study. International Journal of Thermal Science, 49(8): 1345-3.

https://doi.org/10.1016/j.ijthermalsci.2010.02.013

- [17] Khanafer, K., Vafai, K. (2011). A critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat and Mass Transfer, 54(19-20): 4410-4428. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048
- [18] Talebi, F., Mahmoudi, A.H., Shahi, M. (2010). Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid. International Communications in Heat and Mass Transfer, 37(1): 79-90. https://doi.org/10.1016/j.icheatmasstransfer.2009.08.01

3

- [19] Brinkman, H.C. (1952). The viscosity of concentrated suspensions and solution. Journal of Chemistry Physics, 20(4): 571-581. https://doi.org/10.1063/1.1700493
- [20] Maxwell, C.A. (1873). Treatise on Electricity and Magnetism. 1st ed., Clarendon Press, Oxford, UK.
- [21] Patankar, S.V. (1980). Numerical Heat Transfer and Fluid Flow Hemisphere Publishing, New York, USA. https://fr.scribd.com/doc/146279942/Numerical-Heat-Transfer-and-Fluid-Flow-Patankar-pdf, accessed on Dec. 30, 2018.
- [22] Kholai, O., Boudebous, S., Nemouchi, Z., Rebay M. (2010). Pitchfork bifurcation of the mixed convection in a vertical channel. Heat Transfer Research, 41(3): 313-323. https://doi.org/10.1615/HeatTransRes.v41.i3.80

NOMENCLATURE

а	thermal diffusivity, m ² .s ⁻¹
C_p	specific heat at constant pressure,
-	$J.kg^{-1}.K^{-1}$
8	gravitational acceleration, m.s ⁻²
Gr	Grashof number

k	thermal conductivity, W.m ⁻¹ .K ⁻¹
H	channel width, m
L	channel length, m
Nu	Nusselt number
\overline{Nu}	average Nusselt number
р	pressure, Pa
P	dimensionless pressure
Pr	Prandtl number
Re	Reynolds number
Ri	Richardson number
Т	Tmperature, K
U, V	dimensionless velocity components
и, v	velocity components, m
х, у	cartesian coordinates, m
X, Y	dimensionless coordinates

Greek symbols

β	thermal expansion coefficient, K^{-1}
θ	dimensionless temperature
v	kinematic viscosity, m ² .s ⁻¹
μ	dynamic viscosity, Kg. m ⁻¹ .s ⁻¹
ρ	density, kg.m ⁻³
Ø	nanoparticles volume fraction

Subscripts

left wall
rigth wall
inlet conditions
nanofluid
base fluid
solid particles
value at the wall
left wall
rigth wall