyer et al. [18] applied the GA in the 

design and economic optimization of shell-and-tube heat 

exchanger. de Assis. et al. [19] identified Volterra systems 

with the aid of the GA. Tseng et al. [20] investigated 

disassembly sequence planning based on the GA.  

Some scholars predicted the trend of fuzzy systems based 

on the extension theory. Lu [21] designed a multilevel 

extension association forecast model under the influence of 
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multiple factors. Chao [22] combined the extension theory and 

traditional perturbation and observation method, and relied on 

the combined approach to design a maximum power tracker 

based on the particle swarm optimization (PSO). Drawing on 

the extension theory, Chao et al. [23] analyzed the maximum 

power point (MPP) tracking of photovoltaic (PV) systems.  

To sum up, the above research results have been applied 

successfully in engineering. However, there is ample room for 

improvement in the following aspects due to the unknown 

nature of fuzzy information: the effective measurement of 

fuzzy information, and more refined and accurate prediction 

of information. Therefore, this paper carries out an in-depth 

analysis on multi-constrained fuzzy prediction of complex 

system engineering based on the fuzzy system theory [24-26]. 

The key contents include normalizing multi-constrained fuzzy 

information, fuzziness calculation, and the steps of fuzzy 

prediction. On this basis, the author developed an algorithm 

and model for improved multi-constrained fuzzy prediction.  

The remainder of this paper is organized as follows: Section 

2 introduces the basic concepts of multi-constrained fuzzy 

predictive analysis; Section 3 presents our algorithm and 

model for multi-constrained fuzzy prediction, explains the 

normalization, weighting, granularity setting and classic 

domain of the attributes of multiple constraints, and details the 

steps of multi-constrained fuzzy predictive analysis; Section 4 

verified our algorithm and model for multi-constrained fuzzy 

prediction through comparative analysis; Section 5 puts 

forward the conclusions of this research. 

 

 

2. BASIC CONCEPTS 

 

2.1 Attribute set of multi-constrained fuzzy predictive 

analysis 

 

The term multi-constrained has multiple meanings. First, 

the design goals for the design, analysis and optimization of 

complex systems are constrained by various factors. To 

achieve ideal design results, the relationship between design 

constraints and design goals must be handled well. Second, the 

design requirements and design goals for complex systems 

might be contradictory or incompatible. The relationship 

between the relevant influencing factors must be sorted out to 

solve the contradiction or incompatibility. Third, there are 

implicit or explicit correlations between the design attributes 

of complex systems, which may affect the system performance. 

To improve the design and predictive analysis of multi-

constrained fuzzy systems, this paper attempts to extract the 

features and attributes of the multiple constraints, forming the 

attribute set of multi-constrained fuzzy predictive analysis. Let 

Q be the number of the extracted attributes of the multiple 

constraints and S be each extracted attribute. Then, the 

attribute set S of multi-constrained fuzzy predictive analysis, 

a.k.a. the fuzzy set, can be expressed as: 

 

 1 2 1= , , , , , ,k Q QS S S S S−S               (1) 

 

2.2 Fuzzy distance 

 

In fuzzy system theory, the fuzzy distance is defined to 

reflect the closeness between the predictive analysis target and 

the fuzzy set S. Let 𝑣𝑘 = [𝑣𝑘(𝑎), 𝑣𝑘(𝑏)] be the fuzziness of 

the attribute k corresponding to the predictive analysis target, 

and 𝑣𝑘
𝑆 = [𝑣𝑘

𝑆(𝑎), 𝑣𝑘
𝑆(𝑏)] be the fuzziness interval of attribute 

k. Then, the fuzzy distance between the target and the attribute 

can be defined as: 
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     (2) 

 

If P=1, then: 

 

( ) ( ) ( ) ( )( )| | / 2S S
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      (3) 

 

In this case, the distance is the Hamming distance. 

 

If P=2, then: 

 

( ) ( ) ( ) ( )( )2
2| | / 2S S

k k k k kD v a v a v b v b= − + −
     (4) 

 

In this case, the distance is the Euclidean distance. 

 

 

3. ALGORITHM AND MODEL OF MULTI-

CONSTRAINED FUZZY PREDICTIVE ANALYSIS 

 

3.1 Normalization of the attributes of multiple constraints 

 

In predictive analysis, different indices may differ in 

dimensions. To make the analysis results more reliable, all the 

indices should have uniform metrics. Since the predictive 

analysis in this research is fuzzy, it is assumed that the value 

of each attribute in predictive analysis falls into a fuzzy 

interval, i.e. the initial value of index k corresponding to the 

predictive analysis target is 𝑣𝑘 = [𝑣𝑘(𝑎), 𝑣𝑘(𝑏)] . Let 𝑢𝑘 =
[𝑢𝑘(𝑎), 𝑢𝑘(𝑏)]  be the normalized correlation, and 𝑣𝑘

𝛩 =
[𝑣𝑘

𝛩(𝑎), 𝑣𝑘
𝛩(𝑏)]  be the threshold of index k. Then, the 

normalization of the cost-based index k can be described as: 
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The normalization of the benefit-based index k can be 

described as: 
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3.2 Weighing of the attributes of multiple constraints 

 

The weights of the attributes of multiple constrains can be 

determined by various methods, such as the analytic hierarchy 

process (AHP), entropy weight method, comprehensive 

evaluation, the NN method and gray correlation method. 

Considering its simplicity, practicality and result reliability, 

the AHP was adopted for the weighting of attributes of 

multiple constraints. 

Step 1. Create the attribute set of multi-constrained fuzzy 

predictive analysis. 

Step 2. Perform expert scoring based on a nine-point scale, 

producing the judgement matrix A: 
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nn
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         (7) 

 

Step 3. Normalize the judgement matrix A: 

 

1 1

/
n n

j ij ij

i i

a a a
= =

 
=  

 
 

                      (8) 

 

Step 4. Obtain the maximum characteristic root of 

judgement matrix A: 

 

( )
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1

n
i
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=

=
                           (9) 

 

Step 5. Check the consistency of judgement matrix A: 

 

max

1

/

n
CI

n

CR CI RI

 −
=

−
 =                               (10) 

 

If 𝐶𝑅 ≤ 0.1, then judgement matrix A has good consistency, 

and proceed with the next step; Otherwise, reestablish the 

judgement matrix. 

Step 6. Acquire the weights: 

 

1

/
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j
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                              (11) 

 

3.3 Granularity setting for the attributes of multiple 

constraints 

 

The granularity setting for the attributes of multiple 

constraints refers to the division of the value interval of the 

attribute set for multi-constrained fuzzy predictive analysis. 

The granularity should be properly configured according to the 

actual condition of the predictive analysis target. If the 

granularity is too small, the attribute set will be divided into 

too many items. In extreme cases, each item is a reference 

object, making it impossible to predict the target. If the 

granularity is too large, the attribute set will be divided too 

coarsely. In this case, the range of the reference object is too 

broad, so is that of the prediction result. Then, it is also 

impossible to accurately predict the target. 

3.4 Classic fields for the attributes of multiple constraints 

 

Based on the granularity set in the preceding subsection, the 

attributes of multiple constraints can be divided into H classic 

fields. Then, the interval of the reference object h in each 

classic field of the attribute set can be expressed as 𝛧ℎ =
[𝛧ℎ(𝑎), 𝛧ℎ(𝑏)] . The size of this interval determines the 

reference objects in the corresponding historical records. 

Suppose there are N reference objects. Then, the classic field 

𝛺𝑘
ℎ  of the reference object h formed by these reference object 

relative to index k can be expressed as: 
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To ensure the reliability and accuracy of prediction results, 

the following values are selected to make the predicted range 

wider: 
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3.5 Fuzzy closeness for the attributes of multiple 

constraints 

 

Let 𝑢𝑘 = [𝑢𝑘(𝑎), 𝑢𝑘(𝑏)] be the value of predictive analysis 

targets relative to index 𝑘 . Then, the fuzzy distance 𝐷𝑘
ℎ 

between 𝑢𝑘 = [𝑢𝑘(𝑎), 𝑢𝑘(𝑏)] and the reference object ℎ can 

be computed by: 

 

( ) ( ) ( ) ( )( )| | / 2
P

h h h P
P

k k k k kD a u a b u b=  − +  −
 (14) 

 

In particular, if the value of the predictive analysis target 

relative to index 𝑘 is an exact value, i.e. 𝑢𝑘 = 𝑢𝑘(𝑎) = 𝑢𝑘(𝑏), 
then: 

 

( ) ( )( )| | / 2
P

h h h P
P

k k k k kD a u b u=  − +  −
       (15) 

 

The fuzzy distance 𝐷𝑘
ℎ  is negatively correlated with the 

closeness between the two factors. Hence, the fuzzy closeness 

𝛷𝑘
ℎ can be introduced:  

 

1h h

k kD = −
                             (16) 

 

Considering the weight of each attribute of the multiple 

constraints, the integrated weighted fuzzy closeness 𝛷𝑘
ℎ can be 

described as:  
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The integrated weighted fuzzy closeness 𝛷𝑘
ℎ has a negative 
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correlation with the closeness between the predictive analysis 

target and the reference object.  

 

3.6 Realization of multi-constrained fuzzy predictive 

analysis 

 

Based on the integrated weighted fuzzy closeness 𝛷𝑘
ℎ, the 

classic field of the reference object ℎ  corresponding to the 

predictive analysis target can be obtained as 𝛧ℎ =

[𝛧ℎ(𝑎), 𝛧ℎ(𝑏)]. Then, the fuzzy prediction 𝛧∗ of the predictive 

analysis target must satisfy: 

 

( ) ( ),h h ha b    =                      (18) 

 

Therefore, the algorithm of multi-constrained fuzzy 

predictive analysis can be established. The workflow of the 

established algorithm is shown in Figure 1. 

 

Attribute set for multi-constrained fuzzy 

predictive analysis

Extraction of fuzzy at tributes

Multi-constrained fuzzy predictive analysis 

problem

Classic field division for the attributes of 

multiple constraints

Weighting model for the at tributes of 

multiple constraints

Weight  calculation of the attributes of 

mult iple constraints

Normalization model for the attributes of 

multiple constraints

Normalization of the att ributes of multiple 

constraints

Classic fields for the attributes of multiple 

constraints

Predict ive analysis target

Fuzzy distance calculat ion model

Acquisition of fuzzy distances

Fuzzy closeness calculat ion model

Acquisition of fuzzy closeness

Values for the attributes of multiple 

constraints

Normalization

Granulari ty setting for the attributes of 

mult iple constraints

Acquisition of class ic fields of 

reference objects

Predict ion intervals of predictive 

analysis target

Reasonable?

End

Yes

No.

 
 

Figure 1. Workflow of multi-constrained fuzzy predictive analysis algorithm 

 

 

4. COMPARATIVE ANALYSIS 

 

This section aims to verify the feasibility and effectiveness 

of the proposed algorithm and model for multi-constrained 

fuzzy predictive analysis, and explain the realization of our 

algorithm and model. As mentioned before, the fuzzy distance 

is measured by Euclidean distance. The predictive analysis 

results of our algorithm and model were compared with the 
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data in the research of Lu [5]. The initial data are compared in 

Table 1 below. 

The fuzzy distance and fuzzy closeness were computed by 

the corresponding formulas in our algorithm, and compared 

with those in Lu Hui’s research (Tables 2 and 3). 

As shown in the data below, the prediction by our algorithm 

should fall into the target interval for 0.937, i.e. 0.230-0.300. 

The result agrees with the data in Lu Hui’s research. However, 

the predictive analysis target was closer to target interval 1 for 

attribute 1, and closer to target interval 2 for attribute 2 than 

that in Lu Hui’s research. There is no significant difference in 

this respective for attribute 3. Since attribute 2 has the greatest 

weight, the final results were not obviously different.  

Similarly, the prediction by our algorithm was compared 

with that of Kemal Akyol’s research [11] (Tables 4-6). 

The fuzzy distance and fuzzy closeness were computed by 

the corresponding formulas in our algorithm, and compared 

with those in Kemal Akyol’s research (Tables 5 and 6). 

It can be seen from Tables 5 and 6 that prediction by our 

algorithm should fall into the target interval for 0.939, i.e. 

0.180-0.280. The result is consistent with the data in Kemal 

Akyol’s research. 

 

Table 1. The initial data of our algorithm and Lu Hui’s research 

 
 Classic field 

Target interval 
 Attribute 1 Attribute 2 Attribute 3 

1 0-0.070 0.135-0.195 0.120-0.180 0.070-0.150 

2 0.070-0.180 0.080-0.270 0.110-0.200 0.150-0.230 

3 0.130-0.340 0.200-0.260 0.340-0.400 0.230-0.300 

Predictive analysis target 0.247 0.216 0.309 
TBD 

Weight 0.300 0.400 0.300 

 

Table 2. The fuzzy distances of our algorithm and Lu Hui’s research 

 
 Classic field 

 Attribute 1 Attribute 2 Attribute 3 

1 0.215 0.059 0.162 

2 0.134 0.103 0.160 

3 0.106 0.033 0.068 

 

Table 3. The fuzzy closeness values of our algorithm and Lu Hui’s research 

 
 Classic field 

Weighted fuzzy closeness 
 Attribute 1 Attribute 2 Attribute 3 

1 0.785 0.942 0.838 0.864 

2 0.866 0.897 0.840 0.870 

3 0.894 0.967 0.932 0.937 

Table 4. The initial data of our algorithm and Kemal Akyol’s research 

 
 Classic field 

Target interval 
 Attribute 1 Attribute 2 Attribute 3 Attribute 4 

1 0.069-0.158 0.085-0.327 0.146-0.196 0.077-0.162 0.080-0.180 

2 0.083-0.181 0.172-0.265 0.127-0.275 0.106-0.216 0.180-0.280 

3 0.187-0.327 0.256-0.284 0.292-0.332 0.209-0.301 0.280-0.400 

Predictive analysis target 0.195 0.202 0.227 0.183 
TBD 

Weight 0.154 0.477 0.288 0.081 

 

Table 5. The fuzzy distances of our algorithm and Kemal Akyol’s research 

 
 Classic field 

 Attribute 1 Attribute 2 Attribute 3 Attribute 4 

1 0.093 0.121 0.061 0.076 

2 0.080 0.049 0.078 0.059 

3 0.094 0.069 0.087 0.085 

 

Table 6. The fuzzy closeness values of our algorithm and Kemal Akyol’s research 

 
 Classic field 

Weighted fuzzy closeness 
 Attribute 1 Attribute 2 Attribute 3 Attribute 4 

1 0.907 0.879 0.939 0.924 0.903 

2 0.920 0.951 0.922 0.941 0.939 

3 0.906 0.931 0.913 0.915 0.920 
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5. CONCLUSIONS 

 

The presence of fuzzy information has complicated the 

predictive analysis of complex systems under multiple 

constraints. For engineering applications, it is very meaningful 

to develop a predictive analysis method facing multiple fuzzy 

constraints. This paper puts forward an improved multi-

constrained fuzzy predictive analysis algorithm. The author 

explained the normalization, weighting, granularity setting 

and classic domain of the attributes of multiple constraints, 

introduced the calculation of the fuzzy distance and fuzzy 

closeness for the attributes of multiple constraints, and detailed 

the realization of our algorithm and model multi-constrained 

fuzzy predictive analysis. The effectiveness and feasibility of 

our algorithm and model were demonstrated through 

comparison with relevant data in the literature. The results 

show that the results of our approach agree with those of the 

literature. The proposed algorithm and model provide a new 

solution and support to multi-constrained fuzzy predictive 

analysis. 
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