
  

  

WPT-ANN and Belief Theory Based EEG/EMG Data Fusion for Movement Identification 
 

Fazia Sbargoud1,2, Mohamed Djeha2,3*, Mohamed Guiatni2, Noureddine Ababou1 

 
1 Instrumentation Laboratory, Houari Boumedienne University of Sciences and Technology, Algiers, Algeria 
2 Comlplexe Systems Control Laboratory, Ecole Militaire Polytechnique, Algiers, Algeria 
3 Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier, France 

 

Corresponding Author Email: mohamed.djeha@lirmm.fr 

 

https://doi.org/10.18280/ts.360502 

  

ABSTRACT 

 

Received: 11 July 2019 

Accepted: 17 September 2019 

  

The electromyography (EMG) and electroencephalography (EEG) are two frequently used 

modalities of bio-signals in the field of bio-robotics. However, it is insufficient to use a single 

isolated modality, due to the presence of artifacts, the lack of information, etc. To solve the 

problem, this paper proposes an EEG/EMG data fusion method that take advantages of both 

signals and overcome their drawbacks to achieve accurate identification of movements. The 

two types of bio-signals were preprocessed through wavelet packets transform (WPT) and 

classified by the artificial neural network (ANN). Then, the belief theory was introduced to 

allow for model uncertainty and imprecision, which adapts to the ambiguities and conflicts 

between sources. Experimental results show that the proposed EEG/EMG data fusion method 

outperformed the strategies based on only one modality. The research findings provide new 

impetus to bio-robotic applications. 
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1. INTRODUCTION 

 

Current advances in bio-signal sensors, data acquisition, 

embedded systems and processing techniques contribute to the 

integration of physiological signals in a wide variety of clinical 

and non-clinical settings like medical diagnosis [1], 

biorobotics [2], brain-computer interfaces (BCI) or brain-

machine interfaces (BMI) [3], biometrics [4]. These bio-

signals use different modalities: the electrocardiography 

(ECG), the electromyography (EMG), the electrooculography 

(EOG), the electrocorticography (ECoG), the 

electroencephalography (EEG), the positron emission 

tomography (PET), the magnetic resonance imaging (MRI), 

the functional MRI (fMRI), and the diffusion tensor imaging 

(DTI). 

Due to a large number of artifacts affecting the 

measurement and to the lack of information in a single signal; 

the use of an isolated modality can often be insufficient. Add 

to that, the source’s heterogeneous character and modalities 

acquisition are challenging issues. In order to overcome these 

limitations, data fusion allows to combine complementary 

properties of several single modality methods aiming to 

separately improve each of them [5]. Fusion can use complex 

structured raw data and noticeable features giving a 

normalized workspace easing the synergetic relationship that 

improves decision-making processes. This field of research 

has been named in different ways, for instance, multimodal 

fusion, sensor data fusion, mixture of experts, decision fusion, 

classifier combiners, and multiway signal processing. 

Among the different modalities, EMG is one of the most 

used in bio-robotic applications due to the fact that it reflects 

directly the muscle activity of the user following the human 

motion intention. Numerous applications use EMG-based 

control method such as intelligent wheelchairs [6-8], 

prosthetics [9, 10], and exoskeletons-orthoses [11-13]. 

Meanwhile, EMG-based control approaches have some 

limitations due to their dependence on the user (the generated 

signal in the case of a paralyzed person is abnormal) and on 

the target application. 

Besides, the EEG-based control methods involve also a lot 

of attention in the bio-robotic applications. These methods 

decode the user’s brain signals to control robots such as 

prosthetics [14, 15], exoskeletons, orthoses [16-18] and 

wheelchairs [19, 20]. Unfortunately, the use of an isolated 

EEG signal is not fully recognized in the bio-robotic domain 

because of the low reliability and data transfer rate [5]. In 

addition, the artifacts in raw EEG recordings, such as EMG, 

ECG and power signal, disturb the EEG information. The 

combination of both signal sources might be a promising 

approach allowing to take advantages of each signal and 

reduce their disadvantages. Lalitharatne et al. [5] have 

presented a review on hybrid/fusion EEG-EMG interfaces 

proposing important design features. They have demonstrated 

the interesting potential for hybrid EEG-EMG-based control 

approaches to be used in bio-robotic applications.  

However, it has been remarked that there is still significant 

need to improve their effectiveness and to eventually bring 

these technologies from laboratories to real life. Among the 

various fusion techniques, cited in the literature, few of them 

have been used for EMG/EEG fusion. For instance, Leeb et al. 

[21, 22] explored the parallel use of EEG and EMG modalities. 

The user is equipped with an EEG signal recording headset 

with 16 electrodes and 4 electrodes for the acquisition of EMG 

signals (two on each arm). The data fusion step is performed 

after the classification of each source separately. Two fusion 

methods are compared in the context of muscle fatigue. It has 

been found that the Bayesian fusion method is more robust 

than the average classification results. Xie et al. [23] aimed to 

identify the movement intention of patients with perceptual-

motor dysfunction using EEG and EMG signals. They 
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proposed a combined algorithm based on Local Mean 

Decomposition (LMD) and multiscale entropy (MSE) as 

features. A pattern recognition model was designed based on 

the Extreme Learning Machine technique (ELM). Sherwani 

and Kumar [24] propose an algorithm for fusion of EEG and 

EMG signals for the detection of walking intention. The used 

approach for the fusion of the two signals is based on the two 

classifiers outputs weighting. The efficiency of data fusion has 

been evaluated in the context of simulated muscle fatigue. 

Tang et al. [25] used the EMG and EEG data acquisition 

methods of a lower limb rehabilitation system for patients with 

stroke. The wavelet transform is used to analyze the time and 

frequency domain, which provides a good feature vector for 

the dynamic analysis and motion recognition of EMG signals. 

However, no fusion technique is used. The authors used only 

the coherence of EEG and EMG signals to extract the 

activation signals as the control side of rehabilitation. 

To the best of our knowledge, this paper describes the first 

integration of the Belief Theory [26] for EMG/EEG data 

fusion. This fusion approach aims to take advantages of both 

EMG and EEG signals to overcome the drawbacks of each one 

in order to improve the interpretation of the user intention. The 

most frequently cited advantages of this theory are its capacity 

to represent ignorance, and that does not need prior 

probabilities. The theory of evidence proposed by G. Shafer is 

an extension of Dempster’s idea using the Bayesian 

probabilities [26]. This theory is commonly referred to as 

Dempster-Shafer Theory (DST). It has been used in a variety 

of perceptual activities including sensor fusion [27-29], scene 

interpretation [30, 31], target recognition [32], and verification 

[33, 34]. We propose the integration of the Belief theory for 

multi-sensor fusion of physiological signals (EEG and EMG). 

This theory allows to model uncertainty and imprecision of 

information. It also takes into account ambiguities and 

conflicts between sources. We aim to decode three movements 

based on the EEG and the EMG signals. The EEG signals can 

compensate the missing EMG signals. Moreover, in the case 

of exoskeletons control, some required muscles or nerves for 

the EMG signals might be disconnected or paralyzed, leading 

the EEG signals to compensate them.  

This paper is organized as follows: Section 2 presents the 

used materials for signal’s recording and describes the used 

experimental protocol for the dataset construction. Section 3 

introduces the signal acquisition techniques and data 

processing, feature extraction and preliminary classification. 

Section 4 introduces the mathematical formalism of the belief 

theory and its application on the EEG and the EMG data fusion. 

Section 5 discusses the achieved results. 

 

 

2. DATA ACQUISITION AND EXPERIMENTAL 

PROTOCOL 
 

Before describing of the data acquisition methodology, we 

specify that we aim to decode the targeted movements:  

• EMG signal: three classes corresponding to the main hand 

movements namely: “close hand”, “supination” and 

“pronation” (see Figure 1).  

• EEG signal: generated by the eye movement in three 

directions: “up”, “right” and “left”. For the data fusion, 

new classes are defined by the combined EMG and the 

EEG signals as follow: “front”, “right”, “left” for close 

hand and up, supination and right, pronation and left, 

respectively. More details are introduced by Djeha [35]. 

 
 

Figure 1. Considered hand movement  

 

 
 

 
 

 
 

Figure 2. Raw EEG signal (blue), filtered EEG signal (black) 

and segmentation window (red) 

 

2.1 EEG signal acquisition 

 

An EEG acquisition headset NeuroSky MindWave headset 

has been used. We found it more suitable (easier to connect 

and wear) and affordable (low cost). This device has a single 

dry electrode placed on the front left eye at the Fp1 position 

according to the 10/20 system. The reference electrode is 
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placed below the left ear. The headset contains Neurosky 

Thinkgear technology that measures the EEG signal at a 

sampling frequency of 512 Hz, then transmits data using a 

dynamic link library (under both C++ and Matlab software) to 

the computer via Bluetooth wireless link. A recording sample 

of the EEG signal is plotted in Figure 2. 

 

2.2 EMG signal acquisition 

 

For the acquisition of the EMG signals, it is necessary to 

identify the responsible muscles for pronation, supination and 

hand closure movements. Based on the muscle’s palpation, 

three muscles are identified, namely the flexor digitorum, 

quadratus pronator and supinator. However, only two EMG 

signals are exploited and for each signal acquisition, three 

gelled surface electrodes (non-invasive technique) are used: 

two electrodes for differential measurement and a reference 

one. The EMG signal is recorded via a DSpace 1104 

acquisition and control board at a sampling rate of 1KHz. A 

recording sample of the EMG signal is plotted in Figure 3. 

 

 

 
 

Figure 3. Raw EMG signal (blue), filtered EMG signal (red) 

 

2.3 Movement detection algorithm 

 

A continuous analysis of a recorded EMG signals is 

necessary to detect any hand movement. The thresholding 

method is the simplest one for the movement detection. This 

method is based on performing a comparison with respect to a 

threshold that is calculated online for one second during which 

the user keeps a neutral position. The thresholds of the two 

EMG signals are calculated as follows: 

 

1 1 1 1EMG EMG EMG EMGS J = +                    (1) 

 

2 2 2 2EMG EMG EMG EMGS J = +                   (2) 

 

where, µ and σ are the mean and standard envelope’s deviation 

during the period of inactivity, and J is a constant defined 

empirically as: JEMG1=JEMG2=1.2. 

 

2.4 Dataset building 

 

In order to build our dataset, 13 persons aged around 23 

years (5 women and 8 men) have participated in our 

experiments. The experimental paradigm is defined as follows: 

• The EEG signal: the participant makes three eye 

movements up, right and left, and back to the initial 

position after each movement; 

• The EMG signal: 

- In order to acquire the best signal; special skin 

preparation such as hair removal, proper gel concentration 

and prevention of sweat accumulation were followed. 

Different precautions may also be necessary (respect of 

the optimized distance between the electronic acquisition 

system and the electric power source). 

- The participant makes three hand movements: closing, 

pronation, and supination; 

- The movement must be short and strong enough.  

The experiment is conducted 10 times for each movement. 

 

 

3. FEATURE EXTRACTION AND PRELIMINARY 

CLASSIFICATION 
 

3.1 Signals preprocessing 

 

EEG and EMG signals are highly contaminated by 

environmental interferences (such as the 50 Hz power line 

electromagnetic interference) which have to be removed. EEG 

signals are centered then filtered by a third order Butterworth 

low pass filter. EMG signals were pre-amplified using an 

instrumentation amplifier with a gain of 5, then filtered by a 

second order stop band analogue filter with a cut-off 

frequencies of 60 Hz and 160 Hz to minimize the influence of 

the power line and artifacts. Finally, signals are amplified 318 

times in order to make them exploitable. So, the total 

amplification gain is 1,590. 

 

3.2 Feature extraction using DWT and WPT 

 

EMG signals are non-stationary in nature. The most suitable 

way to study these signals is to use time-frequency methods 

such as the wavelet decomposition. This method was 

developed by Mallat in 1980 [36] for data compression in 

image coding. Wavelet decomposition represents the 

information extracted from the signal in both time and 

frequency domain based on applied transformations for a 

unique mother wavelet.  

Indeed, the mother wavelet gets scaling and translation 4 

operations represented by a ∈ ℝ+ and b ∈ ℝ parameters as 

follows: 

 

𝜓𝑎,𝑏(𝑡) =
1

√𝑎
𝜓(

𝑡−𝑏

𝑎
)                               (3) 

 

The mathematical formalism of continues wavelet 

transform applied to a finite energy signal s(t) is represented 

by the Eq. (4). It is defined as a correlation between the signal 

s(t) and a family of function 𝜓(𝑎,𝑏) (extracted from unique 

mother wavelet 𝜓 ). 
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𝑊𝑆(𝑎, 𝑏, 𝜓) =
1

√𝑎
∫ 𝑠(𝑡)𝜓∗(

𝑡−𝑏

𝑎
)𝑑𝑡            (4) 

 

where, 𝜓∗(. ) is the complex conjugate of 𝜓(. ). In the Discrete 

wavelet transform (DWT) we replace the coefficients 𝑎 and 𝑏 

by the discrete version, and the signal is decomposed using the 

high pass filter and the low pass filter. The outputs of this 

filters are referred to as the coefficients of the Approximation 

(A) and details (D), respectively [37]. Wavelet packets 

Transform (WPT) were introduced by Coifman and 

Wickerhauser. WPT appears as an extension of wavelet 

analysis (WA) where the signal is decomposed into 

approximation and detail. In the case of WPT, adding to 

decomposing the approximations of each level, the details are 

also decomposed into appropriate approximations and details 

[38] (Figure 4). The signal’s decomposition (Details and 

Approximations) to level nlevel, generates a decomposition tree 

of the original signal giving 2nlevel nodes, represented by a 

number of coefficients for its appropriate filter (see Figure 4). 

 
 

Figure 4. Five level decomposition using discrete wavelet packet for EEG signal 

 

The energy calculation corresponding to each node, is 

calculated as follows, [39]: 

 

𝐸𝑛𝑛𝑜𝑑𝑒,𝑛𝑙𝑒𝑣𝑒𝑙
= ∑ |𝑑𝑛𝑛𝑜𝑑𝑒,𝑛𝑙𝑒𝑣𝑒𝑙

(𝑘)|
2𝑘=𝑛𝑐𝑜𝑒𝑓

𝑘=1           (5) 

 

where, 𝑛𝑛𝑜𝑑𝑒   is the node position at the 𝑛𝑙𝑒𝑣𝑒𝑙 
𝑡ℎ level and 

𝑛𝑐𝑜𝑒𝑓   is the number of its coefficients [40]. 

In our work, the decomposition level is selected to be 5 and 

the mother wavelet is 4th order Daubechies (db4). This 

wavelet is smooth and orthogonal and has a shape that looks 

similar to the patterns localized in the signal, [41]. 

 

3.3 Classification using ANN 

 

The use of Artificial Neural Network (ANN) is common for 

pattern recognition, classification and identification. 

Rosenblatt [42] studied and implemented a classifier 

containing a unique layer of neurons. Subsequently, Multi-

Layer Perceptron (MLP) appeared to improve the efficiency 

of this classifier. The idea is to predict the output by adjusting 

weights multiplied by the inputs to be evaluated by continuous 

functions that activate or deactivate the neuron. The typical 

structure of an ANN consists of three layers: the input layer 

where each neuron receives an element of the input vector. A 

hidden layer containing several neurons defines the 

complexity of the network and finally an output layer where 

each neuron represents a class. The network topology chosen 

was the feed-forward variety with one input layer. The inputs 

of ANNs are the extracted wavelet coefficients. For EEG 

signal classification, the ANN has 38 input neurons, one 

hidden layer with 25 neurons and three output neurons 

corresponding to the three targeted movements. However, for 

EMG signal classification, the ANN has 32 input neurons and 

15 neurons in the hidden layer. The sigmoid activation 

function and Levenberg-Marquardt algorithm learning method 

are used. 

 

 

4. DATA FUSION BASED ON THE BELIEVE THEORY 

 

4.1 Mathematical formalism of the belief theory 

 
Several theories are available regarding information 

processing depending on mathematical formalism. The most 

known is the probability theory, which has shortcomings when 

knowledge is incomplete, uncertain or imprecise. For this 

reason, several theories appeared since 1960s, namely the 

fuzzy subset that has been developed by Zadeh and the belief 

theory initially introduced by Dempster [26, 43] and 

developed by Shafer [44] in a new mathematical formalism. 

This theory is based on the modeling of a belief in an event, 

expressed as a mass function allowing a good representation 

of knowledge [45]. The advantage of this theory is the realized 

compromise between incertitude and imprecision. In the belief 

theory, a discernment framework Θ represents all possible 
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states of system and is defined as: Θ = {𝜃1, 𝜃2, … , 𝜃𝑁}. 

Dempster Shafer theory assigns a belief mass 𝑚  to each 

element A of 2Θ. The elementary mass function 𝑚𝑗 associated 

to the source 𝑆𝑗 (sensor, classifier...) is defined as follows: 

 

𝑚: 2Θ
 

→ [0,1]                                 (6) 

 

and 

 

 ∑ 𝑚(𝐴) = 1𝐴∈2Θ                                   (7) 

  

The difference between probability theory and belief 

function theory is the fact that element A may be the union of 

more than one decision. This particularity makes it possible to 

model uncertainties. 

 

4.2 Combination rules of mass functions 

 

Implementation of a combination rule, using the obtained 

mass sets from each information source, provides a combined 

mass set. Among the combination rules, we mention the 

following: 

(1) Dempster-Shafer orthogonal combination rule: This 

rule is initially introduced by Dempster [46], and modified by 

Shafer [44] given for every 𝐴 ∈ 2Θ by: 

 

𝑚(𝐴) = (𝑚1 ⊕ 𝑚2 … ⊕ 𝑚𝑚)(𝐴) 

=
1

1−𝑘
∑ ∏ 𝑚𝑗(𝐵𝑗)𝑚

𝑗=1𝐵1∩…∩𝐵𝑚=𝐴         (8) 

 

and 𝑚(𝜙) = 0. This rule combination is interesting in close 

world hypothesis. k is the factor that can eliminate the conflict. 

It is defined as follows: 

 

𝑘 = ∑ ∏ 𝑚𝑗(𝐵𝑗)𝑚
𝑗=1𝐵1∩…∩𝐵𝑚=𝜙                    (9) 

  

(2) Disjunctive combination rule: This combination rule is 

given by considering unions not intersections. 

 

𝑚(𝐴) = (𝑚1 ⊕ 𝑚2 … ⊕ 𝑚𝑚)(𝐴) 

= ∑ ∏ 𝑚𝑗(𝐵𝑗)𝑚
𝑗=1𝐵∪1…∪𝐵𝑚=𝐴             (10) 

 

(3) Smets combination rule: It is a non-normalized version 

of Dempster-Shafer combination rule. This rule may be 

applied in the case of the open world [47]. 

 

𝑚(𝐴) = ∑ ∏ 𝑚𝑗(𝐵𝑗)𝑚
𝑗=1𝐵∪1…∪𝐵𝑚=𝐴             (11) 

 

and 

 

𝑚(𝜙) = ∑ ∏ 𝑚𝑗(𝐵𝑗)

𝑚

𝑗=1𝐵∪1…∪𝐵𝑚=𝜙

 

𝑚(𝜙) = ∑ ∏ 𝑚𝑗(𝐵𝑗)𝑚
𝑗=1𝐵∪1…∪𝐵𝑚=𝜙             (12) 

  

(4) Yager combination rule: Yager [48] proposed a closed 

world model where the conflict measure is assigned to the total 

discernment frameworkΘ.  The conflict is thus transformed 

into ignorance. We get for every 𝐴 ∈ 2Θ: 

 

𝑚(𝐴) = ∑ ∏ 𝑚𝑗(𝐵𝑗)𝑚
𝑗=1𝐵∪1…∪𝐵𝑚=𝐴                  (13)  

 

and the mass of Θ is: 

𝑚(Θ) = 1 − ∑ ∏ 𝑚𝑗(𝐵𝑗)𝑚
𝑗=1𝐵∪1…∪𝐵𝑚=𝐴            (14) 

 

(5) Murphy combination rule: It consists of an arithmetic 

average of the mass functions. We get for every 𝐴 ∈ 2Θ: 

 

𝑚(𝐴) =
1

𝑛
∑ 𝑚𝑖

𝑛
𝑖=1 (𝐴)                          (15) 

 

(6) Dubois and Prade combination rule: Dubois and 

Prade’s combination rule admits that two sources are reliable 

when they are not in conflict. The Dubois and Prade rule 

represent a reasonable compromise between accuracy and 

reliability [49]. We get for every 𝐴 ∈ 2Θ (combination of two 

sources): 

 

𝑚(𝐴) = ∑ 𝑚1

 

𝐵,𝐶∈2Θ

𝐵∩𝐶=𝐴≠𝜙

(𝐵)𝑚2(𝐶) 

+ ∑ 𝑚1
 

𝐵,𝐶∈2Θ

𝐵∪𝐶=𝐴𝓈𝐵∩𝐶=𝜙

(𝐵)𝑚2(𝐶)                (16) 

  

(7) PCR combination rule: PCR (Proportional Conflict 

Redistribution) uses 𝑆𝑗  sources and masses obtained by the 

Dempster-Shafer rule before normalization. It consists in 

redistributing the conflict mass in proportion to the valid 

combinations [50]. The rule is defined [51] as: 

 

𝑚(𝐴) = ∑ 𝑚1
 

𝐵,𝐶∈2Θ

𝐵∩𝐶=𝐴≠𝜙

(𝐵)𝑚2(𝐶)  

+ ∑
𝑚1

2(𝐴)𝑚2(𝐵)

𝑚1(𝐴)+𝑚2(𝐵)

 
𝐵,𝐶∈2Θ

𝐵∩𝐴=𝜙

+
𝑚2

2(𝐴)𝑚1(𝐵)

𝑚2(𝐴)+𝑚1(𝐵)
              (17) 

               

4.3 Decision rules 

 

After combining the mass functions of the different sources, 

the decision rules must provide an optimal choice of singleton 

𝜃𝑖, and among them we find: 

(1) Maximum plausibility: Based on the choice of the 

singleton 𝜃𝑖  which gives the maximum plausibility. For the 

observation 𝑥 we decide 𝜃𝑖 for: 

 

𝑃𝑙(𝜃𝑖) = 𝑚𝑎𝑥𝑖≤𝑘≤𝑛𝑃𝑙(𝜃𝑘)(𝑥)              (18) 

 

This criterion corresponds to the optimistic search for a 

solution, since it retains the upper limit of the confidence 

interval. 

(2) Maximum credibility: The second criterion consists in 

choosing the singleton 𝜃𝑖 giving the maximum belief. For the 

observation 𝑥 we decide 𝜃𝑖 for: 

 

𝐶𝑟(𝜃𝑖) = 𝑚𝑎𝑥𝑖≤𝑘≤𝑛𝐶𝑟(𝜃𝑘)(𝑥)              (19) 

  

The use of this criterion corresponds to the pessimistic 

search for a solution, since it only considers cases for which 

there is no uncertainty, and which are contained within the 

lower limit of the confidence interval. 

(3) Maximum pignistic probability: This rule was 

proposed by Smets [52, 53] for the decision in the context of 

the belief functions. Smets proposes to define a particular 

probability distribution called pignistics in order to make the 

decision. This pignistic probability is obtained by distributing 

the mass 𝑚(𝐴) equally among the elements of 𝐴. Thus, for 

any decision 𝜃𝑖, the pignistic probability is defined by: 
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𝑏𝑒𝑡(𝜃𝑖) = ∑
𝑚(𝐴)

|𝐴|(1−𝑚(𝜙))

 
𝐴∈2Θ,𝜃𝑖∈𝐴

 
              (20) 

 

With |𝐴| is the cardinal of 𝐴. The criterion of the maximum 

pignistic probability is equivalent of deciding 𝜃𝑖  for the 

observation 𝑥 if : 

 

𝑏𝑒𝑡(𝜃𝑖) = 𝑚𝑎𝑥𝑖≤𝑘≤𝑛 𝑏𝑒𝑡(𝜃𝑘)(𝑥)            (21) 

 

 

5. EXPERIMENTS, RESULTS AND DISCUSSION 

 

In this section, we propose to apply the theory of evidence 

for EMG and EEG signals. First, the classification results of 

both type of signals are given separately. Thereafter, full 

details of the proposed fusion approach will be presented. The 

purpose is to identify the desired movements of a user 

according to three new classes corresponding to the following 

directions: ”front”, ”right”, ”left”. This is done using EMG 

signals issued from the hand movements (close hand, 

supination and pronation), and EEG signals generated by the 

eye movement in three directions (up, right, left). To calculate 

the efficiency rate of the corresponding classification, the 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒  was chosen because it represents a combination of 

accuracy and recall, such as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑁𝑐𝑎𝑖

𝑁𝑎𝑖
                              (22) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑁𝑐𝑎𝑖

𝑁𝑖
                                  (23) 

 

where, 𝑁𝑖 represents the number of vectors of the class 𝑖, 𝑁𝑎𝑖 

represents the number of vectors assigned to the class 𝑖 and 

𝑁𝑐𝑎𝑖  represents the number of vectors correctly assigned to the 

class 𝑖 . 
 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                   (24) 

 

The arithmetic average value of 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 is calculated. 

 

Table 1. Confusion matrix of the EEG signal classification 

 
Output Target Up Left  Right  Accuracy  

Up  34 15 2 66.7  

Left   25 39 25 43.8  

Right 6 11 38 69.1  

Accuracy (%) 52.3  60.0  58.5  56.9  

 

Table 2. Precision, recall and Fmeasure of EEG signal 

classification 
 

Criteria Classes Up Left  Right  

Precision (%) 66.7  43.8  69.1  

Recall (%) 52.3  60  58.5  

Fmeasure (%) 58.63  51.95  63.36  

 

Table 3. Confusion matrix of the EMG signal classification 

 
Output 

Target 

Close 

hand  
Pronation Supination 

Accuracy 

(%) 

Close hand 32   6  6 72.7  

Pronation 0 23 17  57.5  

Supination 3  6 12 57.1  

Accuracy 

(%) 
91.4  65.7  34.3 63.8  

Table 4. Precision, recall and Fmeasure of EMG signal 

classification 

 
Output Target Close hand  Pronation Supination 

Precision (%) 72.7 57.5 57.1 

Recall (%) 91.4  65.7 34.3 

Fmeasure (%) 80.98  61.33  42.86 

 

5.1 EEG signal classification 
 

Using the wavelet transform’s coefficients as feature vector 

(38 coefficients), the classification results are obtained on a 

test base as shown in Table 1. Table 2 represents the Fmeasure 

calculated for each class. The mean value of Fmeasure of EEG 

classification is found to be 57.98%. 
 

5.2 EMG signal classification 
 

Using energies of nodes tree of WPD at level 4 as 

characteristic vector (32 values), the classification results for 

EMG signals are represented in Table 3. Table 4 presents the 

Fmeasure calculated for each class. The mean value of Fmeasure for 

EMG signal classification is 61.72%.  

The basic idea behind a hybrid EEG-EMG based-control 

interface is the signals fusion of both EEG and EMG in the 

seven control method. this fusion depends on several factors 

like a specific application and the user’s abilities. 
 

5.3 EMG and EEG data fusion 
 

The classification accuracy is not sufficient for EEG and 

EMG signals separately. As showed in Table 1, there is a 

confusion between Up and Right movement classes, and for 

EMG signal as showed in Table 3 there is a confusion between 

Pronation and Supination movement classes. This confusion 

and incertitude are mainly due to a small number of electrodes 

used for the signal measurement. This situation may be 

adapted to the concept of using a belief theory for the EEG and 

EMG data fusion as shown in Figure 5.  
 

 
 

Figure 5. EMG - EEG data fusion scheme 
 

The first step to apply this theory is the definition of a 

discernment framework Θ as follows:  
 

𝛩 = {𝐹𝑟𝑜𝑛𝑡, 𝑅𝑖𝑔ℎ𝑡, 𝐿𝑒𝑓𝑡}                   (25) 
 

We use two sources 𝑆𝐸𝐸𝐺  and 𝑆𝐸𝑀𝐺 . The confusion situation 

existing between the classes (𝑈𝑝 and 𝑅𝑖𝑔ℎ𝑡) and (𝑃𝑟𝑜𝑛𝑎𝑡𝑖𝑜𝑛 

and 𝑆𝑢𝑝𝑖𝑛𝑎𝑡𝑖𝑜𝑛), may be used for the incertitude modeling by 

the definition of focal element of the mass functions 𝑚𝐸𝐸𝐺  and 

𝑚𝐸𝑀𝐺  as: 
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𝑚𝐸𝐸𝐺(𝐴) ≠ 0 with 𝐴 = {𝑈𝑝, 𝑅𝑖𝑔ℎ𝑡} or 𝐴 = {𝐿𝑒𝑓𝑡}   (26) 

 

𝑚𝐸𝑀𝐺(𝐴) ≠ 0 with 𝐴 = {𝑐𝑙𝑜𝑠𝑒 ℎ𝑎𝑛𝑑} 

or A=  {𝑃𝑟𝑜𝑛𝑎𝑡𝑖𝑜𝑛, 𝑆𝑢𝑝𝑖𝑛𝑎𝑡𝑖𝑜𝑛}         (27) 
 

For the mass function assignment, we chose to use of the 

modified classifiers results. The first one is related to the 

classification of EEG signal considering two great classes: 
{𝑈𝑝, 𝑅𝑖𝑔ℎ𝑡}  and {𝐿𝑒𝑓𝑡}  and the second one counts two 

classes: {𝑐𝑙𝑜𝑠𝑒 ℎ𝑎𝑛𝑑}  and {𝑃𝑟𝑜𝑛𝑎𝑡𝑖𝑜𝑛, 𝑆𝑢𝑝𝑖𝑛𝑎𝑡𝑖𝑜𝑛} . The 

mass assignment for the two classes of EEG and EMG source 

is calculated using the following equation: 
 

 𝑚𝑠(𝑐𝑖) =
𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑆 (𝑐𝑖)

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑆 (𝑐𝑖)+𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑆  (𝑐𝑗)
         (28) 

 

Table 5. Focal elements intersection of masses function 
 

𝑺𝑬𝑬𝑮/ 𝑺𝑬𝑴𝑮 {Close hand } {Pronation, Supination} 

{Up, Right} {𝐹𝑟𝑜𝑛𝑡} {𝑅𝑖𝑔ℎ𝑡} 

{Left} ϕ {𝐿𝑒𝑓𝑡} 

 

Table 6. Fmeasure of EMG and EEG data fusion 

 

Cr (%)/ Rule 
D-S, Yager , D-P, Murphy, 

Smet, Disj 
PCR 

Fmeasure 68.24  68.18 

Enhancement 10.56  10.47 

 

Table 5 gives the combination of the focal elements 

describing below, which determines the singletons defined in 

discernment framework Θ . The data fusion is realized by 

combining the mass functions using different combination 

rules described in section 5 and the decision step is done using 

one decision criteria such as: maximum of plausibility or 

maximum of credibility or maximum of pignistic probability. 

In our work we compare the use of nine combination rules and 

as decision criteria the maximum of plausibility. Table 6 

shows the results of data fusion using as evaluation the mean 

factor. The classification of EMG and EEG signals before the 

fusion gives a performance of 61.0% and 57.78%, respectively. 

The fusion is performed using different conjunctive and 

disjunctive combination rules. There has been a 10.56% 

enhancement in performance, particularly for D-S, Yager and 

D-F rules. For the different rules, the improvement is constant 

for the used decision criterion, because the intersection of the 

focal elements of the two mass functions generate singletons. 
 

 

6. CONCLUSIONS 
 

This paper proposed the combination of two sources of 

electrophysiological signals namely the EEG and the EMG. 

Signal processing and classification techniques have been used 

in order to prepare data for a preliminary classification. Belief 

Theory based approach has been used for the fusion of the 

EEG and EMG signals. This approach has the ability to 

mathematically model any data uncertainty and imprecision. 

This theory is based on a specific mass functions formulation 

according to the target application. In this framework, EEG 

and the EMG signals are separately insufficient for movement 

identification leading to confusions between the classes. The 

power of a belief theory is to give the ability of modeling the 

uncertainty through the definition of the focal elements 

containing grouping classes.  

Despite the fact that a single low cost EEG electrode has 

been used for the combination with the EMG electrodes, the 

proposed approach has improved the movement classification 

rate by more than 10%. The present developed method is 

mainly interesting in a large number of applications where a 

lake of information is a barrier for the efficiency rate of 

movement control applied in robotic systems. Future 

researches will focus on the fusion of data from multi-channels 

EEG acquisition devices and multi-EMG electrodes. The use 

of Deep Learning algorithms combined with the Believe 

Theory could be explored for any specific desired tasks. To 

achieve this objective, it is essential to increase the practicality 

of algorithms by enhancing both their accuracy and 

computational effectiveness/complexity. It is also critical to 

find efficient algorithms those satisfy the time and memory 

requirements for practical usage of EEG and EMG based 

classification in clinical settings such as bio-prosthesis and 

orthosis control, and abnormal functional corticomuscular 

coupling detection.  
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NOMENCLATURE 

a dimensionless scale factor 

A, B, C dimensionless elements of 2Θ 

b time shift, s 

bet pignistic probability  

Cr credibility 

,
( )

node leveln n
d k kth coefficient of a node at  𝑛𝑛𝑜𝑑𝑒, 𝑛𝑙𝑒𝑣𝑒𝑙

E energy, J  

Fmeasure dimensionless weighted harmonic mean of 

precision and recall 

J dimensionless constant 

k dimensionless conflict factor 

m dimensionless belief mass 

Nai dimensionless number of vectors assigned 

to the class i 

Ncai dimensionless number of vectors correctly 

assigned to the class i 

Ni dimensionless number of vectors of the 

class i 

𝑛𝑙𝑒𝑣𝑒𝑙 dimensionless level of wavelet 

decomposition 

𝑛𝑛𝑜𝑑𝑒 dimensionless node position at the 

𝑛𝑙𝑒𝑣𝑒𝑙 
𝑡ℎlevel

𝑛𝑐𝑜𝑒𝑓 dimensionless number of coefficients of the 

𝑛𝑙𝑒𝑣𝑒𝑙 
𝑡ℎlevel

s(t) finite energy signal, volt 

Pl plausibility 

S source 

SEMG threshold of EMG signal, volt

t time, s 
𝑊𝑆 wavelet transform applied to a finite energy 

signal s(t) 

x observation 

Greek symbols 

µ mean of envelope, volt 

σ standard deviation of envelope, volt 

ϕ empty set  

ψ mother wavelet 

Θ discernment framework

θi Singleton 
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