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This paper explores the generation of random numbers, using electromyographic (EMG) 

signals collected from arm, elbow and finger movements of healthy individuals. The original 

signals were extracted from the Ninaweb database. The author designed a new discretization 

algorithm to convert these signals from floating point numbers to discrete values, and proposed 

a true random number generator (TRNG) structure that obtain the EMG signals with human 

arm and finger movements as noise sources. The proposed algorithm was applied to obtain and 

process real-time signals in the LabVIEW environment, and verified through NIST, TestU01, 

Scale index and autocorrelation tests. The results show that the discretization algorithms in 

TRNGs faced a huge data loss (70 %), while the designed algorithm with our structure lost no 

data and achieved 100 % efficiency in number generation. The research results prove the 

possibility of generating random numbers from biological signals. 
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1. INTRODUCTION

Random number generators (RNG) are algorithms designed 

to produce number sequences that appear random. RNG’s play 

an important role in cryptography, machine learning, 

simulation, game theory, industrial tests and labeling, and for 

games used in lotteries and gambling. Pseudo-random number 

generators (PRNGs) are deterministic methods that use 

mathematical algorithms. To obtain random number 

sequences from PRNG’s, initial values known as seeds are 

required. If the seed is hidden and the algorithm is designed 

well then it is possible that the hidden number will be 

unpredictable. The advantage of PRNG’s are their ability to 

easily produce numbers at a very low cost, especially in 

hardware such as mobile phones and computers [1, 2]. RNG’s 

are expected to produce a great number of random numbers 

over a short period of time in a high quality way. Random 

numbers are needed in applications like stochastic simulation, 

flow passwords and online gambling, and for that reason, 

PRNG’s are preferred in applications where the rate of number 

generation is an important parameter. However, there are true 

random number generators, which are non-deterministic, 

physical random number generators (TRNG’s). Today, true 

random number generators are required in many diverse fields 

of everyday life, such as cryptography, mobile communication, 

e-mails, online payments, cash-free payments, ATM’s, e-

banks, e-sales, sales points and prepaid cards [3, 4].

Different things are expected from TRNG’s compared to 

PRNG’s. The most important difference is that numbers 

obtained from TRNG’s are dependent upon noisy sources. In 

general, raw sequences obtained from physical sources do not 

show totally random behavior. For that reason, post-

processing algorithms are needed to have equally distributed 

numbers of 0s and 1s. Even though the distribution of 0s and 

1s are balanced out with post-processing algorithms, the 

number of useful bits get less and less, and this causes the 

efficiency of the generator to drop significantly. Another 

problem is that TRNG’s are expensive and they require 

another hardware element, and they are especially slow when 

considering the applications that have been mentioned.  

This study describes true random number generation using 

EMG signals obtained from the movements of fingers and 

wrists, from grasping and functional motions and from force 

patterns with the aid of sensors and without the use of post-

processing algorithms. To realize the suggested system a 

discretization algorithm that will transform the continuous 

time signals into discrete time signals is suggested. Bit 

production efficiency is 100 % in this suggested system, since 

post-processing algorithms are not used.  

The contributions of this study to the existing literature are 

shown below: 

Different biological signals were used as physical sources. 

A new algorithm was used to transform continuous time 

signals into discrete time signals.  

Number generation efficiency was 100% and there was no 

loss of data. 

The article is organized as follows. 

Section 2 summarizes TRNG structures made from noise 

sources that exist in published literature, along with their 

advantages and disadvantages. In Section 3, presents the 

properties of the biological signals used. Section 4 explains 

how the random numbers are produced using the biological 

signals and how the discretization algorithm works. The 

statistical tests used to examine the randomness of the numbers 

obtained is explained in Section 4. In Section 5, the concluding 

part, the results obtained are presented and the advantages of 

the suggested system are discussed. 
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2. RELATED WORKS 
 

One of the most important factors in true random number 

generation is the source of the noise. In cases where true 

random number generation is possible from raw number 

sequences obtained from noise sources, the statistical qualities 

of these random numbers are not always good enough. To 

eliminate this disadvantage, post-processing algorithms are 

applied. In the literature reviewed, the noise sources used have 

been thermal noise, clock jitter and nuclear decay. In addition, 

signals from human voices, videos, mouse movements, EEG 

measurements, ECG measurements, blood pressure and 

telegraph noise have all been used to generate random 

numbers. Hu et al. generated random numbers from user’s 

mouse movements [5]. In their studies, they proposed 3 

different chaos-based algorithms to eliminate the similar 

movement patterns of different users. This algorithm, which 

passed NIST tests, was successful with respect to effectiveness 

and efficiency. T-Chen et al. proposed an efficient random 

number generator that can be used with voice communication, 

where the voice was used as the noise source. In their studies, 

the random number generator required hardware such as a 

microphone or a cell phone. For that reason, random number 

generation was performed using common devices and without 

special equipment. A filter was applied to increase the success 

rate in NIST tests, and the success rate was increased [6]. In 

another study by T-Chen, a random number generator was 

produced by making use of white noise obtained from audio 

and visual (A/V) sources of high resolution, IPCAM, 

WEBCAM and MPEG-1 video files. To evaluate the statistical 

qualities of the numbers obtained, the NIST SP 800-22 test 

was applied, and a 98 % success rate was achieved. One of the 

greatest advantages of this test is that audio and visual sources 

can be found very easily, making the generator quantifiable, 

efficient and handy [7]. 

Iba et al. tried to answer the question: “Can We Behave as 

a Random Number Generator” [8]. After this study, they 

worked on random number generation using biological signals 

obtained from humans [9-15]. Schulz et al. requested 20 

individuals to form a random number sequence ranging 

between 1 and 19. In the random sequence obtained, it was 

shown that individual characteristics could be identified [9]. 

Jokar et al. showed that there is no similarity between 

random numbers generated by different individuals and that 

these numbers can be used as biometric signatures [10]. 

Szczepanski et al. suggested the use of biological data to form 

random bit sequences. They showed that this new approach 

could help to produce seeds for pseudo-random number 

generators. They suggested a very basic algorithm based on 

the observation that biometric data shows randomness. The 

method was first applied to animal neurophysiological brain 

reactions and then tested on human galvanic skin reactions. To 

verify the cryptographic quality of biometric generators 

against the FIPS 140-2 standard, Maurer’s universal test – 

which is commonly suggested – and the Lempel-Ziv 

complexity test – which guesses the entropy of the source – 

are used. Verification results, after choosing appropriate 

coding and experimental parameters, showed that the 

sequences obtained showed perfect statistical results and are 

true random number generators [11]. Petchlert et al. offered a 

new coding method to produce random numbers from EEG 

signals. They focused on true random number generators 

based on low-cost EEG signals that can be used in applications 

such as gaming, gambling and complex model simulations. In 

the verification method, only the least significant digits were 

taken into account and were transformed into a binary 

sequence. The binary sequence produced passed the NIST test 

package with a 99.47 % success rate [12]. Nguyen et al. 

offered a method that can use EEG signals and wavebands to 

generate random numbers. In tests, an EEG alcoholism data 

set was used, and it was shown how to use random number 

generation as seeds in cryptography and pseudo-random 

number generation. Numbers were put through the NIST test 

and the average success rate was shown to be 99.02 % in the 

gamma band [13]. 

Chen et al. showed whether an EEG signal can be used as a 

pseudo-number generator (PRNG) or not. Data used in the 

suggested method was obtained from both healthy and 

epileptic EEG signals. It was shown that all EEG signals have 

different standard deviations over a Gaussian distribution. 

EEG signals were converted into 5-bit numbers using modular 

arithmetic. It was shown how these 5-bit numbers were 

converted into 0s and 1s. The generated numbers passed 

almost all of the NIST tests with a few exceptions [14]. 

Tuncer et al. generated random numbers using bioelectrical 

and physical signals taken from humans. In their studies, they 

used EEG, electrooculography (EOG) and EMG as 

bioelectrical signals, and they used blood pressure, respiration 

and GSR (Galvanic Skin Response) as physical signals. To 

improve the statistical quality of their signals, they used 

logistic mapping in the sampling phase, and the exclusive OR 

(XOR) function in the post-processing phase. They showed 

that random number generation specific to each individual is 

possible by examining the statistical properties of the numbers 

using the NIST test [15]. 

 

 

3. METARIALS 
 

Signals from the human body are characteristic to each 

individual. Signals that are obtained from DNA, the retina, an 

EEG and human movements are different for each person. The 

general definition and data gathering phase of EMG signals in 

the Ninaweb database, which are used to generate random 

numbers, are described below. 

Muscle activation data are gathered using 12 wireless 

electrodes inserted on the arm. The placement of the electrodes 

is shown in Figure 1. Eight of these electrodes are placed at 

equal distances around the forearms, two electrodes are placed 

at the main activation points and the last two electrodes are 

placed at the main activation points of the biceps and triceps. 

 

 
 

Figure 1. Placement of electrodes [16] 

 

EMG signals were obtained by sampling at a frequency of 

2 kHz. EMG signals were taken from 49 different movements 

over a 5-second recording time from both hands. Forty-nine 

different movements and the resting position is shown in 

Figure 2. 
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Figure 2. Resting and 49 movement patterns [16] 

 

 

4. PROPOSED METHODOLOGY 

 

In general, a TRNG structure consists of a physical source, 

digitization, circuit and post-processing units. Physical 

sources such as jitter, mouse movements, audio and visual 

signals, biological and physical signals, and radioactivity 

decay are used in TRNG structures. 

Raw number sequences are produced after signals obtained 

from physical sources are digitized. But the statistical qualities 

and randomness of these number sequences are poor. A post-

processing phase takes place to eliminate these weaknesses. In 

the literature reviewed, post-processing algorithms such as 

XOR, Von-Neumann, linear feedback shift register (LFSR) 

and Hash Function are very commonly used. In this case, the 

bit output rate decreased by 50 %. 

In this study a TRNG structure is suggested which uses 

human arm and finger movements as noise sources to obtain 

the EMG signals. The suggested structure is shown in Figure 

3. 

Physical Noise 

Source

PC (Sampled 

data) Raw 

Data

Normalization
Statistical 

Tests

Random 

Number

 
Figure 3. Block diagram of the suggested structure 

 

LabVIEW environment is highly suitable for the online or 

offline evaluation of physical signals. EMG data taken from 

the Ninaweb database is converted into the TDMS format to 

be processed by LabVIEW environment. Data taken with a 2 

kHz sampling frequency were subjected to a normalization 

procedure. Since the statistical qualities of the numbers 

obtained at the end of the discretization algorithm are good, 

there is no need for a post-processing procedure, and the bit 

production rate is 100 %. The statistical qualities of numbers 

obtained by this system has to be shown, so the NIST, Test 

U01, Scale index and autocorrelation tests are applied to 

numbers obtained in this way. The explanation of the TRNG 

structure summarized above, is given below.  

4.1 Obtaining EMG signals  

 

Data obtained from human arm and finger movements with 

the aid of sensors were used to obtain EMG signals. For finger 

and hand movements, data in the Ninaweb database, obtained 

by a 2 kHz sampling frequency, was used. Every sample taken 

was in the floating point form and every data obtained from a 

single electrode contained 1,771,800 samples. 

 

4.2 Normalization 

 

Fluctuations in the EMG signal in LabVIEW environment 

is given in Figure 4. These signals are in continuous time and 

are represented by the floating point number system. The 

process in the flow chart of Figure 5 is used to generate a 

random number in time t. 

 

 
 

Figure 4. Fluctuations of the EMG signal in continuous time 

 

Step 1: Take the voltage value of any of the EMG signals 

given in Figure 2. 

Step 2: Convert this voltage value to an integer. 

Step 3: Convert the continuous time integer value to the 

binary number system by finding its t value in mode 32. 

Step 4: Find the number of bits with a value of 1 in the 5-bit 

number from the binary number system obtained. 

Step 5: If the total number of 1s is odd generate a 1, if even, 

generate a 0 (ni=mi mod 2). 

Step 6: If sufficient samples have been taken go to Step 7, 

if not increment t to equal t + 1 to get a new sample and return 

to Step 2. 

Step 7: End 
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Obtain the voltage value of  EMG 

signal ( ti th sample).

Start

Convert to integer.

yi=xi  mod 32          for iϵ[1,n]

ni = mi  mod  2      for iϵ[1,n]

ti<=1000000
No

Yes

Stop

         mi=mi+ yi,k

             k=k+1
k<=5

 mi=0 ,k=1

Yes

No

 ti=1 

 ti=ti+1

 
 

Figure 5. Flow chart of the normalization process 

 

Let the values for n samples obtained from EMG signals be 

x=(x1,x2, …xn). These values are converted into a positive 

integer by being multiplied by a constant k. Together with 

these converted numbers and equation 1, 5-bit numbers are 

produced [14].    

 

yi=xi mod 32     for iϵ[1, n]           (1) 

 

The bits which have a value equal to 1 in the produced 5-bit 

yi sequence is summed up as (mi). If the summation is an odd 

number a 1 is produced; if it is an even number a 0 is produced 

(ni). 

The discretization algorithm explained above and the 

number sequence (for k =1000) obtained from the EMG 

signals are shown in Table 1. 

 

Table 1. Discretization process 

 
xi 0.179 0.084 0.272 0.096 0.107 0.149 

xi=k* xi  179 84 272 96 107 149 

yi 19 20 16 0 11 21 

yi 10011 10100 10000 00000 01011 10101 

mi 3 2 1 0 3 3 

ni 1 0 1 0 1 1 

 

The general view of the program flow chart for random 

number generation given in Figure 5 above was realized with 

a sub-program in LabVIEW environment and is given in 

Figure 6 below. The changes for the middle finger in the 

random number sequences obtained from the EMG signals are 

given in Figure 7. 

 

 
 

Figure 6. Random number generation in LabVIEW environment  

 

 
 

Figure 7. Random number obtained from the EMG signals 

 

To show that the obtained number sequence can be used for 

cryptology, game theory, secure communication and games of 

chance, it was subjected to a variety of tests. 

5. RESULTS 

 

In literature reviews, tests such as NIST, Diehard and FIPS 
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are used to show whether 0 to 1 number sequences show 

randomness or not. Along with this – to show that these 

number sequences are non-periodic – a Scale-index test was 

used, and to observe the change of numbers in the number 

sequences, auto-correlation tests are used. In this study, the 

results obtained were subjected to NIST, TestU01, Scale index 

and autocorrelation tests. 

  

5.1 NIST SP 800-22 test 

 

The NIST Test Suite is a statistical package that consists of 

15 tests and is produced by hardware- and software-based 

random number generators to test the randomness of 

sequences of 0s and 1s. Having a large number of samples in 

NIST tests (>1,000,000) is appropriate for asymptotic 

reference distributions. The most important parameter in this 

test is the p-value (shown in the tables below). Having this 

value greater than 0.01 shows that the test will be successful 

[17]. 

The NIST test results for EMG signals are taken from 12 

sensors; the mod 8, 16 and 32 for NIST test results are given 

in Tables 2, 3 and 4. 
 

Table 2. NIST test result (p-value) for mod 8 
 

NIST test 
Channel No 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.742 0.929 0.521 0.810 0.180 0.271 0.515 0.776 0.965 0.179 0.261 0.199 

2 - - - - - - 0.014 - - - - - 

3 - - - - - - - - - - - - 

4 - - - - - - 0.055 0.198 - - - - 

5 0.684 0.242 0.745 0.248 0.182 0.491 0.651 0.793 0.328 0.188 0.153 0.584 

6 0.223 0.392 0.717 0.885 0.450 0.098 0.124 0.018 0.433 0.775 0.119 0.651 

7 - - - - - - - - - - - - 

8 - - - 0.018 - - - - - - - - 

9 0.797 0.087 - 0.135 0.210 0.100 0.226 0.162 0.390 0.797 - - 

10 0.476 0.824 0.180 0.337 0.733 0.425 0.289 0.262 0.108 0.353 0.707 0.025 

11 0.713/0.112 0.499/ 0.237 
-/ 

0.330 

-/ 

- 

-/ 

0.053 

-/ 

0.019 

-/ 

0.496 

0.015/ 

0.295 

-/ 

0.034 

-/ 

0.226 

-/ 

- 

-/ 

0.356 

12 - - - - - - 0.481 0.326 - - - - 

13 0.908 0.618 0.046 0.947 0.320 0.416 0.219 0.922 0.293 0.082 0.252 0.177 

 

Table 3. NIST test results (p-value) for mod 16 
 

NIST test 
Channel No 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.859 0.702 0.416 0.864 0.245 0.265 0.162 0.318 0.498 0.119 0.612 0.340 

2 0.053 0.064 - 0.211 0.013 - 0.313 0.899 0.081 0.175 - - 

3 - - - - 0.013 - 0.595 0.987 - 0.063 - - 

4 0.338 0.416 0.050 0.730 0.359 0.172 0.679 0.161 0.214 0.035 0.217 0.065 

5 0.293 0.909 0.988 0.346 0.023 0.512 0.824 0.461 0.470 0.784 0.533 0.314 

6 0.353 0.303 0.277 0.296 0.542 0.621 0.642 0.324 0.504 0.191 0.788 0.959 

7 0.060 - - 0.814 - 0.027 0.265 - - 0.715 - 0.382 

8 0.441 0.707 - 0.465 0.496 0.080 0.093 0.360 0.373 0.526 0.316 0.048 

9 0.093 0.370 0.017 0.789 0.907 0.506 0.612 0.079 0.386 0.964 0.137 0.993 

10 0.626 0.633 0.960 0.501 0.977 0.903 0.803 0.725 0.979 0.030 0.151 0.167 

11 
0.499/ 

0.237 

0.677/ 

0.692 

0.614/ 

0.739 

0.237/ 

0.708 

0.012/ 

0.674 

0.011/ 

0.348 

0.634/ 

0.984 

0.715/ 

0.577 

0.054/ 

0.439 

0.157/ 

0.414 

-/ 

0.917 

0.187/ 

0.949 

12 0.882 0.400 0.077 0.729 0.324 0.565 0.587 0.333 0.687 0.094 - 0.339 

13 0.569 0.598 0.070 0.812 0.280 0.124 0.147 0.570 0.780 0.032 0.395 0.350 

 

Table 4. NIST test results for (p-value) mod 32 
 

NIST test 
Channel No 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.815 0.330 0.031 0.613 0.761 0.016 0.626 0.131 0.465 0.607 0.069 0.463 

2 0.378 0.160 0.089 0.539 0.150 0.439 0.396 0.923 0.138 0.364 0.321 0.236 

3 0.124 0.024 - 0.174 0.376 0.713 0.490 0.176 0.026 0.959 0.027 0.024 

4 0.069 0.012 0.096 0.138 0.716 0.734 0.421 0.319 0.468 0.517 0.935 0.815 

5 0.078 0.275 0.999 0.284 0.185 0.215 0.532 0.890 0.021 0.899 0.571 0.698 

6 0.532 0.459 0.124 0.772 0.416 0.663 0.523 0.930 0.203 0.933 0.947 0.524 

7 0.013 0.066 0.842 0.947 0.124 0.683 0.422 0.861 0.981 0.993 0.789 0.864 

8 0.392 0.924 0.548 0.682 0.425 0.298 0.638 0.014 0.155 0.687 0.115 0.808 

9 0.542 0.547 - 0.708 0.044 0.914 0.314 0.360 0.488 0.770 0.750 0.920 

10 0.599 0.536 0.564 0.924 0.378 0.722 0.744 0.194 0.279 0.420 0.262 0.393 

11 
0.559/ 

0.588 

0.939/ 

0.824 

0.085/ 

0.837 

0.215/ 

0.355 

0.809/ 

0.611 

0.091/ 

0.209 

0.812/ 

0.824 

0.177/ 

0.867 

0.163/ 

0.262 

0.766/ 

0.326 

0.931/ 

0.925 

0.931/ 

0.777 

12 0.419 0.812 0.117 0.765 0.818 0.133 0.660 0.725 0.166 0.991 0.159 0.679 

13 0.601 0.596 0.010 0.800 0.940 0.025 0.223 0.155 0.549 0.628 0.109 0.560 
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In Tables 2 and 3, even some of the NIST test results for 

mod 8 and mod 16 are successful, but in general, unsuccessful 

results are obtained. In Table 4, all of the p values are greater 

than 0.01 and the third and ninth test of the 3rd channel fails. 

These results show us that the numbers are random and that 

numbers obtained from EMG signals can be used in game 

theory, visual coding and secure communication. 

 

5.2 Autocorrelation test 

 

The autocorrelation test is the measure of fluctuation in 0s 

and 1s in the random number sequence.  

If the |X5| parameter shown in equation 2 below is less than 

1.6449, it shows that the autocorrelation test is successful [18, 

19]. 

𝑋5 =
2[𝐴(𝑑)−(𝑛−𝑑)/2]

√𝑛−𝑑
                             (2) 

 

Here (n) shows the length of the generated number sequence. 

The symbol d is an integer between [1, (n/2)]. 

The value of (d) is calculated as shown in equation 3: 

 

𝐴(𝑑) = ∑ 𝑏𝑖
𝑛−𝑑−1
𝑖=0 ⊕ 𝑏𝑖+𝑑                      (3) 

 

The (⊕) symbol in equation (3) shows the XOR process, 

(bi) shows the number sequence.  

Autocorrelation test results for mod 8, 16 and 32 and for 

different d values are given in Table 5, 6 and 7, respectively. 

 

Table 5. Autocorrelation test results for mod 8 

 
Channel No d=4 d=10 d=16 d=25 d=40 d=50 d=125 d=250 

1 −1.312 0.679 −1.698 −0.567 0.439 −1.865 −0.248 1.160 

2 0.524 −0.041 −1.530 0.536 −0.120 0.373 0.162 −0.107 

3 −1.268 −2.770 0.294 −0.615 −2.412 −1.454 −2.519 −0.104 

4 −4.098 −1.619 −0.771 1.159 0.037 −0.158 0.498 −0.354 

5 0.913 0.578 0.417 −0.716 −0.575 0.079 0.574 0.041 

6 −0.547 0.022 0.044 0.482 0.306 0.600 −0.248 −0.895 

7 −1.084 1.005 −1.157 −0.909 0.717 −1.204 −1.288 0.113 

8 −1.802 −0.211 −0.581 2.041 1.758 −0.041 0.858 −0.537 

9 −6.096 −1.362 0.626 −0.577 0.974 1.242 1.124 0.601 

10 −0.809 −0.249 1.312 0.482 0 1.736 −0.241 0.474 

11 −2.343 −0.622 0.461 −2.110 1.204 1.369 −0.390 −0.547 

12 −0.771 0.509 1.391 −0.011 0.505 −1.944 −0.959 0.281 

 
Table 6. Autocorrelation test results for mod 16 

 
Channel No d=4 d=10 d=16 d=25 d=40 d=50 d=125 d=250 

1 0.031 −0.660 −1.464 3.224 0.234 1.419 1.418 0.158 

2 −1.116 −0.471 −0.667 1.800 −0.702 −1.695 0.700 0.281 

3 −0.442 −4.949 −1.315 −1.633 −1.103 −3.668 −2.092 −4.115 

4 1.255 0.215 −0.739 −0.099 −1.948 −0.876 0.188 1.587 

5 −0.790 −0.433 −1.068 0.627 −0.917 −1.837 −0.162 3.198 

6 0.879 −0.796 1.271 −0.086 0.698 −1.125 −1.152 0.069 

7 0.098 0.604 0.841 0.153 −0.094 0.670 1.295 1.679 

8 1.302 0.664 1.176 −0.728 −1.350 −0.221 0.545 0.733 

9 −1.815 −0.955 −1.941 1.089 0.382 1.034 −2.614 0.911 

10 1.220 −2.191 0.246 −0.472 0.464 −0.082 1.197 −0.446 

11 −0.341 0.977 −0.483 1.054 0.882 0.164 −1.383 0.775 

12 0.382 −0.667 0.252 −0.520 0.306 −1.072 0.906 −0.351 

 
Table 7. Autocorrelation test results for mod 32 

 
Channel No d=4 d=10 d=16 d=25 d=40 d=50 d=125 d=250 

1 −0.660 −1.321 −0.948 −0.441 1.419 −0.983 0.336 −0.300 

2 −0.942 0.559 1.245 −0.137 −1.400 0.018 1.491 1.524 

3 −6.893 −7.225 −7.962 −6.500 −6.283 −7.703 −7.826 −7.142 

4 0.869 0.958 −0.012 −1.149 0.167 0.170 −0.589 0.208 

5 0.980 −1.252 0.012 0.105 0.562 −0.483 0.934 −0.389 

6 1.138 0.338 1.647 −1.092 −0.189 0.354 −1.431 0.907 

7 0.452 −0.047 0.622 0.083 0.025 −0.306 0.491 −0.060 

8 −0.012 0.537 −0.724 0.105 −0.015 −1.616 −0.377 0.670 

9 −0.351 0.597 −0.167 −1.023 0.164 0.262 −0.716 −0.752 

10 −0.028 −0.638 0.898 −2.632 1.141 −0.056 −1.238 0.771 

11 −0.553 1.359 −0.373 −0.102 0.395 −0.420 0.311 0.654 

12 −0.531 −0.031 −1.359 1.231 −0.177 0.705 0.520 −1.391 

 

Unsuccessful results were obtained in autocorrelation tests 

for mod 8 as many values for d were greater than |1.6449 |as 

shown in Tables 5, 6 and 7. Autocorrelation test results are 

relatively more successful for mod 16 as shown in Table 6. 

The highest success rate is obtained in mod 32 as shown in 

Table 7. This result shows us that there is no relationship 
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between the 0s and 1s in the random numbers generated. 

 

5.3 Scale index 

 

The Scale Index test shows the non-periodicity of a time 

series. In the published literature, the Scale Index test is used 

for random number generation [20], visual coding [21] and 

biomedicine [22]. The Scale Index test was devised by Benitez 

[23]. The Scale Index test gives values between 0 and 1, and 

being close to 1 means that the degree of non-periodicity of 

the series is high. 

To define the Scale Index, the normalized inner scalogram 

is defined as in equation 4, sin being the inner scalogram: 

 

𝑆̅𝑖𝑛(𝑠) =
𝑆𝑖𝑛(𝑠)

(𝑑(𝑠)−𝑐(𝑠))
1
2

                           (4) 

 

𝐽(𝑠) = [𝑐(𝑠), 𝑑(𝑠)]  ⊆ 𝐼, for all u ϵ j(s), the maximal sub-

interval includes I 𝜓𝑢,𝑠 support in I.  

Considering that the length of J(s) depends on the s scale, 

the values of the internal scalogram at different scales cannot 

be compared. Equation 5 indicates the scale index of f in the 

[s0, s1] scale interval. For a detailed proof see [23]. 

 

𝑖𝑠𝑐𝑎𝑙𝑒 : =
𝑆(𝑠𝑚𝑖𝑛)

𝑆(𝑠𝑚𝑎𝑥)
                               (5) 

 

The non-periodicity value of the random numbers generated 

for mod 8, 16 and 32 from the EMG signals taken from 12 

sensors are shown below. Figure 8 shows the change in the 

Scale Index for each channel. 

 

 
 

Figure 8. Scale Index change for mod 8,16 and 32 

 

According to figure 8, the degree of non-periodicity is 

greater than 0.7. The highest values are obtained for mod 32. 

According to this, all channels have non-periodicity close to 1, 

so the fluctuations of the numbers are non-periodic. 

 

 

6. CONCLUSIONS  

 

In this study, a random number generator using EMG 

signals was described. In the generation of numbers, a modular 

arithmetically based normalization algorithm was used. 

Random numbers were produced for the EMG signals for 

different values of n (8,16 and 32); NIST, Scale Index and 

autocorrelation tests were used to determine the quality of the 

numbers produced. According to the results obtained, the 

statistical properties of numbers generated is not sufficient for 

mod 8 and mod 16. This result shows a true random number 

was not generated. However, for the EMG signals obtained 

from 11 channels, the random numbers obtained by using mod 

32 were successful and their statistical qualities were good. It 

was observed that the EMG signals taken only from the third 

channel were not successful in NIST test runs and in an 

Overlapping Template Matching test. In general, it was shown 

that true random numbers can be generated from EMG signals. 

These numbers can be used in applications such as cryptology, 

games theory, secure communication and games of chance. 
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