system such as a hybridization between a WOA2 or WOA3 with the Particle Swarm Optimization algorithm (PSO) and SA.

				Number	
				of	Exe.
		Mean		Selected	Time
Iteration	Alg.	Fitness	ACC.	features	(Sec.)
50					
iterations	WOA	0.30643	0.694	17	2.7
	WOASA	0.30135	0.575	17	137
	WOA2SA	0.28843	0.527	23	143
	WOA3SA	0.29472	0.511	20	152
70 iterations					
	WOA	0.28374	0.715	24	4
	WOASA	0.28852	0.591	14	230
	WOA2SA	0.275	0.556	22	281
	WOA3SA	0.29582	0.605	23	382
100 iterations					
	WOA	0.29404	0.707	17	8
	WOASA	0.27411	0.605	21	353
	WOA2SA	0.26309	0.527	18	363
	WOA3SA	0.27149	0.621	23	332
150 iterations					
	WOA	0.29693	0.704	19	8
	WOASA	0.2692	0.595	15	823
	WOA2SA	0.29693	0.625	19	775
	WOA3SA	0.28821	0.538	19	449

 Table 4. The results of the memetic algorithms with 10 whales

REFERENCES

- Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P. (1983). Optimization by simulated annealing. Science, 220(4598): 671–680. https://doi:10.1126/science.220.4598.671
- [2] Glover, F. (1989). Tabu Search-Part I. ORSA Journal of Computing, 1(3): 190–206. https://doi.org/10.1287/ijoc.1.3.190
- [3] Lawler, E.L. (1976). Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, USA.

- [4] Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, MI, USA: Michigan Press University.
- [5] Koza, J.R. (1992). Genetic Programming. Cambridge, USA: MIT Press.
- [6] Colorni, A., Dorigo, M., Maniezzo, V. (1991). Distributed optimization by ant colonies. In European Conf. on Artificial Life. Elsevier Publishing, pp. 134– 142.
- [7] Glover, F. (1977). Heuristics for integer programming using surrogate constraints. Decision Sciences, 8: 156-166. https://doi: 10.1111/j.1540-5915.1977.tb01074.x
- [8] Mirjalili, S. (2015). Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Elsevier, Knowledge-based Systems, 89: 228-249. https://doi.org/10.1016/j.knosys.2015.07.006
- [9] Blum, C., Blesa Aguilera, M.J., Roli, A., Sampels, M. (2008). Hybrid meta-heuristics – an emerging approach to optimization. Volume 114 of Studies in Computational Intelligence. Springer.
- [10] Krasnogor, N., Smith, J. (2005). A tutorial for competent memetic algorithms: Model, taxonomy, and design issues. IEEE Transactions on Evolutionary Computation, 9(5): 474488. https://doi:10.1109/TEVC.2005.85020
- [11] Ingber, L. (1993). Simulated annealing: Practice versus theory. Mathl. Comput. Modelling, 18(11): 29-57. https://doi: 10.1016/0895-7177(93)90204-C
- [12] Mirjalili, S., Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95: 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008
- [13] Soliman, G.M.A., Khorshid, M., Abou-El-Enien, T.H.M. (2016). Modified moth-flame optimization algorithms for terrorism prediction. International Journal of Application or Innovation in Engineering & Management, 5(7): 47-596.
- [14] Soliman, G.M.A., Abou-El-Enien, T.H.M., Emary, E., Khorshid, M. (2018). A hybrid whale optimization algorithm with adaptive spiral for terrorism prediction (the case of Egypt). European Journal of Scientific Research, 149(2): 165-184.
- [15] Bowser, E.A. (1880). An Elementary Treatise on Analytic Geometry: Embracing Plane Geometry and an Introduction to Geometry of Three Dimensions (4th ed.). New York, D. Van Nostrand.
- [16] Global Terrorism Database (GTD). (2009-2018). University of Maryland. National Consortium for the Study of Terrorism and Responses to Terrorism. A Center of Excellence of the U.S. Department of Homeland Security. University of Maryland, USA.