https://doi.org/10.3844/ajessp.2011.542.546

- [8] Jaffal, H.M. (2014). Theoritical analysis on thermal energy storage using phase change materials capsules for solar organic Rankine cycle power generation system. Nahrain University, College of Engineering Journal (NUCEJ), 17(1): 15-35. https://nahje.com/index.php/main/article/view/206
- [9] Duffie, J.A., Beckman, W.A. (2013). Solar Engineering of Thermal Processes, 4th Edition. Copyright © 2013 John Wiley & Sons, Inc. https://doi.org/10.1002/9781118671603
- [10] Abdulmunem, R.A., Jalil, M.J. (2018). Indoor investigation and numerical analysis of PV cells temperature regulation using coupled PCM/Fins. International Journal of Heat and Technology, 36(4): 1212-1222. https://doi.org/10.18280/ijht.360408
- [11] Abdulmunem, R.A., Abdullateef, A.J., Hisham, A.H., Mohammed, H.J. (2018). Effect of colored filters on PV panels temperature and performance under Baghdad meteorological condition. Tikrit Journal of Engineering Sciences, 25(4): 45-49.
- [12] Abdulmunem, R.A., Mohammed, H.J., Muhannad, Z.K. (2018). Modeling study of PV power plants in different Iraq's governorates. The Iraqi Journal for Mechanical and Material Engineering, 18(4): 628-643.
- [13] Hashim, A.H., Ali, H.N., Abdulmunem, R.A. (2017). An experimental investigation on the performance enhancement of photovoltaic/thermal panel using a tracking system and nanofluid (Al₂O₃). Engineering and Technology Journal, 35A(5): 493-508. https://www.iasj.net/iasj?func=article&aId=130209
- [14] Hashim, A.H., Ali, H.N., Abdulmunem, R.A. (2015). Indoor investigation for improving the hybrid photovoltaic/thermal system performance using nanofluid (Al₂O₃-Water). Engineering & Technology Journal, 33A(4): 889-901.
- [15] Hashim, A.H., Ali, H.N., Abdulmunem, R.A. (2015). Improving of the photovoltaic/thermal system performance using water cooling technique. IOP Conf. Series: Materials Science and Engineering, 78(012020): 1-9. https://doi.org/10.1088/1757-899X/78/1/012020
- [16] Hussien, H., Hasanuzzaman, M., Numan, A.H., Abdulmunem, R.A. (2014). Enhance photovoltaic/thermal system performance by using nanofluid. 3rd IET International Conference on Clean Energy and Technology (CEAT).

NOMENCLATURE

А	area (m^2) .
G	irradiation (W/m ²)
h _c	convective heat transfer coefficient
	$(W/m^2.k).$
h_r	the radiation heat transfer coefficient
	$(W/m^2.k).$
h_w	the convective heat transfer coefficient by
	the wind $(W/m^2.k)$.
Κ	thermal conductivity(W/m.k).
L	distance (m).
Ν	number.
Pr	prandtl number.
Q	Energy.
Т	temperature (°C).
U	heat loss coefficient (W/m ² .k).
V	average velocity of the out let air(m/s)
v	air kinematic viscosity(m2/s)

Greek symbols

3	emittance
η	efficiency (%)
ρ	density(kg/m ³)

1	
β	collector tilt angle(deg)

Subscripts

а	air
b	collector bottom insulation
b-a	from the bottom to ambient.
c	collector.
d	duct
e	collector edge insulation
e-a	from the edge to ambient
g	gravitational constant (9.81 m ² /s)
g-a	from the glass to ambient.
p-g	the absorber plate to glass cover.
t	top
t _b	collector bottom insulation thickness (m).
t_e	collector edge insulation thickness (m).