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To identify the responsible party of harmonic pollution, this paper puts forward a novel 

estimation method for harmonic emission level based on principal component regression 

(PCR). After introducing the principles of the PCR, the author set up a regression equation 

based on the complex relationship between harmonic voltage, harmonic current and harmonic 

impedance of the supply system at the point of common coupling (PCC). Then, the PCR was 

introduced to estimate the harmonic emission levels of the supply system and the consumer at 

the PCC. The validity of our method was verified through both simulation and field test. The 

results show that our method can accurately estimate the harmonic emission level, while 

overcoming the multicollinearity of independent variables and retaining important information 

in regression. 

Keywords: 

harmonic emission level, evaluation, 

principal component regression (PCR), 

power system 

1. INTRODUCTION

With the growing application of nonlinear loads and 

distributed generators, the power system is faced with an 

increasingly severe harmonic pollution [1-2]. To solve the 

problem, it is imperative to clarify the responsibilities for the 

pollution and differentiate the harmonic emission levels 

between the supply system and the consumer [3-6]. 

In relevant studies, the harmonic emission level is mainly 

evaluated based on the harmonic contributions of the supply 

system and the consumer at the point of common coupling 

(PCC) [7-10]. Many evaluation methods have emerged, 

including Kalman filter [11-12], harmonic state estimation 

[13], k-nearest neighbors (kNN) algorithm [14], empirical 

mode decomposition [15] and distributed measurements [6]. 

In practice, however, the harmonic emission level is generally 

evaluated by statistical methods [16]. 

The fluctuation method and its variants are the earliest 

statistical evaluation approaches for harmonic emission level 

[17-18]. By this method, the harmonic impedance of the power 

system is calculated as the ratio of voltage and current 

measured at the PCC, and used to identify the responsibilities 

for harmonic pollution between the power system and the 

consumer. Despite its simplicity, the fluctuation method may 

be inaccurate if the voltage and current are not measured 

accurately. 

Later, Zhang and Yang [19] proposed the binary linear 

regression method, which estimates the resistance component 

of the harmonic impedance. However, this method performs 

poorly if the measured voltage and current at the PCC contain 

singular values. Che and Yang [20] reduced the influence of 

the singular values through weighting by the robust regression 

method, but this strategy overlooks the correlation between 

independent variables in statistical analysis. Then, Huang and 

Xu [21] introduced the partial least squares (PLS) regression 

to evaluate harmonic emission level. Compared to the robust 

regression method, the LS regression identifies information 

and noise in the power system accurately, and determines the 

correlation between variables based on statistical features. 

The above methods improve the estimation accuracy of 

harmonic emission level to different degrees. Nevertheless, 

there are two common problems with these strategies. First, 

there are too many independent variables in these methods, 

increasing the modelling complexity. Second, some important 

data may get lost due to the correlation between independent 

variables. Because of the two problems, the existing 

estimation methods for harmonic emission level may be 

inefficient in extracting the information from dependent 

variables that has powerful explanatory ability. In severe cases, 

this type of information is entirely lost.  

This paper proposes a method to estimate harmonic 

emission level based on principal component regression 

(PCR). In this method, the principal components are selected 

according to the amount of the information contained, thus 

overcoming multicollinearity of the independent variables. 

Moreover, this method can retain as much information of 

important independent variables as possible. In this way, the 

harmonic emission level of both supply system and the 

consumer can be estimated at a high accuracy. 

2. THE PCR

The PRC is a statistical method that expresses the 

information as the linear combination of the least variables 

[22]. Let by {𝑥1, 𝑥2,...,𝑥𝑝} be 𝑝 independent variables in the

problem. Then, the dataset of n samples can be described as:
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The PCR is a linear transform between the 𝑝 independent 

variables: 
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where, a_ij is the principal component coefficient. Equation (2) 

can be rewritten as 

 

F AX=                                        (3) 

 

where, F=(F1, F2,…, Fp)T; X=(X1, X2,…, Xp)T; A is the score 

matrix. 

Let λ1, λ2,…, λP be the p eigenvalues of the score matrix A 

that satisfy λ1λ2…λn, and aj be the corresponding 

eigenvectors. Then, the variance of 𝐹1 can be expressed as 

 

1 1 1 1( ) T TVar F a XX a = =                        (4) 

 

Similarly, it can be derived that Var(Fi)=λi. Thus, the 

variances of principal components decrease in turn. Besides, 

the covariances of the principal components can be computed 

by: 
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Through the above transform, the independent variables {𝑥1, 

𝑥2 ,...,𝑥𝑝 } become a new set of variables {F1, F2, …, Fp}, 

whose variances decrease in turn. 

Let F1 be the first principal component to replace the 

original p variables. This component must contain as much 

information of the p variables as possible. In other words, the 

variance Var(F1) should be maximized. If F1 cannot cover all 

the information of the p variables, the second principal 

component F2 should be introduced. Note that the information 

already covered by F1 should not be included in F2, because 

cov(F1, F2)=0. The third, the fourth…, the pth principal 

components can be set up by analogy. According to Equation 

(5), these principal components are not correlated with each 

other, and their variances decrease in turn 

Var(F1)Var(F2),…,Var(Fp). With the decrease of variance, 

the amount of information contained in each principal 

component also declines. 

In practice, not all the p principal components are identified. 

Instead, the first q principal components are selected based on 

their cumulative contribution rate 𝜇, i.e. the variance ratio of a 

principal component to the total variance of all principal 

components:  
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Studies have shown that the integrated variable can cover 

most information of the original variables, if its cumulative 

contribution rate surpasses 85% [23]. The important 

information of the original independent variables can be 

preserved by selecting the principal components based on the 

contribution rate. In addition, if the Fi 
value is close to zero, 

the corresponding independent variables show an approximate 

linear correlation. After neglecting the relatively small 

principal components, it is possible to overcome the 

collinearity between independent variables. 

Once the expression of principal components and sub-

variables are obtained by the PCR, the dependent variables can 

be regressed to sub-variables of each principal component. 

Thus, the regression model can be obtained between 

dependent variables and sub-variables of each principal 

component. The expression of principal components facilitates 

the regression modeling between the standardized independent 

variables and the dependent variables. Finally, the 

standardized independent variables can be transformed to the 

original independent variables, completing the regression 

modeling between original independent variables and 

dependent variables.  

 

 

3. PCR-BASED ESTIMATION OF HARMONIC 

EMISSION LEVEL 

 
The equivalent circuit of the supply system and the 

consumer at the PCC is shown in Figure 1, where Ush is the 

harmonic voltage source of the supply system, Ich is the 

equivalent harmonic current source of the consumer, Zsh and 

Zch are the harmonic impedances of the supply system and the 

consumer, respectively, and Ipcch and Upcch are the harmonic 

current and harmonic voltage measured at the PCC, 

respectively. According to the circuit principle, the following 

equation can be derived: 

 

pcch shpcch shU U I Z
• • • •

= −                          (7) 

 

 
 

Figure 1. The equivalent circuit of the supply system and the 

consumer  

 

The real part and the imaginary part can be expressed as 

multiple linear regression equations, respectively: 

 

pcchx shx pcchx shx pcchy shyU U I Z I Z= − +              (8) 

 

pcchy shy pcchx shy pcchy shxU U I Z I Z= − −             (9) 
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where, Ipcchx and Ipcchy are the real part and the imaginary part 

of the harmonic current Ipcch measured at the PCC, respectively; 

Upcchx and Upcchy are the real part and the imaginary part of the 

harmonic voltage Upcch measured at the PCC, respectively. In 

multiple linear regression, Ipcchx and Ipcchy are independent 

variables, while Upcchx and Upcchy are dependent variables. The 

regression coefficients Zshx, Zshy, Ushx and Ushy can be obtained 

by solving Equations (8) and (9) by the PCR. 

To reduce the background harmonic fluctuation, the data 

used to calculate Zsh and Ush are often divided into M sections. 

Then, the statistical values of Zsh and Ush can be respectively 

obtained by: 
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Next, the harmonic emission level of the consumer can be 

obtained based on Zsh and Ush. According to the superposition 

principle, the equivalent circuit in Figure 1 can be split into 

two circuits (Figure 2).  
 

 
(a) The supply system 

 
(b) The consumer 

 

Figure 2. The equivalent circuits of the supply system and 

the consumer 

Then, the harmonic emission levels of the supply system 

and the consumer can be respectively described as: 

 

ch
spcch sh

ch sh

Z
U U

Z Z
=

+
                         (12) 
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Z Z
=

+
                        (13) 

 

Equations (12) and (13) can be combined into:     
 

pcch spcch cpcchU U U= +                        (14) 

 
The consumer is usually a source of constant harmonic 

current with a large resistance Zch, while the supply system is 

often a source of constant harmonic voltage with a small 

resistance Zsh [16]. Thus, it is obvious that |Zch|| Zsh |. Thus, 

we have: 
 

spcch shU U                               (15) 

 

cpcch pcch shU U U −                      (16) 

 

 

4. SIMULATION 

 

The simulation was carried out on Matlab/Simulink with the 

circuit in Figure 3. The impedance settings and voltage 

amplitudes of the supply system for the fundamental and 

harmonic waves are listed in Tables 1 and 2, respectively. For 

the supply system, the fundamental frequency and 

fundamental initial phase were 49.9Hz and 10°, respectively. 

For the consumer, the harmonic current amplitudes were set as 

follows: Ic3=47A, Ic5=16A, Ic7=8A, Ic9=6A, and Ic11=3A, and 

the fundamental impedance was set to 2.723+j11.345Ω. 

For comparison, our method, partial least squares method 

(PLSM), and improved fluctuation method (IFM) were all 

applied to estimate the harmonic impedance and the harmonic 

emission level of the supply system. The estimation results are 

recorded in Tables 1 and 2. The harmonic emission level of the 

supply system is listed in the form of relative error (%) 

 

 
 

Figure 3. The simulation circuit 
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Table 1. Settings and estimates of harmonic impedance of the supply system 

 

Harmonic order 
Set value of  

Zsh (Ω) 
Estimated by the PLSM (Ω) Estimated by the IFM (Ω) Estimated by our method (Ω) 

Fundamental 0.5+j1.371 0.471+j1.362 0.481+j1.389 0.5+j1.371 

3 0.5+j4.146 0.486+j4.012 0.480+j4.291 0.497+j4.181 

5 0.5+j6.910 0.5161+j6.718 0.530+j6.503 0.515+j6.610 

7 0.5+j 9.674 0.575+j9.970 0.547+j9.372 0.519+j9.728 

9 0.5+j12.438 0.468+j12.901 0.4772+j12.107 0.487+j12.173 

11 0.5+j15.202 0.521+j15.937 0.542+j16.152 0.531+j15.795 

 

Table 2. Estimated harmonic emission levels of the supply system 

 
Harmonic order Set value of Ush (V) PLSM (%) IFM (%) Our method (%) 

Fundamental 400 0.87 1.42 1.35 

3 12 1.49 1.81 1.51 

5 8 1.27 1.51 0.91 

7 7 2.36 2.56 1.75 

9 5 2.01 4.33 1.36 

11 5 3.29 3.61 1.29 

 

From Tables 1 and 2, it can be seen that our method 

estimated the harmonic impedance and harmonic emission 

level more accurately than the two contrastive methods. For 

the estimation of harmonic impedance of the supply system, 

the IMF had the highest error among the three methods; the 

PLSM had an overall small error, but performed poorly in 

some cases, such as the real part of the 7th harmonic 

impedance. The estimates by our method were close to the set 

values, except for the 5th harmonic impedance. For the 

estimation of harmonic emission level of the supply system, 

our method controlled the relative error within 1.75%, far 

lower than that of the other methods. Hence, our method can 

estimate the harmonic emission level of the supply system in 

an accurate manner. 

 

 

5. FIELD TEST 

 

The field test was carried out in a chemical plant of 

Yangzhou, China. The plant is powered by 10kV buses of a 

35kV substation. Under the minimal operation mode, short 

circuit capacity of the 10kV outlet is 175.3MVA; under the 

maximal operation mode, that capacity is 241.6MVA. Two 

20MVA power supplies are installed at the PCC. The power 

distribution network of the plant is shown in Figure 4. 

 

35kV/10kV

Nonlinear 

loads

Other 

loads

PCC

 
 

Figure 4. The power distribution network of the plant 

 

The field test was arranged as follows: First, the 10kV bus 

voltage of the supply system and the 10kV outgoing current of 

the plant were sampled for 5s with a measuring device at the 

interval of 5min. The harmonics greater than the 20th were 

filtered out. The sampling frequency was set to 5,000Hz. Next, 

the fast Fourier transform (FFT) algorithm with Hanning 

window [24] was adopted to analyze the measured results by 

every 500 data points. Then, the harmonic voltage and current 

at the PCC were analyzed by our method. During the analysis, 

the harmonic emission level was estimated once for every 500 

data points of measured voltage and current. 

Due to the limit of space, this paper only lists the measured 

voltage and current values and the estimated impedance of the 

supply system corresponding to phase A in the 5th harmonic. 

The mean voltage, mean current and mean impedance of the 

supply system for the 5th harmonic wave at the PCC were 

105.928V, 36.583A, and 𝑍𝑠5 is 0.167 + j2.471 Ω, respectively. 

The real and imaginary parts of the impedance are shown in 

Figure 5, where the abscissa n is the number of calculations. 

The 5th harmonic voltage of the system estimated by our 

method was 10.341V. 

 

 
(a) Real part  

 
(b) Imaginary part  

 

Figure 5. Estimated 5th harmonic impedance of the supply 

system 

 

According to the maximal and minimal operation mode 

capacities of 10kV bus, the fundamental reference reactance 
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of the supply system falls between 0.418Ω and 0.576Ω. For 

low harmonics of the supply system, the reactance on the same 

line satisfies L1=Lh/h, where Lh is the hth harmonic reactance 

and L1 is the fundamental reactance. The 5th harmonic 

reactance Ls5 obtained by our method was 2.471Ω. Since 

L1=Lh/h, L1 equals 0.494Ω. The estimated is close to the mean 

value in the range of [0.418Ω, 0.576Ω]. 

According to Equation (16), the harmonic emission level of 

the consumer can be described as: 

 

5 5 5 105.928 10.341 95.587Vc pcc sU U U= − = − =  

 

Thus, the 5th harmonic emission level of the plant accounts 

for 90.24 % of the 5th harmonic emission level at the PCC. This 

means the plant is the main responsible party for harmonic 

pollution. 

In real-world scenarios, the harmonic impedance of the 

consumer is usually much larger than that of the supply system. 

Therefore, the harmonic emission level of the consumer can 

also be calculated by |𝑈𝑐ℎ| ≈ |𝐼𝑝𝑐𝑐ℎ||𝑍𝑠ℎ| . Substituting the 

values of 𝑍𝑠5 (2.477Ω) and Ipcc5 (36.583A) into the equation, 

𝑈𝑐5  can be obtained as 90.616V, which is close to the 

estimated value of 95.587V. Hence, our method was proved to 

satisfy the engineering practice. 

 

 

6. CONCLUSIONS 

 

This paper puts forward a PCR-based method to estimate 

the harmonic emission levels of the supply system and the 

consumer. First, a regression equation was set up based on the 

complex relationship between harmonic voltage, harmonic 

current and harmonic impedance of the supply system at the 

PCC. Then, the PCR was introduced to estimate the harmonic 

emission levels of both the supply system and the consumer. 

The proposed method overcomes the multicollinearity 

between independent variables by removing the principal 

components with small variance in regression modeling, and 

retains much of the important information of the original 

independent variables, which has strong explanatory ability to 

dependent variables. The accuracy and feasibility of our 

method were proved through simulation and a field test. 
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