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The environmental conditions have a great impact on the measuring accuracy of electricity 

meters, once they are installed. This paper aims to find a way to accurately evaluate the 

measuring errors of electricity meters under actual conditions. Specifically, a novel bifurcation 

deep neural network (BDNN) model was designed and tested. The BDNN consists of a 

subnetwork and a fully-connected network. The subnetwork is a deep autoencoder-

convolutional neural network (DAE-CNN) dedicated to processing harmonic features. The 

fully-connected network takes the subnetwork output and the environmental conditions as its 

inputs, and generates the output of the entire model by softmax. Then, the BDNN was trained 

on a dataset generated by real experiments with electricity meters. Three hyperparameters, 

namely, the activation function, the number of hidden layers and the autoencoder structure, 

were optimized through several experiments. Through the optimization, the rectified linear 

unit (ReLu) was adopted as the activation function, the number of hidden layers was set to 4, 

and the autoencoder structure was determined as 256-128-64-32. Each numerical figure refers 

to the number of nodes in the corresponding hidden layer. Finally, the BDNN was compared 

with the least squares support vector machine (LS-SVM), the fully-connected MLP (FCP) and 

the original CNN, and found to outshine the contrastive methods in prediction error and 

computing cost. The research results shed important new light on the field calibration and error 

prediction of electricity meters. 
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1. INTRODUCTION

The effective calibration of electricity meters is a growing 

concern among metrologists, who have sought continually to 

improve the accuracy of different measurement approaches. 

This has been accentuated by new international directives 

highlighting the need for measuring instruments that achieve 

designed functions in actual conditions, and adopt highly 

traceable measuring methods [1, 2]. Meanwhile, the 

development of smart grids has raised the concern with the 

precision of state estimation for electricity meters across 

distributed management systems. Together, these concerns 

have motivated the power industry to find effective ways to 

ensure the accuracy of electricity meters [3]. To date, the 

relevant studies have focused on creating error models for 

electricity meters, and predicting errors under dynamic 

conditions. However, there is not yet a comprehensive model 

for the errors of electricity meters. For electricity meters with 

multiple components, the error situation in multi-dimensional 

conditions remains a black box problem. 

Fortunately, there is another way to improve the measuring 

accuracy of electricity meters [4]: treating the error estimation 

as a regression and forecasting problem [5]. In this way, a 

different set of techniques can be brought to bear, many of 

which are grounded on artificial intelligence (AI) [6, 7]. The 

rise of the AI has given birth to various effective forecasting 

models [8, 9]. 

The deep learning approaches have a unique advantage in 

error estimation of electricity meters under actual conditions 

[10], namely, the algorithms are trained by real-world data 

[11]. Once enough data has been acquired, machine learning 

will take over for further error prediction [12]. Thus, the data 

collection task becomes scalable, facilitating the management 

of diverse and complex errors that may occur [13]. 

Therefore, this paper explores on how the errors of 

electricity meters are affected by the various changes in 

operating conditions, and, on this basis, establishes an error 

estimation method using a specially-designed artificial neural 

network (ANN). This paper offers three major contributions: 

(1) A novel bifurcation deep neural network (BDNN) model

was designed to estimate the errors of electricity meters under 

actual conditions. When there are known environmental 

parameters, this model can accurately determine the 

measuring accuracy of metering devices under specific 

environment conditions and certain constraints. This is the first 

time that machine learning has been specifically applied to the 

error prediction of electricity meters. 

(2) To verify its performance, our BDNN model, plus

various machine learning approaches, was applied to the 

evaluate initial measurement data. The comparison shows that 

our approach is an effective strategy for error estimation of 

electricity meters. 

(3) Our approach offers a novel yet viable solution to

estimation of measuring errors of electricity meters under 

actual conditions.
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2. MODEL CONSTRUCTION 

 

Deep learning has been successfully applied in many 

domains [14, 15]. It has clear potential to assist with the error 

estimation for electricity meters [16]. This section explains the 

construction of the BDNN model, and provides some 

background information about our approach [17]. 

As shown in Figure 1, the proposed BDNN consists of a 

subnetwork and a fully-connected network [18]. The 

subnetwork is a deep autoencoder-convolutional neural 

network (DAE-CNN) dedicated to processing harmonic 

features. The fully-connected network takes the subnetwork 

output and the environmental conditions as its inputs, and 

generates the output of the entire model by softmax.  

 

 
 

Figure 1. The architecture of the BDNN 

 

The BDNN has two types of inputs, namely, environmental 

conditions (A) and harmonic features (B).  The environmental 

conditions include temperature, humidity, voltage, current, 

and power factor, while the harmonic features refer to the 

frequency, amplitude and phase angle of each harmonic in the 

test system [19]. The BDNN needs to learn how the measuring 

errors of electricity meters are influenced by the harmonic 

features. This learning task is similar to the training in natural 

language processing (NLP) and image recognition [20]. That 

is why a DAE-CNN (Figure 2) was specifically designed as 

the subnetwork to process the harmonic features, and output a 

vector [21-23]. The output vector, together with the 

environmental conditions, was received by the fully-

connected network, which then output the predicted changes 

of measuring errors.  

The DAE-CNN is essentially an unsupervised pre-training 

machine, namely, the deep autoencoder (DAE), superimposed 

on the basic CNN. As shown in Figure 2, the autoencoder 

encodes the inputs as a reduced-dimensional map through 

convolution operations. Then, the reduced-dimensional map is 

decoded through deconvolution operations back to the original 

inputs. In this way, the reconstruction error is minimized, and 

the network weights are preadjusted through the training [24, 

25]. Finally, a backpropagation algorithm is adopted to 

finetune the parameters of the pretrained network. Each layer 

in the DAE-CNN is an autoencoder, consisting of an encoder 

and a decoder. Each encoder contains three 3×3 convolutional 

layers, followed by a max-pooling layer, while each decoder 

contains a max-pooling layer, followed by three 3×3 

convolutional layers. 

 
 

Figure 2. The architecture of the DAE-CNN 

 

The inputs of the BDNN are the influencing factors of the 

measuring errors of electricity meters. In this research, the 

entire dataset of the influencing factors contains 17,710 

samples. First, only the harmonic features (1,610 samples) 

were inputted to the subnetwork. To train the subnetwork, the 

1,610 samples were divided into a pretraining dataset and a 

finetuning dataset at the ratio of 3:7. As their names suggest, 

the pretraining dataset was used to pretrain the subnetwork and 

the finetuning dataset to finetune to subnetwork. Then, the 

remaining samples in the entire dataset were adopted to train 

the entire BDNN. 

 

 

3. PREDICTION EXPERIMENTS 

 

To verify its effectiveness, the proposed BDNN was 

compared with other error prediction methods through four 

experiments on actual datasets of different sizes. All the 

experiments were carried out on Google’s TensorFlow 

framework, using Python codes. 

The prediction result of each method was evaluated by a test 

set, which is a part of the sample data. The sample data were 

divided into three parts, a training set, a verification set and a 

test set. Each method was trained the training set, and the 

training results were verified using the verification set. 

Through the training, the parameters of each method were 

improved continuously. Finally, the performance of each 

method was verified using the test set. 

The prediction result of each method was evaluated by three 

metrics: the mean absolute error (MEA), the mean squared 

error (MSE) and the root mean square error (RMSE): 
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where, n is the sample size; yi is the real value; y’i is the 

predicted value. 

510



 

The MAE reflects the deviation between the real value and 

the predicted value. This metric is very robust for large errors. 

Meanwhile, the MSE and the RMSE effectively reflect the 

dispersion of each method. However, these two metrics might 

magnify the large errors. Together, the three metrics 

demonstrate the performance of each prediction method from 

multiple angles. 

 

3.1 Hyperparameter optimization 

 

For a neural network model, there is a set of 

hyperparameters to be adjusted, in addition to network weights 

and bias parameters. These hyperparameters are related to 

activation functions, number of hidden layers and autoencoder 

structure, exerting a great impact on the training results. 

Therefore, the hyperparameters must be optimized before 

evaluating any neural network. Hence, three preliminary 

experiments were conducted to assess how three 

hyperparameters, including the activation function, the 

number of hidden layers, and autoencoder structure, affect the 

error prediction ability of a neural network. During the 

experiments, the learning rate was set to 0.001 and the batch 

size to 100. 

 

 
 

Figure 3. Prediction errors of neural networks trained by 

different activation functions 
 

Table 1. Performance of neural network trained by different 

activation functions 

(mean of the last 100 iterations) 

 
Activation function MSE MAE RMSE 

ReLU 0.00069591 0.0204587 0.0263801 

Sigmoid 0.00502961 0.0671789 0.0709197 

Tanh 0.00248868 0.0327884 0.0498867 

 

Firstly, the neural network was trained with three different 

activation functions in turn: rectified linear unit (ReLU), 

sigmoid and tanh. The training results after 20,000 iterations 

are displayed in Figure 3 and Table 1. It can be seen that the 

neural network trained with sigmoid had the poorest results in 

terms of MSE, MAE and RMSE, while that trained with ReLU 

achieved the best results. In addition, the neural network 

trained with ReLU saw the fastest decline in training and test 

errors, i.e. the smallest overall error. Hence, ReLU was 

adopted as the activation function for the verification 

experiments. This activation function also boasts fast 

convergence and accurate error feedbacks in multilayer 

perceptron (MLP) training. 

Next, the number of hidden layers in the neural network was 

adjusted from 1 to 5 before prediction. The experimental 

results are recorded in Figure 4 and Table 2. Judging by MSE, 

MAE and RMSE, the different neural networks could be 

ranked in descending order of prediction performance as: the 

neutral network with 4 hidden layers, that with 5 hidden layers, 

that with 2 hidden layers, that with 3 hidden layers and that 

with 1 hidden layer. The results can be explained as follows: 

If there are too few layers, the neural network will have 

insufficient ability to realize nonlinear fitting; if there are too 

many layers, the neural network will easily face overfitting. 

Therefore, the number of hidden layers was set to 4 in the 

verification experiments. 

 

 
 

Figure 4. Prediction errors of neural networks with different 

number of hidden layers 

 

Table 2. Performance of neural network with different 

number of hidden layers 

(mean of the last 100 iterations) 

 
Number of layers MSE MAE RMSE 

1 0.00649618 0.0625282 0.0805988 

2 0.00126128 0.0249926 0.0355145 

3 0.00348837 0.0388211 0.0590624 

4 0.000428885 0.0160663 0.0207095 

5 0.000600928 0.0172511 0.0245138 

 

Finally, the neural network was coupled with four different 

autoencoder structures before prediction: 100-50-25-12, 128-

64-32-16, 200-100-50-25 and 256-128-64-32. Each numerical 

figure refers to the number of nodes in the corresponding 

hidden layer. The experimental results in Figure 5 and Table 3 

show that the performance of the neural network increased 

with the number of hidden layer nodes. In terms of the MAE, 

the neural network with the autoencoder structure of 200-100-

50-25 had a slight edge over the other neural networks. Overall, 

however, the neural network with a stacked autoencoder (256-

128-64-32) provided the best outcome. Hence, the 256-128-

64-32 was adopted as the autoencoder structure for the 

verification experiments. 
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Figure 5. Prediction errors of neural networks with different 

autoencoder structures 
 

Table 3. Performance of neural network with different 

autoencoder structures 

(mean of the last 100 iterations) 

 
Architecture MSE MAE RMAE 

100-50-25-12 0.459762 0.526034 0.678058 

128-64-32-16 0.223107 0.332401 0.472342 

200-100-50-25 0.000533585 0.015187 0.0230995 

256-128-64-32 0.00051362 0.017557 0.0226631 

 

3.2 Comparison between BDNN and other methods 

 

Based on the optimized hyperparameters, the proposed 

BDNN was compared with the least squares support vector 

machine (LS-SVM), the fully-connected MLP (FCP) and the 

original CNN. All the four methods were trained with the same 

dataset. The prediction errors and error rates of the four 

methods are displayed in Figure 10 and Table 5, respectively. 

The comparison in Table 5 shows that the BDNN achieved the 

minimum prediction error by any metric, with a significant 

lead over the LS-SVM and the FCP. It can also be seen from 

Figure 6 that the predicted values of the BDNN were closely 

correlated with the actual errors. This result confirms that the 

BDNN can predict errors based on environmental conditions, 

and offer the best solution to error estimation despite the 

variation in environmental conditions. 

The computing time in the training phase is another 

important indicator of error prediction effect. The total 

computing time of the BDNN was much shorter than that of 

any other method, especially compared with the LS-SVM. 

Hence, the BDNN outperforms the contrastive methods in the 

forecast of metering errors. 

Of course, any neural network approach has a high initial 

overhead, because of the required amount of training. Despite 

the initial overhead, the experimental results suggest that the 

BDNN can accurately predict the errors of electricity meters 

under multi-dimensional conditions. Then, a key issue is to 

provide enough data for initial training. Once trained, the 

machine learning will save lots of time through the iterations. 

In calibration, the standard measured value should be two 

orders of magnitude higher than the measured value, i.e. the 

prediction error in our experiments should be controlled within 

1%. The BDNN obviously satisfies this requirement, with a 

prediction error of only 0.002%. Therefore, our approach can 

fully support onsite calibration of electricity meters. 

 

 
 

Figure 6. Prediction errors of LS-SVM, FCP, CNN and 

BDNN 

 

Table 4. Performance of LS-SVM, FCP, CNN and BDNN 

 
Architecture MSE MAE RMAE 

LS-SVM 0.175321 0.324835 0.418713 

FCP 0.167789 0.288262 0.409621 

CNN 0.00262098 0.0360277 0.0511955 

BDNN 0.00235818 0.0101225 0.0485611 

 

 

4. CONCLUSIONS 

 

From the perspective of deep learning, this paper aims to 

effectively predict the measuring errors of electricity meters 

under actual conditions. For this purpose, it is necessary to 

optimize the inputs and hyperparameters for the task, and 

compare the established approach with other methods in terms 

of prediction error. 

To achieve the above goals, a BDNN was designed and 

tested with an DAE-CNN subnetwork, and a fully-connected 

network. The subnetwork was specially developed to process 

the harmonic features and provide an input vector to the fully-

connected network. The proposed model was trained on a 

dataset generated by real experiments with electricity meters. 

Then, three hyperparameters were optimized through another 

set of experiments: ReLu was selected as the activation 

function, the number of hidden layers was set to 4, and the 

autoencoder structure was determined as 256-128-64-32. 

Finally, our model was compared with several deep learning 

methods through experiment. The results show that the BDNN 

outperformed the other methods in prediction error and 

computing cost. This means our model can effectively 

combine unsupervised pretraining with a stacked denoising 

autoencoder (SDA) with a supervised finetuning strategy, 

when there are enough data. 

In addition, as mentioned in the Introduction, the current 

error prediction methods for electricity meters involve onsite 

calibration. However, these approaches cannot perform 

consistently in the field, because the calibration techniques are 

all designed in lab conditions. This defect is overcome in our 

research. The proposed BDNN can correctly verify the results 
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collected onsite, and effectively evaluate the errors of 

electricity meters. 
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