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It is necessary for the heat transfer problems to provide information about the critical 

parameters that affect the efficiency to improve the status of the system. Major part of these 

information can be obtained by the investigations of the heatlines and entropy generation. 

Therefore, the laminar free convection in an enclosure forming by a hot inner circular cylinder 

and cold sinusoidal outer cylinder at different amplitude (λ=1, 2, and 4) and Rayleigh Number 

range (103-106) is numerically studied. Heatlines, streamlines, isotherms, and entropy 

generation are obtained using finite element technique based on the Galerkin method. The 

inner and outer cylinders are assumed to be kept at a constant temperature. Air is the   working 

fluid with Prandtl number (0.71). The results showed that the fluid circulations are governed 

by two combined facts; the first one is the buoyancy force that excited by the increasing of 

Rayleigh number producing bigger circulations and the second is the increasing in the 

nondimensional amplitudes which damps the flow. 
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1. INTRODUCTION

In recent ten years, the wavy or corrugated enclosures walls 

are wide spread for various engineering applications, such as 

cooling of the electronic device, heat exchanger, air cooling 

systems, and solar heating process. Thus, people are looking 

for introducing a useful way to enhance the rate of heat transfer. 

In addition, the geometry of the enclosure wall and the 

amplitude have a significant effect on the temperature 

distribution and fluid flow. 

The sinusoidal term was appeared in the literature by two 

meanings; in the first one, the enclosure walls are curvilinear 

and formed as sinusoidal surfaces, while in the second one the 

governing equations of the boundary conditions distributions 

are assumed to be sinusoidal.  

A lot of researches have been accomplished for 

investigation heat transfer and fluid flow inside enclosures. 

Sheikholeslami and Rokni [1] studied effect of the electrical 

filed on the viscosity of a nanofluid inside cavity of a 

sinusoidal wall. The results showed that the electrical field 

enhanced the convective heat transfer. Sheikholeslami and 

Rokni [2] studied heat transfer and fluid flow in a porous 

complex-shaped enclosure containing Cu-O water nanofluid 

subjected to a magnetohydrodynamic field. The results 

showed that the augmentation of Hartman number led to 

diminish the temperature gradient. Additionally, 

Sheikholeslami et al. [3-9] presented extensive works 

regarding heat transfer and fluid flow inside enclosure of 

different shapes and configurations and different types of 

working fluids. Sheikholeslami and Shehzad [3] presented the 

translation behavior of a nanofluid in porous media. The 

results described that the generated isotherms tended to be 

more complicated with the escalation of the buoyancy force. 

Sheikholeslami and Shamlooei [4] simulated influence of a 

magnetic source on a Fe3O4-water nanofluid as passes through 

a porous medium enclosure. The results presented that the 

velocity of nanofluid and Nusselt number decreased with the 

increasing in Hartman Number. Sheikholeslami and Ozotop 

[5] accomplished similar study to what was done in his

previous study [4], but they replaced the half-cylinder of the

outer curvilinear wall enclosure by a quarter one. Same

boundary conditions were applied. Sheikholeslami and Ganji

[6] performed similar analysis as that presented in paper [4],

but they used CuO instead of Fe3O4 and studied how the

magnetic nanofluid disposal changed. Sheikholeslami et al [7],

investigated numerically the natural convection between a

cold outer cylinder enclosure a hot inner curvilinear-wall

cylinder by finite element method. Sheikholeslami and Ellahi

[8] investigated effect of the electrical field of Fe3O4 nanofluid

in an enclosure. The lower wall of the enclosure was permitted

to slide horizontally, while the upper wall was kept fixed and

has a sinusoidal form. It was conducted that the supplied

voltage could change the streamlines. Sheikholeslami et al [9]

accomplished an investigation for the magnetic field effect on

natural convection inside curved shape enclosure. The results

depicted that the Nusselt number decreases with increasing

Hartman number.

Tang et al. [10] proposed a new study for a two-dimensional 

quarter-circular enclosure sinusoidal inner and outer walls. It 

was concluded that the Nusselt number increases dramatically 

with the nanofluid volume fraction. Sherement et al. [11] 

performed a numerical study on the unsteady natural 

convection of wavy wall enclosure containing a nanofluid 

subjected to a magnetic field. Yousaf and Usama [12] 

presented a numerical study of natural convection in a square 

enclosure with the existence of roughness elements on the 

vertical walls. Results explained that the wall roughness 

affected the streamlines and the isotherms. Sheremet and Pop 

[13] studied numerically the natural convection of a nanofluid

inside a porous wavy wall enclosure with sinusoidal boundary
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conditions on both sides. It was found that the Nusselt number 

increases with Rayleigh number. Nabavizadeh et al. [14] used 

Lattice Boltzmann method to investigate the natural 

convection of a hot square enclosure containing a sinusoidal 

cylinder. The results showed some variations in Nusselt 

number due to the increasing in amplitude and undulation 

numbers. Oztop et al. [15, 16], numerically studied the mixed 

and natural convection of a wavy walled enclosure with 

various boundary conditions. Sompong and Witayangkurm 

[17] simulated natural convection in a two-waved vertical wall 

enclosure filled with porous media. Results showed a decrease 

in density with a decrease in the number of Darcy and Raleigh. 

A numerical study on mixed convection lid-driven wavy wall 

and heated central square solid body enclosure exposed to a 

magnetic field was performed by Nasrin [18]. The results 

showed that magnetic field removal registered a maximum 

heat transfer rate for the highest Prandtl number. Khanafer et 

al. [19] implemented a numerical investigation on streamlines 

and isotherms behavior in a sinusoidal vertical wavy-wall 

enclosure filled with a porous medium. It was illustrated that 

number of undulation and the amplitude of the sinusoidal 

surface changed the heat transfer characteristics inside the 

enclosure. The natural convection within the enclosure with 

two vertical, isothermal and sinusoidal walls and two isolated, 

straight and horizontal walls was numerically predicted by 

Mahmud et al. [20]. Kim et al. [21] conducted a numerical 

study of natural convection due to the difference in 

temperature between the cold wall of the hollow square 

enclosure and the hot circle cylinder inside it. The results 

showed that the location of the inner circular cylinder along 

the vertical center line affected both fluid flow and heat 

transfer inside the enclosure. Hussein [22] presented a 

numerical study for to analyze heat lines and entropy 

generation in a sinusoidal side wall-inclined porous enclosure 

subjected to a magnetic field. The results explained that the 

horizontal magnetic field enhances the entropy generation 

more than that corresponding in the vertical direction. Matrod 

et al. [23] studied free convection inside the annulus gap which 

filled with air. Triangular fins were attached to the hot inner 

circular cylinder to enhance heat transfer inside the annulus 

gap. Al-Amir et al [24] presented a numerical study to show 

effect of wavy wall location of natural convection inside 

square enclosure having a concentric hot circular cylinder. The 

results showed that heat transfer was influenced by Rayleigh 

number and the number of undulations. Basak et al. [25] 

presented a numerical visualization of thermal transport within 

triangular cavities along with heatline analysis. It was 

observed that conduction heat transfer was the dominant at 

Ra=107. Natarajan et al. [26] studied numerically natural 

convection in various trapezoidal enclosures with various wall 

boundary conditions based on a comprehensive heatline 

approach. It was concluded that the Nusselt number was 

distributed sinusoidally at Prandtl number=1000. The entropy 

generation caused by natural convection within a square 

inclined differentially heated enclosure was numerically 

investigated by Shavic et al. [27]. The results showed the fluid 

flow entropy generation showed an increase with an increase 

of inclination angle. Based on Lattice Boltzmann technique, 

Rahimi et al. [28-29] performed an empirical and experimental 

studies of entropy generation and heatline through rectangular 

and L-shaped enclosures filled by a nanofluid, respectively. 

Hussein et al. [30] used a numerical method to compute natural 

convection under unsteady state conditions and entropy 

generation in an inclined three-dimensional enclosure. It was 

noticed that at lower Rayleigh number, the enclosure 

inclination showed a negligible effect on the total entropy 

generation. Ghasemi and Siavashi [31] used a numerical 

method to simulate the entropy generation of a nanofluid in a 

porous enclosure under natural convection state and linear 

temperature distributions applied on the side walls. Lattice 

Boltzmann technique was used in the study of Alsabery et al. 

[32] to study entropy generation and natural convection of a 

concentric solid inside a square enclosure filled with nanofluid. 

It was indicated from the results that the heat transfer was 

controlled by the inner solid size and the thermal conductivity 

ratio. Finally, Abdulkadhim et al. [33] studied the natural 

convection inside trapezoidal enclosure having a solid baffle 

inside. Three different heights for the baffle were taken. Cu-

Water nanofluid was chosen as a working fluid, entropy 

generation inside the enclosure has been studied as a result of 

fluid flow and heat transfer. 

Other people accomplished their works in terms of 

sinusoidal boundary conditions instead of geometry. Roslan et 

al. [34] studied free convection heat transfer at time dependent 

sinusoidal boundary condition around inner hot circular 

cylinder fixed in the middle of a cold walls-square enclosure. 

It was noted that the maximum heat transfer rate occurred at 

the period between 25π and 30π. Bouhalleb and Abbassi [35] 

showed a numerical investigation of free convection within 

two-dimensional rectangular enclosure occupied by CuO 

water nanofluid. The two horizontal walls were perfectly 

insulated and the left vertical side was heated by a sinusoidal 

temperature distribution source. It was concluded that the 

system time response was affected by the temperature 

amplitude and frequency. Alsabery et al. [36] studied 

numerically effect of side sinusoidal heating and finite wall 

thickness on the convection within a square porous enclosure. 

The work outputs showed that the heat transfer rate was 

strongly excited as the sinusoidal heating increased. Effect of 

the sinusoidal heating on the mixed convection inside a square 

enclosure, occupied by a porous medium was numerically 

analyzed by Zainuddin et al. [37]. The results showed that the 

streamlines and isotherms were significantly affected as the 

sinusoidal heating shifted. Unsteady state mixed convection 

inside a square enclosure containing Ag-water nanofluid has 

been carried out by Karim et al. [38]. The frequency of 

sinusoidal boundary condition applied to the bottom 

horizontal wall was assumed to vary in different values. It was 

noted that the positive and negative frequencies had a 

significant impact on the flow patterns. Dutta et al. [39] 

performed a numerical study of natural convection and 

entropy generation in a quadrant porous enclosure with a non-

uniform heating from below. It was observed that at low values 

of Darcy number, the entropy generation due to heat transfer 

was important and governed the system. Finally, Laouer and 

Djeghiour [40] applied a sinusoidal boundary condition at the 

bottom horizontal wall and used the Lattic Boltzmann method 

for the numerical investigation of the magnetohydrodynamic 

natural convection within the enclosure. 

According to the best experience of the authors, there is no 

a significant-reported study for the heat lines and entropy 

generation behavior has been done at various amplitudes of a 

wavy wall-cylinder enclosure. The existing problem of the 

present work is to examine the effect of the variation of 

amplitude (λ) on streamlines, isotherms, heat lines, and 

entropy generation at different Rayleigh numbers. Galerkin 

finite element (GFE) technique is carried out to solve the 

governing equations with different Rayleigh numbers and 
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various amplitudes for the outer cylinder. 

 

 

2. PHYSICAL MODEL DESCRIPTION 

 
The schematic diagram of the present study is shown in 

Figure (1). The diagram shows an outer wavy cylinder kept at 

a cold temperature (Tc) and an inner circular cylinder kept at 

hot temperature (Th). The governing equations of the outer 

wavy cylinder are: 

 

𝑋 = [𝑅𝑜 + 𝜆 sin (𝑛 ∗ 𝜑 ∗
𝜋

180
) /𝑛] ∗ (cos (𝜑 ∗

𝜋

180
))       (1) 

 

 𝑌 = [𝑅𝑜 + 𝜆 sin (𝑛 ∗ 𝜑 ∗
𝜋

180
) /𝑛] ∗ (sin (𝜑 ∗

𝜋

180
))       (2) 

 

where, Ro is the basic outer circle radius, λ is the non-

dimensional amplitude, n is the number of corrugations and φ 

is the angle of rotation. The annular space between the two 

cylinders (Ro-Ri) is equal to unity where Ri=1. Air was chosen 

as a working fluid with Prandtl number is fixed at Pr=0.71. Air 

density is not influenced by pressure change (incompressible 

fluid). The temperature difference between the inner and outer 

cylinders Th>Tc, generates the natural convection due to the 

buoyancy force. All thermo-physical properties are assumed 

to be constant except density, which obeys to the Boussinesq 

approximation. 

 

 
 

Figure 1. Simplified diagram of physical of the present 

study, N=6 

 

 

3. GOVERNING EQUATIONS AND BOUNDARY 

CONDITIONS 

 

The present study assumes the flow is laminar. The analysis 

is accomplished in two dimensions only. The response state is 

steady. The viscous dissipation, heat generation, and radiation 

are neglected. The dimensional governing equations for the 

case study, continuity, momentum, and energy, can be written 

as: 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                       (3) 

 

𝜌(𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2)                      (4) 

 

𝜌(𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2) + 𝜌𝑔𝛽(𝑇 − 𝑇𝑐)     (5) 

𝜌𝑐𝑝(𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝐾 (

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2)                    (6) 

 

where, u and v are the velocity components in the x and y-

direction, respectively. T is the temperature of the fluid, p is 

the pressure. The other physical properties are described in the 

nomenclature. To transform the governing equation from 

dimensional form to dimensionless form, the following 

dimensionless variables are used and specified below: 

 

𝑋 =
𝑥

𝑅
 , 𝑌 =

𝑦

𝑅
, 𝑈 =

𝑢𝑅

𝛼
, 𝑉 =

𝑣𝑅

𝛼
, 𝑃 =

𝑝𝑅2

𝜇𝛼
, 𝜃

𝑇−𝑇𝑐

𝑇ℎ−𝑇𝑐
, 𝑤ℎ𝑒𝑟𝑒 𝑅 = 𝑅𝑜 − 𝑅𝑖 =1 (7) 

 

By assuming  

 

𝜌 = 1, 𝜇 = 1, 𝐾 = 1, 𝜌𝑐𝑝 = 𝑃𝑟 𝑠𝑜 𝑐𝑝

= 𝑃𝑟 𝑎𝑛𝑑 𝑏𝑜𝑑𝑦 𝑓𝑜𝑟𝑐𝑒 𝐹𝑦 = 𝐺𝑟 ∗ 𝜃

=
𝑅𝑎

𝑃𝑟
(𝑇 − 𝑇𝑐) 

 

and using dimensionless variable in Eq. (7). Then, the Eqns. 

(3-6) can be transformed into the dimensionless form as 

follows: 

 
𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0                                    (8) 

 

𝑈
𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
= −

𝜕𝑃

𝜕𝑋
+ (

𝜕2𝑈

𝜕𝑋2 +
𝜕2𝑈

𝜕𝑌2)                (9) 

 

𝑈
𝜕𝑉

𝜕𝑥
+ 𝑉

𝜕𝑉

𝜕𝑦
= −

𝜕𝑃

𝜕𝑌
+ (

𝜕2𝑉

𝜕𝑋2 +
𝜕2𝑉

𝜕𝑌2) + 𝑅𝑎𝑃𝑟𝜃            (10) 

 

Pr (𝑈
𝜕𝜃

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌
) = (

𝜕2𝜃

𝜕𝑋2 +
𝜕2𝜃

𝜕𝑌2)                    (11) 

 

where, 𝑅𝑎 =
𝑔𝛽(𝑇ℎ−𝑇𝑐)𝑅3

𝛼𝜈
, 𝑃𝑟 =

𝜈

𝛼
 

The flow inside the annular space is described by stream 

function, which estimated from velocity components U & V. 

The relation between velocity components and stream function 

for two-dimensional study are: 

 

𝑈 =
𝜕Ψ

𝜕𝑌 
, 𝑉 = −

𝜕Ψ

𝜕𝑋
 & 

𝜕2Ψ

𝜕𝑋2 +
𝜕2Ψ

𝜕𝑌2 =
𝜕𝑈

𝜕𝑌
−

𝜕𝑉

𝜕𝑋
         (12) 

 

The local and average Nusselt number is calculated from the 

following two expressions as: 

 

𝑁𝑢𝐿 =
𝜕𝜃

𝜕𝑛
                                      (13) 

 

𝑁𝑢𝑎𝑣𝑒 =
1

2𝜋
∫ 𝑁𝑢𝐿(𝜑)𝑑𝜑

2𝜋

0
                   (14) 

 

The heat transfer visualization is carried out using heat line 

expression. The heat line expression is intended using the 

mathematical formulation called heat function. The heat 

function formulation derived from the first derivative of the 

conduction equation (−
𝜕𝜃

𝜕𝑋
, −

𝜕𝜃

𝜕𝑌
)  as well as convection 

equation (𝑈𝜃, 𝑉𝜃). The heat function can express as follows: 

 
𝜕Π

𝜕𝑌
= 𝑈𝜃 −

𝜕𝜃

𝜕𝑋
 𝑎𝑛𝑑 

𝜕Π

𝜕𝑋
= −𝑉𝜃 +

𝜕𝜃

𝜕𝑌
               (15) 

 

The above equation can be written as follows: 
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𝜕2Π

𝜕𝑋2 +
𝜕2Π

𝜕𝑌2 =
𝜕

𝜕𝑌
(𝑈𝜃) −

𝜕

𝜕𝑋
(𝑉𝜃)                 (16) 

 

The boundary conditions for the present study are given as 

follows: 

Internal wall: 𝜃 = 1, 𝑈 = 0, 𝑉 = 0 

External wall: 𝜃 = 0, 𝑈 = 0, 𝑉 = 0 

For the matter under analysis, the non-dimensional local 

entropy generation is contributed by the entropy generation 

due to temperature gradients and entropy generation due to 

fluid friction can be written as: 

 

𝑆𝐿,𝐻𝑇 = (
𝜕𝜃

𝜕𝑋
)2 + (

𝜕𝜃

𝜕𝑌
)2                       (17) 

 

𝑆𝐿,𝐹𝐹 = 𝜙 {2 [(
𝜕𝑈

𝜕𝑋
)

2

+ (
𝜕𝑉

𝜕𝑌
)

2

] + (
𝜕𝑈

𝜕𝑌
+

𝜕𝑉

𝜕𝑋
)2}        (18) 

 

Then the local entropy generation can be written as: 

 

𝑆𝐿 = 𝑆𝐿,𝐻𝑇 + 𝑆𝐿,𝐹𝐹 = (
𝜕𝜃

𝜕𝑋
)2 + (

𝜕𝜃

𝜕𝑌
)2 + 𝜙 {2 [(

𝜕𝑈

𝜕𝑋
)

2

+

(
𝜕𝑉

𝜕𝑌
)

2

] + (
𝜕𝑈

𝜕𝑌
+

𝜕𝑉

𝜕𝑋
)2}           (19) 

 

Where ϕ is the irreversibility distribution, which written as: 

 

∅ =
𝑆𝑇.𝐹𝐹

𝑆𝑇,𝐻𝑇
=

𝜇𝑇𝑜

𝑘
(

𝛼

𝑅∆𝑇
)2                         (20) 

 

By integrating the local entropy generation over the system 

volume, the total entropy generation is obtained as follows: 

 

𝑆𝑇.𝐻𝑇 = ∫ 𝑆𝐿.𝐻𝑇𝑑𝑣𝑜𝑙
𝑣𝑜𝑙

                          (21) 

 

 𝑆𝑇.𝐹𝐹 = ∫ 𝑆𝐿.𝐹𝐹𝑑𝑣𝑜𝑙
𝑣𝑜𝑙

                         (22) 

 

And 

 

𝑆𝑇 = 𝑆𝑇.𝐻𝑇 + 𝑆𝑇.𝐹𝐹                             (23) 

 

The local Bejan number is 

 

𝐵𝑒𝐿 =
𝑆𝐿,𝐻𝑇

𝑆𝐿
                                (24) 

 

And the average Bejan number is, 

 

𝐵𝑒𝑎𝑣 =
∫ 𝐵𝑒𝐿(𝑥,𝑦)𝑑𝐴𝐴

∫ 𝑑𝐴𝐴

                         (25) 

 

 

4. NUMERICAL FORMULATION AND CODE 

VALIDATION  

 

The above dimensionless governing equations with the 

boundary conditions are solved numerically by using the finite 

element approach based on Galerkin weighted residual 

formulation in COMSOL Multiphasic. In this work, mesh 

generation in the annular space between the inner circle, 

cylinder, and outer wavy cylinder is built using triangular 

elements as described in Figure 2. 

To check the accuracy of grid generation several types of 

the grid were tested (extremely coarse, extra coarse, coarser, 

coarse, normal, fine, finer extra fine and extremely fine) to 

confirm the grid independency are listed in the Table 1. 

Extreme fine mesh gives the grid sensitivity are needed with 

an error percentage equal to 0.01. 

 

 
 

Figure 2. Mesh of the present work, N=6, λ=4 

 

To approach the results of the code, verification with the 

previous research Kim et. al., [21] studied the natural 

convection inside the cold square enclosure having inner hot 

circular cylinder at different vertical locations and Shavic et. 

al. [27]. The comparison showed a good confidence results for 

fluid flow, heat transfer and entropy generation which 

represent, by stream function, isotherms, entropy generation 

due to fluid flow and heat transfer and total entropy generation 

as in Figure 3a-b. 

 

Table 1. Grid sensitivity, Ra =106, Amp=2, N=6 

 

Predefined mesh 

size 

𝑵𝒖𝒂𝒗𝒆 𝒇𝒐𝒓 𝑹𝒂
= 𝟏𝟎𝟔 

Error 

percentage% 

Extremely coarse 8.6648  

Extra coarse 8.6419 -0.2649 

Coarser 8.6982 0.6 

Coarse 8.737 0.444 

Normal 8.8056 0.779 

Fine 8.8692 0.717 

Finer 8.9174 0.54 

Extra fine 8.9321 0.1645 

Extremely fine 8.9320 0.01 
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3a). Comparison between [21] and present work for Ra=105, 

106 

 

 

 
3b). Comparison between (S. M. Shavic et. al., 2014) [27] 

and present work for Ra=103 

 

Figure 3. Comparison between the present work and the 

other researchers 

 

 

5. RESULTS AND DISCUSSION 

 

A numerical study has been achieved at the following 

values; Rayleigh number from 103 to 106 amplitude from 1 to 

4. the effect of Rayleigh number on streamlines, isotherms, 

heat lines, and entropy generation, are shown in figures 4, 5, 6 

7, 8, 9, and 10, respectively. 

 

5.1 Flow field 
 

Figure 4, depicts the shapes of streamlines function with 

amplitude λ=1, 2 and 4, and Ra=103 to 106. At Ra=103 and λ=1 

and 2 and based on the nature of fluid circulation from the hot 

to the cold walls, the enclosure is occupied with two major 

irregular-symmetric vortexes beside another four secondary 

vortexes distributed at the core of every major vortex, two 

clockwise on the right and two anti-clockwise on the left. 

When the amplitude increased to 4 (the length of the outer cold 

wall increased), the resistance of the fluid circulation increased 

and the fluid flow damped from Ψmax.=3.62 to Ψmax.=2.3497, 

respectively.  Moreover, small secondary vortexes are seen at 

the upper and lower crests when Rayleigh number and the 

amplitude increased to Ra =104 and λ=1, respectively. In 

addition, it is noted that the buoyancy force increased and that 

led to shift the two secondary left and right vortexes to the 

lower half of the enclosure and federated with the other two 

vortexes at the upper half. The shifting and the federation 

processes formed two major, dominant, symmetrical and 

irregular shaped vortexes occupied both sides of the enclosure. 

However, at λ =2, a simple different behavior is noticed as 

compared to what was presented when Ra=103. Two 

secondary vortexes are observed at the upper crest. With 

further increasing in the amplitude λ=4, the previous four 

major vortexes occurred when Ra=103, are completely 

separated and distributed in the left and right sides. As well as, 

the vorticity of a couple of secondary vortexes at the upper 
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zone of the enclosure showed a stronger dependence on the 

weakness of the lower vortexes than that seen in the previous 

results due to increase the buoyancy force. Hence, Ψmax. 

decreased from 22.14 to 13.3949. A significant increment in 

the buoyancy force is noticed at λ=1 and Rayleigh number 

increased from Ra=105 to 106. Due to that, the core of the two 

dominant vortexes explained previously elongated toward the 

top crest of the enclosure at Ra=105. It should be noted that the 

smooth and symmetrical curves of streamlines at Ra=105 

begins to distort and showed asymmetric forms at highest 

Rayleigh number Ra=106 due to the presence of a strong 

buoyancy force. Obviously at λ=2 and Ra=105, the vorticity 

increased to 55.45 while it was 19.13 at Ra=104. In addition, 

the four large vortexes seen at Ra=104 compacted to two only. 

Besides that, another four secondary and weak vortexes 

accumulated at the upper crest of the enclosure, so that at 

Ra=106, the streamlines are disturbed only as vorticity 

increases to 83.71. With further increment of the amplitude 

λ=4, the lower half vortexes seen at Ra=104 started to be 

vanished and the streamlines deformity showed a clear 

conforming with increasing the buoyancy intensity 

particularly at Ra=106. In addition, Ψmax. reached to the highest 

value of 185.68 at the previous values of Rayleigh and 

amplitude. In general, it should be indicating that stream 

function value is clearly going up with increasing Rayleigh 

number 

 

 
 

Figure 4. Streamlines for different Rayleigh number and 

amplitude 

 

5.2 Temperature field 

 

The isotherms are shown in Figure 5 for different values of 

Rayleigh numbers and amplitudes. The isotherms are 

presented patterns at Ra=103 and amplitudes of λ=1, 2 and, 4. 

It should be noted, at λ=2 and 4, the red color propagated away 

and around the inner hot wall consequential from surfaces 

approaching. Therefore, the isotherm lines clustered near the 

hot wall, and the pure conduction heat transfer is the 

dominated mode. With increasing Rayleigh number to 104 and 

λ=1, the convection eddies are developing producing a 

symmetrical flame ring around the inner wall. Further 

increasing of the amplitude λ=2 allows the surface to approach 

and that deforms the isothermal lines, but still symmetrical 

about the vertical axis. With further increasing in the 

amplitude λ=4, the thermal boundary layer clustered and 

reposed around the inner circular wall. The conduction heat 

transfer mode dominated as well. 

The convection heat transfer mode is almost dominated at 

Ra =105 and 106 and λ=1, 2, and 4. It should be noted that the 

effective half of heat transfer processes is the upper section, 

which depends on the fact that says, the active heat transport 

is mainly occur based on the location of the hot surface with 

respect to cold one. Simultaneously, at the lowest crest, the 

isotherm lines are either parallel or nonexistent, i.e. weak 

temperature gradient at this zone. That makes it easy to 

understand why the conduction heat transfer mode is the 

dominant at this zone. Finally, after scrutinizing the isotherms 

disturb, it is noted that its characteristic of symmetry alternated 

due to turbulent fluid circulation at when Ra=106. 

 

 
 

Figure 5. Isotherms for different Rayleigh number and 

amplitude 

 

5.3 Heatlines field 

 

Figure 6 indicates the heat lines between the inner cylinder 

and outer wavy cylinder for Ra=103 to 106 and the amplitude 

varies from λ=1 to 4. The positive and negative signs of Π 

refer to the anti-clockwise (minimum) and clockwise 
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(maximum) directions, respectively of the intensity and the 

fluid heat flow circulation. 

 

 
 

Figure 6. Heatlines for different Rayleigh number and 

amplitude 

 

For Ra=103 and λ=1, the conduction mode is the dominant 

as well as the lower circulation index seen Ψmax.=3.62 as 

shown in Figure 4. Two weak vortexes of heat lines are 

observed at the upper left and lower right of the enclosure. It 

should be noted that the heat lines connected between the inner 

to the outer walls of heat flow have the bushiest value and 

longest bath. Further, as λ increases to 2, the stream function 

is suppressed from Ψmax.=3.62 to 3.405 shown in, Figure 4 and 

the conduction heat dissipation near the inner wall of 

isotherms shown in Figure 5, are observed. Therefore, four 

weak vortexes of heat lines are shown synonymously with that 

of streamlines in Figure (4), and the heat lines value is dropped. 

As the amplitude increases to 4, the vorticity of heat lines 

almost disappeared, and the positive heatlines patterns 

increased from 3.8462 to 19.757. It was observed that the heat 

lines observed to be shortest in length. This refers to the 

biggest amount of conduction heat that transferred at this case 

where Πmax.=19.757 at Ra=103. 

As Ra increases to 104 and λ=1, the circulation of fluid flow 

increases. Hence the convective energy transfer also increases 

from Πmax.=3.846 to 13.805, which is reflected on heat flow 

paths. It should be noted that when λ=2, the fluid heat flow 

circulations started to split and molded several heat flow 

vortexes. Then, at Ra=105 and 106, an important point to be 

noted, the heat lines joined together between the walls in a 

decreased trend and converted to two and large dominant heat 

flow vortexes. On the other hand, the heat flow circulations 

centers accumulated at the upper half of the enclosure, due to 

buoyancy force increasing, forming two large dominant fluid 

heat flow circulations. 
A deep checking for the heat lines behavior at Ra=105 and 

106 and λ=2 reveals that the fluid flow is damped. As a result 

for the approaching between the concave down of the external 

wall and the inner wall, large heat flow circulations is divided 

into several small circulations. The circulations distribution 

and its number are sensitive to the strength of the buoyancy 

force. As λ=4 and Ra=105, the fluid heat flow circulations 

disappeared and this case represents the perfect case to heat 

transfer with Πmin.=-122.192. However, at Ra= 106, the lifting 

buoyancy force is reactivated again and returned to be the 

dominant. Then the circulation of the heat flow appeared again 

at the upper half of the enclosure with a maximum value of 

Πmax.=86.4547. In the present work, one can conclude that the 

heat flow patterns are governed by the combined effects of 

streamlines and isotherms functions. 

 

5.4 Entropy field 

 

Figures 7-9 show the entropy generation due to heat transfer 

and fluid flow for Ra=103 to 106 and amplitude varies from 

λ=1 to 4. As mentioned previously, the total entropy 

generation for the presented study was coming from two 

secondary impressions of entropy generation as a result of heat 

transfer and fluid flow. It was noted from Figure 7, when λ=1 

and 2 and Ra=103, the local entropy map due to heat transfer 

distributed uniformly filling the enclosure. As the Rayleigh 

number increases to 104, the buoyancy force enhanced and 

then the local entropy generation due to heat transfer started to 

dense gradually and became closer to the enclosure walls. That 

in turn, formed a thin layer at Ra=106 in the direction of the 

enclosure walls at Ra=106. However, at λ=4, the entropy 

generation maps crowded around the hot cylindrical wall. This 

was due to the convergence of the enclosure walls. Two 

important remarks should be reported here: the first is the 

entropy generation due to heat transfer and isotherms contours 

are homology. The second is that the values of the entropy 

generation increased with increasing Rayleigh number (such 

as from 3.55 to 313.54 when λ=1) due to increase the heat 

transfer rate. As well as, they increased with amplitude 

increasing (such as from 3.55 to 25 when Ra=103) as well as, 

Figure 8, demonstrated the local entropy generation due to 

fluid flow for different Rayleigh numbers and amplitudes. 

Concentration of entropy contours initiated at the left and right 

sides of the enclosure at Ra=103 and 104 for various amplitude. 

This was because of strong vorticity of fluid accumulated at 

left and right as shown in streamlines contours. As the 

Rayleigh number increased to 105 and 106, the buoyancy force 

enhanced, then the entropy lines scavenged to the upper half 

of the enclosure. Furthermore, the entropy generation showed 

its strongest values nearest the enclosure walls, while they are 

weak in the other regions. Similarly, the entropy generation 

due to fluid flow, increases with Rayleigh number and 

amplitude. 

Figure 9 shows the total entropy generation for different 

Rayleigh numbers and amplitudes. It is noticed that at low 

Rayleigh number Ra=103 and the amplitude varies from λ =1 

to 4, the total entropy generation contours showed similar 

behavior to their local entropy generation due to heat transfer 

because it is higher and more dominant than entropy generated 
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by fluid flow. In contract, when Rayleigh number varied from 

Ra=104 to 106 and the amplitude varied from λ=1 to 4, the total 

entropy generation due to fluid flow is higher than the entropy 

generation due to heat transfer. Therefore, the total entropy 

generation contours have similar behavior to entropy 

generation due to fluid flow. 

 

 
 

Figure 7. Local entropy generation due to heat transfer for 

different Rayleigh number and amplitude (λ) 

 

 
 

Figure 8. Local entropy generation due to fluid flow for 

different Rayleigh number and amplitude  

 
 

Figure 9. Total entropy generation for different Rayleigh 

number and amplitude 

 

 
 

Figure 10. Bejan Number for different Rayleigh number and 

amplitude 

 

5.5 Bejan number 

 

The values of Bejan number for different Rayleigh numbers 

and amplitudes are arranged in Figure 10. The distribution of 
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Bejan number shows the regions with high fluid friction where 

Bejan number have the highest values. With increasing 

Rayleigh number, the effect of fluid flow increases and the 

Bejan number values decrease consequently, which illustrates 

the irreversibility of fluid friction effect and the domination of 

the entropy generation due to fluid flow. When Ra=103 and 

amplitude varies from λ=1 to 4, the Bejan number values stay 

unchanged, but for other values of Rayleigh numbers, the 

amplitude increases the reposition of the fluid circulation and 

reduces the fluid friction and Bejan number. 

 

5.6 Local Nusselt number 

 

Figure 11, illustrated the relation between the local Nusselt 

Number and the amplitude for different Rayleigh Number 

along the inner hot wall of the enclosure. In the beginning, as 

explained previously, the maximum local Nusselt Number is 

obtained at the gaps of convergent surfaces, and the minimum 

at the divergent, which forming the fluctuations. At low 

Ra=103, θ =0 to 180 i.e. lower half of the enclosure, Figure 11, 

as expected the local Nusselt Number having the highest 

fluctuation value, due to the reality of increasing of the 

effective area of the outer cold wall to heat transfer at λ =4. As 

Ra increases from 104 to 106, the convection heat and 

buoyancy force are increasing, thereby, the lifting force 

scavenge the flame to the upper half of the enclosure. 

Accordingly, the fluctuation of local Nusselt Number value at 

the lower half of the enclosure is damped for all values of 

Amplitude, seemed like a curved bundle especially at Ra =106. 

At low Ra =103, θ =180 to 360 i.e. upper half of the enclosure, 

Figure 11, the maximum fluctuation of λ=4 are continuous and 

didn’t almost affect. But with the increasing of Rayleigh 

Number from 104 to 106, the competition is released between 

the convection heat transfer flow effect and the increasing of 

the effective area of the cold wall by Amplitude increases. 

Thereafter, the fluctuation of the local Nusselt Number at λ=2 

begins arises and revolt higher than the λ=4 and seems 

enclosed between θ=240 to 300 at Ra=106. Obviously, the 

value of the local Nusselt Number from θ=0 to 360, is 

increasing with increasing of Rayleigh Number for all values 

of Amplitude. As well as, the value of the local Nusselt 

Number at λ=1 seems didn’t effect dramatically with Rayleigh 

Number, started with weak fluctuation and finished with a 

form of the dewdrop. 
 

 
 

Figure 11. Local Nusselt number around Inner hot cylinder for different amplitude (λ) and Rayleigh number 
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Figure 12 represented the average Nusselt number with 

Rayleigh number for different amplitude, generally the 

average Nusselt number increased as the Rayleigh number 

increased due to enhancement of convection dominant. 

Consequently, the value of the local Nusselt Number at 

Ra=6*104 and λ=2 and 4, Figure 12, are intersected and 

inverted as a reflection of the above explanation.  

 

 
 

Figure 12. Average Nusselt Number around Inner hot 

Cylinder Vs. Rayleigh Number at Different Amplitude (λ) 

 

 

6. CONCLUSIONS 

 

The laminar free convection in an enclosure formed by a hot 

inner circular cylinder and a cold sinusoidal outer cylinder at 

a different amplitude (λ=1,2,4) and Rayleigh number ranges 

(103-106), is diffracted numerically by finite element method. 

Galerkin technique is used to get the heatlines, streamlines, 

isotherms and entropy generation. The inner and outer 

cylinders are maintained at a constant temperature. Air is used 

as a working fluid with Prandtl number (0.71). It was denoted 

that the heat lines lengths become shortest and the heat flow 

circulation are disappeared as the amplitude increases. Hence, 

it can be said when the amplitude increases the perfect cases 

of heat transfer are occurred. But with respect to entropy 

generation, it was denoted at lower Rayleigh number the 

entropy generation is governed by heat transfer only as the 

amplitude increases. Vice versa, at highest Rayleigh number 

the entropy generation is governed by fluid flow only as the 

amplitude increases. Some conclusions can be drawn from the 

results of this work, such as: 

(1) It is because of the fact that the enclosed path between 

the hot inner circular and cold outer corrugated enclosure walls 

is narrowest with the rise in amplitude, so that the fluid at these 

spaces is almost stagnant, higher rates of heat transfer are 

resulted. 

(2) Generally, the absolute value of stream function 

enhanced with increasing Rayleigh number for all values of 

amplitudes. 

(3) The fluid circulation is governed by two combined 

factors, the first one is the buoyancy force excited by 

increasing of Rayleigh number, so high fluid circulation 

occurred, and the second one, is flow damping due to 

amplitude increasing. 

(4) The strongest fluid circulation is noticed at the upper 

half of the enclosure and returned to the presence of the hot 

wall under the cold one. Otherwise, the weakest, at the lower 

half, returned to the presence of the hot above the cold one. 

(5) At a low Rayleigh number, the isothermal lines comply 

with the shape of the inner circular and outer corrugated walls, 

therefore the isothermal lines are concerned with the walls to 

refer that the conduction heat transfer are dominant. 

(7) The sense of the heat lines is matching with the 

streamlines sense and more than of isotherms sense. 

(8) That the increasing of amplitudes from λ=1 to λ=4 led 

to bend the streamlines, isotherms and heat lines. 

(9) The maximum Nusselt number was noticed at the gaps 

of convergent surfaces at the upper of the enclosure half owing 

to the stagnation of fluid flow at these gaps. 

(10) The local Nusselt number at Ra =103 and amplitude 

varies from λ=1 to λ=4 is fluctuated from θ =0o to 360o and 

recedes gradually from θ =240o to 300o with increasing of 

Rayleigh number to 106, as a result of convection. 

(11) At a low Rayleigh number Ra=103, the total entropy 

generation is affected by the local entropy generation due to 

heat transfer, but at high Rayleigh number range (Ra=104 to 

106), the total entropy is effected by local entropy generation 

due to fluid flow. 
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NOMENCLATURE 

 

Cp Specific heat at constant pressure 

(KJ/kg.K) 

G Gravitational acceleration (m/s2) 

K Thermal conductivity (W/m.K) 

R Radius differences of inner and outer 

cylinder cavity (m) 

Ro Base circle (m) 

S Entropy 

P Dimensionless pressure 

P Pressure (Pa) 

Pr Prandtl number (νf/αf) 

Ra Rayleigh number (𝒈𝜷𝒇𝑳𝟑 𝜟𝑻 𝝂𝒇𝜶𝒇)⁄  

T Temperature (K) 

Tc Temperature of the cold surface (K) 

Th Temperature of the hot surface (K) 

NuL Local Nusselt number on the hot inner 

cylinder 

Nuave Average Nusselt number hot inner circular 

cylinder 

U Dimensionless velocity component in x-

direction 

u Velocity component in x-direction (m/s) 

V Dimensionless velocity component in y-

direction 

v Velocity component in y-direction (m/s) 

X Dimensionless coordinate in horizontal 

direction 

x Cartesian coordinates in horizontal 

direction (m) 

Y Dimensionless coordinate in vertical 

direction 

y Cartesian coordinate in vertical direction 

(m) 

Gr Grashof number  

 

Greek symbols 

 

α Thermal diffusivity (m2/s) 

θ Dimensionless temperature (T-Tc/ΔT) 

𝛹 Dimensional stream function (m2/s) 

𝛹 Dimensionless stream function 

φ Angle of circular cylinder 

Φ irreversibility 

μ Dynamic viscosity (kg.s/m) 

ν Kinematic viscosity (μ /ρ)(Pa. s) 

β Volumetric coefficient of thermal 

expansion (K-1) 

ρ Density (kg/m3) 

Π Heat function 

 

Subscripts 

 

 

c Cold 

f Fluid (pure) 

h hot 

T total 

 

Abbreviations 

 

 

Min Minimum 

Amp. Amplitude (m) 

L local 

Max Maximum 

n Number of corrugations 

ave Average 
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