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To satisfy the accuracy of image reconstruction, this paper carries out offline optimization of 

the Hessian matrix in the modified Newton-Raphson algorithm (MNRA) for image 

reconstruction of electrical resistance tomography (ERT). Firstly, the selection strategy of 

regularization factor, which directly affects the accuracy of the reconstructed image, was 

discussed in details. Next, the improved particle swarm optimization (PSO) algorithm was 

adopted to alleviate the ill-posedness of the Hessian matrix through offline optimization. The 

variables of offline optimization include the radius ratio between each layer of the finite-

element model (FE model) to the sensitive field (SF) during the γ-refinement of the ERT, and 

the positions of the nodes added through element subdivision. The experimental results show 

that, under the same conditions, the above optimization measure can improve the solution 

accuracy of the ERT’s inverse problem by alleviating the ill-posedness of the Hessian matrix, 

which is used to correct the dielectric resistance distribution (DRD) in the SF, without 

sacrificing the real-time performance of the MNRA.  
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1. INTRODUCTION

Electrical resistance tomography (ERT) [1-10] is a branch 

of electrical tomography, alongside with electrical capacitance 

tomography (ECT) [11-16], electrical impedance tomography 

(EIT) [17-25] and electromagnetic tomography (EMT) [26-

29]. Compared with traditional detection methods, this novel 

real-time detection technique satisfies the high accuracy 

requirement of modern detection tasks, and enjoys broad 

application prospects in various fields, namely, two-

phase/multi-phase flow, geophysical exploration and 

biomedicine. 

Many algorithms have been developed to reconstruct 

images accurately, without sacrificing real-time performance. 

Among them, the modified Newton-Raphson algorithm 

(MNRA) stands out as a theoretically complete iterative 

reconstruction algorithm for static images [30]. In the iterative 

process, the MNRA introduces a Hessian matrix, which 

contains a regularization factor, to correct the dielectric 

resistance distribution (DRD) in the sensitive field (SF), and 

thus effectively overcomes the ill-posedness of sensitivity 

matrix. The regularization factor directly bears on the quality 

of the image reconstructed by the MNRA. Currently, the 

regularization factor is selected in two ways: empirical 

selection or online real-time calculation. Either approach has 

certain defects. Lacking theoretical basis, empirical selection 

cannot guarantee that the image is reconstructed at the 

accuracy required by the system. Meanwhile, online real-time 

calculation solves the inverse problem of the ERT, more 

accurately at the cost of real-time performance, as it increases 

the computing load of the image reconstruction algorithm. By 

refining the finite-element model (FE model), Xiao et al. [30] 

effectively solved the ill-posedness without affecting the real-

time performance. However, their approach still faces several 

defects: 

1. The topology of the FE model was not optimized. Under

the same conditions, each topology of the FE model 

corresponds to a specific Hessian matrix with a unique level 

of ill-posedness, and a distinct solution accuracy of the inverse 

problem. 

2. The positions of the nodes added in the element

subdivision process were not optimized. 

To overcome the above defects, this paper firstly explores 

the selection strategy of the regularization factor. On this basis, 

the ill-posedness of Hessian matrix was alleviated through 

offline optimization of the FE model topology during the γ-

refinement of the ERT's forward problem, and the positions of 

the nodes added through element subdivision. In this way, the 

author greatly improved the accuracy of the MNRA in image 

reconstruction. 

2. PRINCIPLE OF THE MNRA

The principle of the MNRA is as follows [30]: 

Step 1. Initialize the DRD 𝝆(0) in the SF.

Step 2. Calculate the effective boundary voltage of the SF 

corresponding to the DRD 𝝆(𝑘)  in the 𝑘  -th iteration of the

MNRA: 𝒗(𝑘) = 𝑓(𝝆(𝑘)).
Step 3. Compute the error of the MNRA by: 
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where, 𝒗0 is the measured effective boundary voltage of the

SF.  

Step 4. Judge if the MNRA satisfies the termination 
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condition. If not, go to Step 5. 

Step 5. Introduce the Hessian matrix with the regularization 

factor, correct the DRD 𝝆(𝑘+1) in the SF, and jump back to 

Step 2: 
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where, 𝑬 is the unit matrix; 𝜇(𝑘)  is the regularization factor 

adopted by the MNRA in the 𝑘 -th iteration; 𝑓 ′(𝝆(𝑘)) is the 

sensitivity matrix when the DRD of the SF is 𝝆(𝑘) ; 

[𝑓 ′(𝝆(𝑘))]𝑇𝑓 ′(𝝆(𝑘)) + 𝜇(𝑘)𝑬  is the Hessian matrix used to 

correct the DRD. 

 

 

3. OFFLINE OPTIMIZATION OF HESSIAN MATRIX 

 

The offline optimization of the Hessian matrix used to 

correct the DRD in the SF is carried out during the iteration of 

the MNRA, based on the selection strategy of the 

regularization factor, which directly affects the ERT’s image 

reconstruction accuracy. In this paper, this Hessian matrix is 

optimized by improved particle swarm optimization (PSO) 

algorithm. The variables include the radius ratio between each 

FE model layer to the SF during the γ-refinement of the ERT's 

forward problem, and the positions of the nodes added through 

element subdivision. The specific flow of the offline 

optimization is as follows: 

Step 1. Selection of regularization factor 

In the MNRA, it is difficult to reconstruct a high-quality 

image with a fixed regularization factor. This factor should be 

adjusted reasonably according to the MNRA error (formula 

(1)) in the iterative process. In the early phase, the algorithm 

has a large error, i.e. low accuracy in image reconstruction. In 

this case, the regularization factor should be large enough to 

ensure the stability of the MNRA, and the solution accuracy of 

the inverse problem. In the late phase, the algorithm has a 

small error, i.e. high accuracy in image reconstruction. In this 

case, the regularization factor should be small enough, such 

that the reconstructed image reflects the actual DRD in the SF. 

Of course, the regularization factor should not be too small. 

Otherwise, the MNRA will diverge in the iterative process. 

Hence, the minimum value of the regularization factor should 

be identified rationally, considering the prior knowledge and 

the FE model accuracy in solving ERT’s forward problem. 

To sum up, during the iteration of the MNRA, the 

{[𝑓 ′(𝝆)]
𝑇
𝑓 ′(𝝆) + 𝜇(𝑘)𝑬}

−1
⋅ [𝑓 ′(𝝆)]𝑇 should be calculated 

offline and saved to facilitate the offline optimization of the 

Hessian matrix, which is used to correct the DRD in the SF. 

Meanwhile, the small value interval of the regularization 

factor should be expanded to narrow its large value interval. In 

this paper, the maximum and minimum values of the 

regularization factor are both configured, with the median 

value satisfying the log-uniform distribution: 
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where, a, b, d, p and 𝑞
 
are positive numbers that satisfy 𝑎 > 1, 

𝑑 > 1, 𝑞 > 1 and 𝑑 > 𝑏; ℎ1 and ℎ2 can be calculated by: 
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where, 𝑡 is a positive integer greater than 2. 

Step 2. Offline optimization of Hessian matrix 

The global element subdivision of the FE model [30] was 

adopted to improve the data transmission efficiency between 

the FE model adopted for ERT’s forward problem and the FE 

model adopted to correct the DRD in the SF.  

The previous experiments have shown that, under the same 

conditions, the MNRA can solve the inverse problem more 

accurately by updating the sensitivity matrix. Hence, the 

following strategy can be implemented to enhance the quality 

of reconstructed image without sacrificing the real-time 

performance of the MNRA: First, different DRDs should be 

set up in the SF according to rich prior knowledge (especially 

in biomedicine), and the corresponding regularization factors 

should be computed by formulas (4)~(7). On this basis, the 

Hessian matrices should be established corresponding to the 

DRDs and regularization factors. Once every few iterations, 

the correlation coefficient should be computed between the 

optimal reconstructed image of the MNRA and the 

reconstructed image corresponding to each DRD, and used to 

judge whether the Hessian matrix needs to be updated. The 

offline optimization of the Hessian matrix involves the 

following steps: 

Step 1. Set up parameters like 𝑎, 𝑏, 𝑑, 𝑝, 𝑞, 𝑘 and 𝑡. 
Step 2. Take the following two items as the variables: the 

radius ratio between each FE model layer to the SF during the 

γ-refinement of the ERT's forward problem, and the positions 

of the nodes added through element subdivision. Set up the 

fitness function as:  
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where, 𝜂𝑖  
is a nonnegative weight; cond  is the conditional 

number; 𝑯𝑖  is the Hessian matrix corresponding to each DRD 

in the SF and each regularization factor; 𝑤 is the number of 

Hessian matrices; 𝒀 is a variable representing the radius ratio 

between each FE model layer to the SF during the γ-

refinement of the ERT's forward problem, and the positions of 

the nodes added through element subdivision. 

Moreover, conduct offline optimization of the Hessian 

matrix through improved PSO algorithm. During the 

optimization, update the particle velocity and position by: 
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where, 𝑿𝑖  and 𝑽𝑖 are the position vector and velocity vector of 

particle i, respectively; pdesti and gbestg are the individual 

best-known solution and global best-known solution, 

respectively; 𝜔  is the inertial weight; 𝑐1  and 𝑐2  are learning 

factors; 𝑟𝑎𝑛𝑑 1 and 𝑟𝑎𝑛𝑑 2 are random numbers in (0, 1). 

Step 3. To improve the real-time performance of the MNRA, 

carry out offline calculation and storage of the following term 

based on the optimization results in the previous step: 

{[𝑓 ′(𝝆)]
𝑇
𝑓 ′(𝝆) + 𝜇(𝑘)𝑬}

−1
⋅ [𝑓 ′(𝝆)]𝑇. 

 

 

4. SIMULATION EXPERIMENT 

 

In our simulation experiment, some parameters are 

configured as follows: the maximum number of iterations for 

the improved PSO algorithm for offline optimization of the 

Hessian matrix and that for the MNRA were both set to 200; 

the upper and lower bounds of the inertial weight were set to 

0.90 and 0.10, respectively; for the efficiency of offline 

optimization, the DRDs in the SF were assumed as continuous 

uniform distributions, and the weight of each Hessian matrix 

𝜂𝑖 was set to 1.00; considering accuracy and time consumption, 

the FE model was designed with 8 layers, and the radius of the 

SF was normalized; the regularization factors of the MNRA 

iterations were set to 10-1, 10-2…10-8 according to parameters 

like p =0.50, q =1.15, a =10, b =1, d =8 and t =8. 

 

 
 

Figure 1. FE models 

 

Under the above settings, the FE model topology 

corresponding to the optimal result of the offline optimization 

of Hessian matrix, as well as the positions of the nodes added 

through element subdivision are recorded as FE model 3 in 

Figure 1. FE model 1 was proposed by Xiao et al. [31], which 

can effectively enhance the solution accuracy of the forward 

problem. FE model 2 was also developed by Xiao et al. [30], 

which can satisfactorily alleviate the ill-posedness of Hessian 

matrix. In FE model 2, the nodes added through element 

subdivision are the centroids of triangular elements. FE model 

4 is an FE model that computes the measured effective 

boundary voltages under different model settings, without 

committing the inverse crime. To minimize the error between 

the calculated and theoretical values of the FE model 

corresponding to each DRD in the SF, FE model 4 performs 

offline optimization of the radius of the second outmost layer, 

and assumes that the DRD is uniform in the other layers. 

When the regularization factor was set to 10-1, 10-2…10-8, 

respectively, the mean conditional number of the Hessian 

matrices corresponding to FE model 1, FE model 2 and FE 

model 3 was 2.9720×105, 9.9067×104 and 8.2721×104, 

respectively. In other words, FE model 3, through offline 

optimization by the improved PSO algorithm, reduced the 

mean conditional number of Hessian matrices by 72.1666% 

from that of FE model 1 and 16.4999% from that of FE model 

2. This means FE model 3 effectively alleviated the ill-

posedness of Hessian matrix and thus enhanced the MNRA’s 

solution accuracy of the inverse problem. 

Figure 2 shows how the ill-posedness of Hessian matrix, 

which is adopted to correct the DRD in the SF, varies through 

the iterations of the MNRA. Note that Algorithms 1~3 are the 

Hessian matrices corresponding to the MNRA coupled with 

FE model 1, FE model 2 and FE model 3, respectively; (a) 

means the regularization factors are computed by formulas 

(4)~(7); (b) means the regularization factors are only 

computed by formula (4). 

 

 
(a) 

 

 
(b) 

 

Figure 2. Variation of the ill-posedness in the iterative 

process 
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As shown in Figure 2(a), the Hessian matrices optimized by 

our approach (Algorithm 3) achieved the smallest conditional 

number at any number of iterations of the MNRA. This means 

our offline optimization strategy can ensure that the MNRA 

operates stably and the resolution of reconstructed image can 

be promoted. It can be seen from Figure 2(b) that our local 

optimization strategy of Hessian matrix also applies to 

regularization factors other than 10-1, 10-2…10-8. However, 

when the regularization factors were only computed by 

formula (4), the local optimization effect was suppressed. 

Thus, the offline calculation and storage of {[𝑓 ′(𝝆)]
𝑇
𝑓 ′(𝝆) +

𝜇(𝑘)𝑬}
−1

⋅ [𝑓 ′(𝝆)]𝑇 only suit systems with low requirements 

on real-time performance.  

In addition, when the sensitivity matrix remained 

unchanged, the real-time performance of the MNRA is mainly 

affected by the computing load of correcting the DRD in the 

SF, under the same experimental conditions. Under our local 

optimization strategy of Hessian matrix, the {[𝑓 ′(𝝆)]
𝑇
𝑓 ′(𝝆) +

𝜇(𝑘)𝑬}
−1

⋅ [𝑓 ′(𝝆)]𝑇 is computed and saved offline. Under the 

same experimental conditions (Intel® Core™2 Duo Processor 

T8100; frequency: 2.10GHz; memory: 3.00GB), our strategy 

reduced the time consumption in each correction of DRD in 

the SF from 0.8750-0.8900s to 3.1000×10-4-4.7000×10-4s. In 

this way, the real-time performance of the MNRA is 

effectively improved, without sacrificing the solution 

accuracy of the inverse problem. 

Next, six different models were constructed (Figure 3a) to 

verify the effectiveness of our local optimization strategy of 

Hessian matrix in enhancing the quality of the image 

reconstructed by the MNRA. The images reconstructed by 

different MNRAs are compared in Figures 3b~3e and Tables 

1~2. Note that Algorithm 4 is the MNRA adopting the Hessian 

matrices of FE model 3 in Figure 1 and an empirical 

regularization factor.  

 

 
a. Six preset images 

 

 
b. Images reconstructed by Algorithm 1 

 
c. Images reconstructed by Algorithm 2 

 

 
d. Images reconstructed by Algorithm 3 

 

 
e. Images reconstructed by Algorithm 4 

 

Figure 3. Preset models and images reconstructed by 

different algorithms 

 

The accuracy of image reconstruction was evaluated by two 

indices: relative error e  and correlation coefficient 𝜌: 
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where, 𝒈 is the preset DRD; �̂� is the reconstructed DRD; L is 

the number of triangular elements in each model; �̄�
 
and �̂� are 

the mean values of 𝒈 and �̂�, respectively. 
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Table 1. Comparison of relative errors (%) 

 

Preset 

images 

 Algorithm 

1 

 Algorithm 

2 

 Algorithm 

3 

 Algorithm 

4 

Image a 43.8854 41.5316 31.5779 38.3912 

Image b 26.8399 24.6968 18.9752 22.2840 

Image c 39.3645 31.8230 26.8765 30.7501 

Image d 50.2000 48.4003 41.4398 44.0861 

Image e 52.2830 50.2572 43.8958 46.1671 

Image f 50.8244 47.5660 38.9770 43.7200 

Mean 43.8995 40.7125 33.6237 37.5664 

 

Table 2. Comparison of correlation coefficients 

 
Preset 

images 

 Algorithm 

1 

 Algorithm 

2 

 Algorithm 

3 

 Algorithm 

4 

Image a 0.9286 0.9437 0.9649 0.9337 

Image b 0.8695 0.8871 0.9186 0.8867 

Image c 0.8629 0.8805 0.9335 0.9148 

Image d 0.8236 0.8609 0.8884 0.8660 

Image e 0.8305 0.8454 0.8678 0.8339 

Image f 0.7962 0.8168 0.8385 0.8073 

Mean 0.8519 0.8724 0.9020 0.8737 

 

As shown in Tables 1~2, when the regularization factors 

were all selected by formulas (4)-(7) in the MNRA iteration 

process, Algorithm 1 failed to reconstruct images desirably, 

due to the relatively large conditional number of the Hessian 

matrix used to correct the DRD in the SF: the relative error 

was high (mean: 43.8995%) and the correlation coefficient 

was small (mean: 0.8519).  

Algorithm 2 alleviated the ill-posedness of Hessian matrix 

by refining the FE model, thus enhancing the solution 

accuracy of the inverse problem: the mean relative error was 

down by 7.2598%, and the mean correlation coefficient was 

up by 2.4064%, from the levels of Algorithm 1. 

Algorithm 3 further reduced the ill-posedness of Hessian 

matrix through offline optimization of the radius ratio between 

each FE model layer to the SF during the γ-refinement of the 

ERT's forward problem, and the positions of the nodes added 

through element subdivision, and thereby further improved the 

accuracy of image reconstruction: the mean relative error was 

reduced by 17.4119%, and the mean correlation coefficient 

was increased by 3.3929%, from the levels of Algorithm 2. 

Algorithm 4 adopts the same FE model topology to solve 

the ERT’s forward problem and adds nodes at the same 

positions through element subdivision. However, the 

regularization factor of this algorithm was empirically selected 

and fixed through the iterative process. Hence, Algorithm 4 

achieved an image reconstruction accuracy better than that of 

Algorithms 1 and 2, and poorer than that of Algorithm 3: the 

mean relative error was 10.4953% higher and the mean 

correlation coefficient was 3.2391% lower than that of 

Algorithm 3. 

To verify if our offline optimization strategy can enhance 

the quality of the image reconstructed by the MNRA, the four 

algorithms were applied to reconstruct the preset models in the 

presence of noise. The results are compared in Figure 4 and 

Tables 3-4. 

The results in Tables 3 and 4 show that the noise disturbed 

the solution accuracy of the four different MNRAs in ERT’s 

inverse problem. Based on offline optimization of Hessian 

matrix, Algorithm 3 achieved the highest reconstruction 

accuracy: the mean relative error was 20.5650%, 15.7860% 

and 8.3251% lower than that of Algorithms 1, 2 and 4, 

respectively, and the mean correlation coefficient was 7564%, 

3.5398% and 3.1914% higher than that of Algorithms 1, 2 and 

4, respectively. Hence, Algorithm 3 boasts the best quality of 

image reconstruction in the presence or absence of noise. 

 

 
a. Images reconstructed by Algorithm 1 in the presence of 

noise 
 

 
b. Images reconstructed by Algorithm 2 in the presence of 

noise 
 

 
c. Images reconstructed by Algorithm 3 in the presence of 

noise 
 

 
d. Images reconstructed by Algorithm 4 in the presence of 

noise 

 

Figure 4. Images reconstructed by different algorithms in 

the presence of noise 
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Table 3. Comparison of relative errors in the presence of 

noise (%) 

 

Preset images Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 

Image a 48.2505 45.4071 37.4272 41.0747 

Image b 30.6636 29.2343 22.0585 25.5087 

Image c 43.0435 37.3666 31.3782 35.0691 

Image d 52.5580 50.5897 45.4883 47.9869 

Image e 53.0383 52.0269 45.0703 46.5647 

Image f 54.0996 51.0457 42.3092 47.8447 

Mean 46.9423 44.2784 37.2886 40.6748 

 

Table 4. Comparison of correlation coefficients in the 

presence of noise 

 
Preset images Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 

Image a 0.9162 0.9334 0.9596 0.9282 

Image b 0.8662 0.8745 0.9108 0.8856 

Image c 0.8525 0.8738 0.9161 0.8983 

Image d 0.8093 0.8406 0.8706 0.8390 

Image e 0.8061 0.8301 0.8496 0.8127 

Image f 0.7946 0.8001 0.8284 0.8064 

Mean 0.8408 0.8588 0.8892 0.8617 

 

In terms of real-time performance, this paper employs Xiao 

et al.’s strategy [21] for the iterative process of the MNRA, 

which ensures the simplicity and efficiency of data 

transmission between the FE model adopted for ERT’s 

forward problem and the FE model adopted to correct the 

DRD in the SF. Therefore, our offline optimization strategy 

does not affect the real-time performance of the MNRA. 

 

 

5. EXPERIMENTAL VERIFICATION 

 

During the experiment, the ERT system designed by Tianjin 

University was adopted to acquire the effective boundary 

voltage of the SF (Figure 5a). The images reconstructed by the 

four algorithms are compared in Figure 5b.  

 

 
a. The adopted ERT system 

 

 
b. Reconstructed images 

 

Figure 5. Experimental device and results 

 

For Algorithms 1~4, the relative errors of were 35.9679%, 

34.3641%, 30.3435% and 33.5247%, respectively, and the 

correlation coefficients were 0.6900, 0.7197, 0.7477 and 

0.7014, respectively. Compared with Algorithms 1, 2 and 4, 

Algorithm 3 successfully alleviated the ill-posedness of 

Hessian matrix and enhanced the quality of reconstructed 

image, thanks to its dynamic selection of regularization factor 

and local optimization of Hessian matrix based on two 

variables (i.e. the radius ratio between each FE model layer to 

the SF during the γ-refinement of the ERT's forward problem, 

and the positions of the nodes added through element 

subdivision). 

 

 

6. CONCLUSIONS 

 

Among the various ERT techniques, the MNRA is a 

theoretically complete image reconstruction algorithm, known 

for its high imaging accuracy. To further enhance the MNRA’s 

accuracy of image reconstruction, this paper explores the 

selection strategy of regularization factor in algorithm iteration, 

and then proposes a local optimization strategy to alleviate the 

ill-posedness of Hessian matrix with the improved PSO 

algorithm. The variables of the strategy include the radius ratio 

between each FE model layer to the SF during the γ-

refinement of the ERT's forward problem, and the positions of 

the nodes added through element subdivision. Experimental 

results show that our local optimization strategy of Hessian 

matrix could effectively improve the accuracy of images 

reconstructed by the MNRA. 
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