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 The segmentation of medical images on brain tumour faces many challenges. For example, the 

brain image needs to be divided accurately into non-enhancing tumour, enhancing tumour, 

tumour core and undamaged area. This paper utilizes four state-of-the-art convolution 

architectures to perform the segmentation of brain tumour, including the generative adversarial 

networks (GANs), conditional deep convolution GANs, auto-encoders and u-nets. Based on 

adversarial networks, the author put forward a novel model for Image segmentation. The model 

consists of two parts: Auto encoders as generator and Convolution network as discriminator. 

The proposed model was applied to segment the brain tumour images proposed by Medical 

Image Computing and Computer-Assisted Interventions Conference (MICCAI), and evaluated 

by indices like mean accuracy, mean loss and mean intersection over union (IoU). The results 

show that our model outperformed the traditional algorithms in segmentation effects. The 

research findings reflect the effectiveness of GANs in segmentation tasks. 
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1. INTRODUCTION 

 

Various medical problems of classification and prediction 

are effectively being solved by the new deep learning methods. 

However medical image segmentation is one such area that is 

not yet being delved into. There are multiple reasons for this, 

one being unavailability of data for building the model. deep 

learning requires data for its training phase. In medical image 

segmentation task getting quality medical scan images and the 

segmentation images of the parts is a major hindrance to its 

implementation in deep learning in this sector. MICCAI 

society has come up with the challenge of brain tumour 

segmentation using the pre-operative MRI scan images of the 

patients. The scans of patients are divided into high grade 

glioma (HGG) and low-grade glioma (LGG). According to 

ABTA (American Brain Tumor Association) [1, 2], HGGs 

represent 75 % of all malignant tumors and 25 % of all primary 

brain tumors. The world health organization [14] (WHO) has 

categorized HGGs as stage IV brain cancer. We focus on HGG 

images in this paper. We require to model an algorithm that 

can understand and efficiently segment the Brain MRIs into 

the sections of the various gliomas. These include the whole 

tumour or edema, nong enhancing solid tumour core, the 

enhancing tumour core and the cystic/necrotic core 

components. These are visible in the respective MRI scans. 

The major task here is to perform the image segmentation of 

these subsections in the 3D brain scan The U-Nets [3, 4] are 

being used in multiple cases for image segmentation and in 

case of Medical, Drtion to adversarial networks [5] by 

Goodfellow for creating images from random noise, many 

people have tried to experiment with the model and tried to 

find its various applications in their respective fields. The 

generator and discriminator are inherent parts of adversarial 

networks. The generator and the discriminator force each other 

to improve. The main goal in these models is to bring 

randomness in the learning data. The generator learns to 

produce very good fake images while the discriminator learns 

how to distinguish between the fake images produced by the 

generator and the real images from the dataset. This model can 

be used for segmenting medical images. The generator will be 

a U-Net model that will produce the segmented image and the 

discriminator will check if the segmented image produced 

belongs to the actual segmented image data distribution. The 

major problems we face here are the images. Each patients 

MRI scans are of high resolution and of size 1.5 GB each in 

compressed form. These images are not normal JPEG images 

but are high resolution NIFTI images that require separate 

processing techniques [6]. The BraTS dataset provided by 

MICCAI are pre-processed with image normalization and 

brought to equal sizes of 240x240x155. Thus, each image 

consists of 155 image channels. Moreover, the T1, T2, T1-gd, 

T2-FLAIR together help in determining the sub-section 

segmentation of the brain tumour. Then the 4 images need to 

be stacked and given as an input to the deep learning model. 

This makes a 4-dimensional image input that we use to create 

a 3-dimensional segmentation map output. Also, Glioma 

Segmentation is difficult due to largely varying intensity in 

images and the shape of pathology.  

The rest of the article has been organized into 9 sections. 

The related work is discussed in Section 2. The description 

about the dataset and elaborated methodology are discussed in 

Section 3 and 4. The proposed work and experimental results 

are discussed in Section 5 and 6. The results are validated and 

verified in Section 7. 
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2. RELATED WORK 

 

2.1 Cascaded anisotropic convolution neural networks 

 

Wang et al. [7] proposed a cascaded fully convolutional 

neural network for medical image segmentation. The network 

was designed to decompose the single segmentation problems 

into a sequence of three binary segmentation problems. They 

initially segmented the whole tumour and using bounding box 

then segment the tumour core in the second step. The 

enhancing tumour is separated in third step using the bounding 

box of tumour core. On the validation set, their network 

achieved a dice score of 0.7859, 0.905, and 0.838 for 

Enhancing Tumour, Tumour core and Whole Tumour 

respectively. Here we needed to do multiple iteration of the 

network to get the final segmentation image. 

 

2.2 Deep hourglass for brain tumour segmentation 

 

Benson et al. [8] proposed a CNN encoder-decoder network 

based upon the singular hourglass structure. Their network 

was able to classify the WT, TC and ET in a single pass. Since 

the validation and training set have high variance in intensity, 

they normalised the training set such that it was centred on 

zero with a standard deviation of one. Normalization of data 

also helped them to reduce the training time and did a 

significant increase in the accuracy. The encoder contained 

seven residual bottlenecks and at the end of each max-pooling 

layer it performed spatial down sampling. Their network 

achieved an overall dice coefficient of 0.59, 0.82 and 0.63 for 

ET, TC and WT, respectively. 

 

2.3 3-D U-Net for tumour segmentation 

 

Chen et al. [9] came up with 3 different Convolutional 

Neural Networks for the 3-D U-Net architecture. Each of the 

network was trained for each segmentation target with 3- D 

patches as input. Pre-processing was separately done for each 

case. Histogram Equalization, and voxel normalization was 

performed on the patches. The model yielded the dice 

coefficients of 0.911, 0.9118, and 0.8272 on 30 % of the train-

test split data. 

 

2.4 Gated recurrent units for segmentation 

 

Simon et al. [10] propose the solution to tackle the multi-

dimensional gated recurrent units that incorporate recurrent 

neural networks for image segmentation. They performed 

initial pre-processing of High-Pass filtration and Gaussian-

filtration normalizing the intensities of the images. Patches of 

80x80x80 voxels is considered for input to model. The model 

achieved the dice score of 0.8129, 0.9061, and 0.9387 

 

2.5 Sequential 3-D U-Nets for segmentation 

 

Beers et al. [11] propose sequential 3D U-Net for the 

segmentation task. They created a pipeline that chained the 

several unique 3D U-Net. The pipeline was able to pre-learn 

that the enhancing tumour and non-enhancing tumour are 

likely to be found in the region of edema and within its 

proximity. They achieved a greater context for patch based 

sampling method by predicting down sampled labels and then 

up sampling them using a separate 3D U-Net. The achieved 

dice cot efficient of 0.78, 0.67, 0.68 respectively for whole 

tumour, enhancing and non-enhancing tissue. 

 

2.6 Brain tumour segmentation using an ensemble of 3D 

U-Nets and overall survival prediction using radiomic 

features 

 

Some scholars proposed an ensemble of 3D U-Nets with 

networks of different hyper parameters in order to solve the 

medical segmentation problem. They modelled 6 networks 

with different number of encoding and decoding blocks, varied 

input patch sizes and different weights for calculating the loss. 

They also developed a linear model for the prediction of 

survival using the extracted non-imaging and imaging features. 

They performed bias correction algorithms to the T1, T1Gd, 

Flair and T2 images. They also performed non-local means 

denoising in order to further reduce noise after the bias 

correction. They obtained a dice score of 0.79, 0.909 and 0.836 

on the ET, WT and TC, respectively [9, 12, 13]. 

 

2.7 Volumetric multimodality neural network for 

segmentation 

 

Castillo et al. [14] proposed the method of convolution 

neural network for image segmentation of brain tumour, which 

was capable of processing volumetric data with multiple MRI 

modalities all at the same time. This enabled the model to learn 

from a smaller dataset even with high imbalance. Based on the 

Deep-Medic, their architecture was organized in three 

different parallel pathways with its own input resolution and 

fully connected layers. The average dice coefficient of their 

model was 0.87 on training dataset and 0.86 on validation set 

for whole tumour segmentation task. 

 

2.8 Masked V-Net for segmentation 

 

Cata et al. [15] proposed Masked V-Net architecture which 

was a variation of V-Net for segmentation. Masked V-Net was 

able to reformulate the residual connections and used ROI 

masks to constrain the network in order to train on relevant 

voxels only. The architecture allowed dense training on the 

problems with a highly skewed class distributions by 

performing a data sampling on output instead of input. The 

model achieved a dice score of 0.714, 0.877 and 0.637 on 

validation set for ET, TC and WT, respectively. 

 

 

3. DATASET DESCRIPTION 

 

The MICCAI has provided with MRI scanned images of 

brain tumour and the respective segmentation images. The 

various tumour parts of the brain need to be segmented into 4 

major classes of Edema, Solid core, Cystic core and Enhancing 

core. The scanned images for input consist of T1, T1ce, T2-

FLAIR and T2 [16-17] are shown in Figure 1 to Figure 4. MRI 

is done using the magnetic resonance property of matter. A 

uniform external magnetic field magnetizes the protons of the 

brain tissue. This magnetization is intentionally disturbed by 

introducing external Radio Frequency (RF). After some time, 

the nuclei releases RF in order to return back to its original 

position. These initial RF signals are processed by applying 

Fourier transformations to them in order to represent them in 

the form of intensity values of gray pixels and then observed. 

The time lapse between the successive pulse sequences that 

are applied on the same slice is Repetition Time (TR). The 
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time difference between delivery of the RF pulse and reception 

of its echo is Time to Echo (TE). The MRI sequences where 

short TE and TR times is used are T1-weighted scans. While 

the MRI sequences where long TE and TR times is used are 

T2-weighted scans. T2-weighted and Fluid Attenuated 

Inversion Recovery (FLAIR) are similar with a difference that 

the TE and TR times in Flair are very long. 

 

 
 

Figure 1. T1 MRI scan image 

 

 
 

Figure 2. T1ce MRI scan image 

 

 
 

Figure 3. T1-Flair MRI scan image 

 

 
 

Figure 4. T2 MRI scan image 

 

The whole tumour can be seen in the T2-FLAIR scan and 

the tumour core is visible in the T2 scan. The various segments 

are respectively coloured in different colours for better human 

understanding. The tumour sub regions are coloured as follows: 

edema in yellow, solid core (non-enhancing) in red, the 

necrotic or the cystic core in green and the enhancing core in 

blue. The remaining part of the brain is unaffected with tumour 

as shown in Figure 5. 

The visualisation of images is done using the python nibaT 

bel neuroimaging library [6] and due to color mapping exact 

codes are not visible. The final labels of different glioma sub-

regions provided are: 1 for Necrotic and cystic core region, 3 

for Non-enhancing Tumour, 2 for peri-tumoural Edema, 4 for 

Enhancing Tumour and 0 for everything else. All the scanned 

images are provided in nifti format. The dataset consists of 

MRI scans of High Grade Glioma for 210 patients and MRI 

scans of Low Grade Glioma for 75 patients. The HGG are 

patients with higher risk of death and bigger tumour size. Each 

patient data thus consists of 5 images that include the native 

T1, the post-contrast T1- weighted ie T1gd, T2 weighted, T2-

FLAIR volumes and the ground truth segmented image. Every 

scan image is of size 240x240x155, that is of 155 image 

channels. 

 

 
 

Figure 5. MRI segmentation-map image of tumor sub 

regions 

 

 

4. METHDOLOGY  

 

This work utilizes four state-of-the-art Convolution 

architectures, the Generative Adversarial Networks, 

Conditional Deep Convolution GANs, Auto-encoders and U-

Nets to perform the segmentation of brain tumor. The 

following section gives a brief outline of the four architectures. 

 

4.1 Review of GANs 

 

Generated Adversarial [5] Networks had huge success since 

they were introduced by Ian Goodfellow and the co-authors 

[16]. They belong to the category of generative models and 

can produce new data. The beauty of model lies in its learning. 

Rather than learning the pattern of data they learn data 

distribution of individual classes. Statistically speaking, GANs 

try to learn the distribution or n-dimensional vector space to 

which a particular data belongs to. So GANs can create data 

similar to our own data, be it audio, video or text. 

GANs [5] consist of two network parts namely Generator 

and the Discriminator. The Generator is capable of creating 

data. This means given a certain label, it tries to generate its 

features. The Adversarial part is called the Discriminator. 

When given the features it tries to predict if the features belong 

to our data or not.  

It evaluates the data for their authenticity. Similar to the 

game of cop and counterfeiter, where the counterfeiter is 

learning to generate fake money while the cop is learning to 

detect the fake money. The generator tries to thus fool the 

discriminator with its data and discriminator becomes good in 

discriminating the real and fake data. In the end the generator 

is able to generate data very similar to the actual data and 

discriminator is unable to decide if it is fake. The Generator G 

takes noise as input and generates new data while the 

discriminator D decides if each of the data sample belongs to 

the population of training set or not. 

 

min maxV(D;G) = E x(log(D(x)))+E(log(1−D(G(z))))   (1) 

 

Above given is the loss function for the vanilla GAN model 

[16]. 
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4.2 Conditional deep convolution GAN 

 

The problem GAN was that there was no control over the 

modes of data being generated. So Mirza et al. came up with a 

solution that extended GANs to conditional [7, 18] GAN [19-

20] where the generator and the discriminator are given some 

information such as class of variable. In case of image 

segmentation, we are feeding the base image and trying to 

generate segmentation images from it. Thus we are giving a 

condition to our generator. Conditional GANs are designed to 

restrict their vector space, to that of training images and their 

segmentation maps. Below is the Architecture of our GAN 

model as shown in Figure 6. 

 

 
 

Figure 6. GAN 

 

Furthermore, the generator and discriminator can be any 

neural network based on the use case and choice. Since we are 

dealing with images, and convolution layers seem to work 

very well with them, we choose convolution layers as a part of 

our generator and discriminator. Hence the name conditional 

deep convolution generative adversarial networks. Although 

we need to understand that we are using a further enhancement 

to CDCGANs and try to exploit both U-Nets as well as 

conditional GAN thus creating U-Net based adversarial 

networks. 

 

L(G;D)=E(log(D(x; y)))+E(log(1−D(x; G(x; z))))       (2) 

 

The updated loss for conditional GANs is given above [12]. 

We can see how the condition is forced on the model by 

introducing differentiating between the segmentation map and 

generator output. 

 

4.3 Review of auto encoders 

 

Auto encoders [19] when introduced were deeply tried on 

various use cases for image enhancement, image regeneration, 

data denoising and dimensionality reduction. The Auto 

encoder consists of an encoder and a decoder unit. They work 

by compressing the given input into a smaller feature vector 

representation and then trying to reconstruct the output similar 

to the original representation. The encoder compresses the 

input while the decoder aims to reconstruct the input from this 

latent space representation. An important attribute of the auto 

encoder network design is the bottleneck. During the down 

sampling if the encoder compresses the input to a very small 

size, then it becomes very difficult for the decoder network to 

reconstruct the input back. If the bottleneck is not small 

enough, then the model simply learns each value in the input 

during the convolution layers. It is thus of very high 

importance of how much we compress our input by encoder in 

order to decompress it back by the decoder. The major 

problem faced by Auto encoders is that during the encoding 

phase the images are compressed. Compression leads to loss 

of information. Unless not trained on a large data it becomes 

very difficult for the decoder to construct the original image 

back. This in our case would be the segmentation image as 

shown in Figure 7. 

 
 

Figure 7. Auto-encoder 

 

4.4 Review of U-net 

 

The problem faced by the Auto encoders is its loss of 

information during compression phase. If we could somehow 

find a way to retain some of the feature information and pass 

it to the network during the encoding phase it will become very 

easy for the model to regenerate the original image. This is 

exactly what the U-net tries to do [3]. The encoder is similar 

to that of Auto-encoders where image passes through multiple 

convolution networks and is down-sampled. The second part 
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of the network consists of up-sampling and concatenation of 

similar level features followed by regular convolution 

operations. Thus during up-sampling we are concatenating the 

higher resolution features from the down part of encoder with 

the up-sampled features in order to learn better representation 

of data. These connections between the encoder and decoder 

are termed as skip connections. 

 

 

5. PROPOSED WORK 

 

We propose a novel method for Image segmentation using 

adversarial networks. Adversarial networks are being used in 

the various fields of Image generation and so on. The 

Adversarial network has a generator and discriminator part. 

The generator consists of a U-Net. While the Discriminator 

consists of convolution networks. The MRI scans of brain 

consist of T1, T2, T1ce, T2-Flair [16]. These four images 

individually show the various parts of the tumours. 

The images consist of 155 slices and all the four scans are 

important for proper segmentation of tumor. Thus we prepare 

dataset by combining each slice of the four scans as single 

image. Here the first slice of T1, T2, T1ce and T2- Flair are 

stacked to form one image which should be used to predict the 

first slice of segmented image. In this way for one patient scan 

we pre-process image such that, nth slice of each of four scans 

are stacked to form an image of dimension 4 x 240 x 240. This 

is done for all the 155 slices. Thus the final input dimension 

for one image becomes 155 x 4 x 240 x 240. This forms a 

single tensor input. 

Since our images become five dimensional that is four 

dimensional image and one dimension of batch size, we use 

Convolution 3D instead of Convolution 2D here. The 

generator takes input of four MRI scans and tries to generate 

the segmentation map of the brain that will contain the 

subsections of the tumour. 

The discriminator will alternatively learn to find the 

difference between the fake segmentation images produced by 

the generator and the actual segmentation maps. After the 

generator is trained enough such that the discriminator is 

unable to confidently distinguish between the segmentation 

maps produced by the generator and the actual segmentation 

map, the generator part of the network can be taken and used 

for the Image segmentation process. 

 

5.1 Pre-processing 

 

A large variation in the intensity was observed in the data, 

so we performed normalization of images to mean centered 

around zero and standard deviation of one. 
 

z=(x − µ)/sigma                               (3) 
 

Also training of the network was done on batches of images 

of size 3 each and these images were further normalised using 

the above mean to stabilize the training for each batch. 

 

5.2 Network architecture 
 

The model consists of a pipeline of generator and 

discriminator networks as shown in Figure 8. The generator is 

a U-Net network that has an encoder and decoder network with 

skip connections. The down sampling occurs in the encoder 

and the up sampling occurs in the decoder network. The 

features from same level of encoder is passed to the decoder 

output during upl sampling. 

 

 
 

Figure 8. U-Net architecture 

 

The encoder of U-Net has four layers of Convolution3D, 

Batch-Normalisation and Leaky Relu. The encoder takes an 

input of images of size 155 x 4 x 240 x 240. The output of 

encoder network is a feature of dimension 155 x 1 x 15 x 15. 

The decoder network of U-Net again contains four layers of 

convolution Transpose 3D and Leaky Relu. The features 

transferred from encoder are appended in each up-sampling 

layer. The output is then passed through a sigmoid layer. The 

output generated by the decoder is of size 155 x 1 x 240 x 240 

which is the output of the generator network. The 

Discriminator contains four layers of Convolution3D, Batch 

Normalization 3D and Leaky Relu and a last layer is of 

Convolution 3D and sigmoid. Often it is observed that GANs 

tend to collapse during training. Batch Normalization here 

helps in stabilizing the training in GAN. 

 

 

6. EXPERIMENTAL RESULTS 

 

6.1 Experiment setup 

 

The images are of size 1.5 GB each. So keeping a larger 

batch size leads to insufficient CUDA memory. We can crop 

images to smaller size but that will create another problem of 

deciding the part where the tumour is and having consistent 

parts in the four MRI images. So we decide to rather keep a 

smaller batch size of size 5 images. The Generator and 

discriminator were made to learn at different learning rates in 

the start. Initially the learning rate of generator was 0.0005 and 

discriminator was 0.00005. The generator was trained at a 

faster learning rate as compared to the discriminator. After few 

epochs the generator and discriminator were made to learn in 

alternating fashion where the generator was trained for 10 

epochs with discriminator training freezed. Then the 

discriminator was trained for 10 epochs with generator 

training freezed. After few rounds in this alternation fashion, 

both the generator and discriminator were again set to train 

simultaneously at same learning rate. This enabled both the 

generator and discriminator to learn efficiently without letting 

the model collapse or over fit. 

Our network was implemented in Python in Pytorch 

framework and trained in Linux 16.0 environment with one 

NVIDIA TITAN GPU with 8 GB of memory and 12 CPU with 

120 GB memory. 

 

6.2 Problems in training GANs 

 

There are cases when the GAN model is unable to converge. 

The model parameters tend to oscillate and never become 

stable. Also there is high possibility of the discriminator 
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becoming too good at its task. Thus no matter what generator 

produces, the discriminator discards it as being fake. The 

generator is never able to learn and generator loss keeps 

increasing. The generator model collapses and produces 

limited data. Moreover unbalance between the generator and 

discriminator can cause model to become over fit. Thus the 

model is unable to generalise and learn the data distribution. 

 

6.3 Results 

 

We generate segmented images from the MRI scanned 

Images. The loss predicted generally can be misleading in case 

of segmentation. The reason behind that when the accuracy is 

calculated for two images, pixel by pixel distance is calculated 

and considered. Since the major region of our images is 

background, majority of pixels may match bringing a high 

accuracy even if the actual segmentation pixels don’t match. 

So we use another evaluation metric ie. IoU which is 

calculated as below. 

 

𝐼𝑜𝑈 =
𝐺(𝑧)/𝑌

𝐺(𝑧)[𝑇
                                    (4) 

 

Intersection over union is thus the appropriate metric for 

calculating our model performance. The model took 15 

minutes for one epoch and was trained for 700 epochs. The 

Intersection over Union score was calculated for the test 

dataset was shown in Table 1 and clearly it is shown in Figure 

9.  

 

Table 1. Model result 

 
Model Mean Accuracy Mean Loss Mean IoU 

U-Net Adversarial Net 0.94 0.0007 0.89 

Traditional Algorithm 0.5 1.94 0.88 

 

 
 

Figure 9. U-net result 

 

The model was taking 67 ms for segmentation of an input 

image. Furthermore the model was able to clearly find the 

region of tumor core and whole tumor. The smaller regions of 

cystic or necrotic components were missed on certain images. 

Also certain regions of enhancing tumor were also missed and 

were labelled as a part of whole tumor. Although there were 

no cases where tumor regions were mislabeled as non tumor 

region. 

 

 

7. CONCLUSIONS 

 

Recently introduced GANs have provided a different way 

to learn the representations of training data without their 

extensive annotation. This research aimed to explore the GAN 

in the field of medical Image segmentation and improve the 

accuracy over other deep learning based segmentation 

techniques. Specifically we proposed the architecture of auto 

encoding adversarial networks and training strategy to GAN 

so that the model turns out to be stable. The proposed model 

consists of two networks: Auto encoders as generator and 

Convolution network as discriminator. MICCAI BraTS 

challenge Brain tumour segmentation images were used as 

dataset for training and evaluating the performance of the 

network. The experimental results confirm that GANs can be 

used for segmentation tasks and achieved better results. 
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