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The purpose of this paper is to prove that Induction Motor (IM) torque drive based on Direct 

Rotor Field Oriented Control (DRFOC) could be achieved using no currents controllers and 

no PWM block. In fact, we propose, after an inverse Park rotation applied on direct and 

quadratic stator flux components, to control both stator flux components, real and imaginary, 

through two hysteresis controllers. Therefore, a switching table is established. It’s independent 

from sector determination, does not introduce zero voltage vectors and with reduced size 

compared to Takahashi’s switching table. Thus, a new approach to realize DRFOC is provided. 

The proposed DRFOC is validated by practical implementation on a DSPace 1104 board, for 

a 1.5 kW IM.  
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1. INTRODUCTION

The Induction Motors (IM) vector control (VC) is based on 

dynamic model. Thus, not only magnitude and frequency but 

also instantaneous positions of the different electromagnetic 

quantities are controlled [1]. This qualifies VC to be used in 

IM high performances applications [2-4]. Actually, there are 

many techniques to achieve VC, namely: feedback 

linearization [5-6], passivity based control [7], Field Oriented 

Control (FOC) [8], Direct Torque Control (DTC) [9-10] and 

DTC-Pulse Width Modulation control (DTC-PWM) [11-14]. 

Practically, Rotor FOC (RFOC) and DTC remain the most 

widely used VC techniques in high performances IMs torque 

drive [1]. Thereby, several comparisons between DTC and 

RFOC strategies have been emerged [15-21]. Indeed, some 

researchers have compared the DTC performances with those 

of the Indirect RFOC (IRFOC) when IMs are fed by Static 

Voltage Inverter (SVI) [15]. They concluded that, contrary to 

the IRFOC, the DTC does not need to determinate the rotor 

instantaneous pulsation and does not depend on rotor 

resistance. Moreover, several researchers consider that the 

RFOC must always be performed through current controllers. 

This is the reason why the majority of them note that the RFOC 

always needs: (i) inner currents loops; (ii) presents slow torque 

dynamic and (iii) introduces a Pulse Width Modulation (PWM) 

block [1, 22]. 

From our point of view, these comparisons are not rigorous: 

(1). First, it will be more reasonable to consider Direct 

RFOC (DRFOC) instead of IRFOC when comparing with the 

DTC. This is because, like the DTC, the DRFOC does not need 

to determinate the rotor instantaneous pulsation. 

(2).  Second, by definition, RFOC requires both the direct 

rotor flux component to be kept constant and controlling the 

torque through a different variable. Indeed, most RFOCs use 

the stator current for this purpose by using either: (i) classical, 

intelligent artificial-based, and sliding mode-based current 

controllers [23-24]; or (ii) hysteresis controllers and switching 

tables whether the stator current is presented in stationary 

reference frame (AC components) or in field oriented frame 

(DC components) [25]. In reality, controlling the direct rotor 

flux component and the torque through stator current is just an 

option, and it is the origin of the slow torque dynamic. In fact, 

by analyzing the IM equations dynamics it appears that the 

time constant between rotor flux and stator current direct 

components is much higher than the time constant linking the 

rotor and stator flux direct components. Thus, one could use 

the direct and quadratic stator flux components to achieve the 

RFOC with higher torque dynamic. This choice, as mentioned 

by the authors in [26], is rather driven by the AC motor power 

source supply: torque control by acting on the stator current is 

more desirable when the motor is fed by a current source 

inverter; whereas, it is more adequate by acting on the stator 

flux for motors fed by a SVI [26-27].  

(3).  Finally, when stator flux is chosen to control IM 

rotor flux and torque, it is not necessary to use a PWM block 

to generate the inverter state. As demonstrated in [28], a 

reduced size switching table and two hysteresis controllers are 

enough to generate the inverter state. 

In this paper, DRFOC through stator flux hysteresis 

controllers, instead of current feedback, is performed to 

achieve torque reference IM dynamic improvement using: (i) 

a linear torque controller, (ii) Park inverse rotation, (iii) a 

reduced switching table, (iv) two hysteresis controllers and (v) 

a rotor flux angle and stator flux estimator. The proposed 

DRFOC control is argued experimentally through practical 

tests implemented on a DSPace 1104 board for various IM 

torque references for a 1.5kW IM. The performance is 

evaluated in terms of torque dynamic and ripple, flux and 

current distortion.  
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2. DIRECT RFOC PRINCIPLE 
 

In the synchronous rotating reference frame (d, q), the IM 

electromagnetic torque could be given by one of the following 

equalities [1]: 

 

)(),sin( sdrqsqrd

r

m
rssr

r

m
e ii

L

L
pii

L

L
pT  −==

             (1) 

 

)(),sin( sddqsqdr
sr

m
rssr

sr

m
e

LL

L
p

LL

L
pT 





−==

  (2) 

 

According to the RFOC principal, when forcing φrd= φr
* and 

φrq= 0, one can choose to control both rotor flux and torque 

either through stator currents or by stator flux. This means to 

consider respectively one of the following equations [1, 2]: 

if stator currents are chosen: 
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If stator flux are chosen: 
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where (s) represent Laplace variable. 

Based on expressions (3) and (4), the time constant between 

rotor and stator flux direct components is (σTr); while a time 

constant equal to (Tr) links the rotor flux direct component to 

the stator current’s one. This is why, when the stator flux is 

used to control both IM rotor flux and torque, their dynamics 

are very rapid compared to the case when stator current inner 

loops are used.  

Remark: φrd= φr
* is usually replaced by: 
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In this case, DRFOC diagram for IM supplied by SVI could 

be presented as shown in figure 1. 

 

 
 

Figure 1. Voltage inverter based DRFOC drive 

 

The estimator N1 estimates the stator flux components in 

the stationary reference frame (α, β)s [1]: 
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Then, the rotor flux components are estimated as given 

below: 
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The rotor flux position with respect to the stator reference 

frame and the electromagnetic torque are estimated 

respectively by: 
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3. VOLTAGE INVERTER BASED DRFOC DIAGRAM 

SIMPLIFICATION 
 

Actually, voltage inverter based DRFOC scheme can be 

significantly simplified if stator flux control is achieved in the 

stator reference frame (α, β)s. In fact, in this frame the stator 

resistance is often neglected. Also, the direct Park rotation 

could be removed because there is no need to compute direct 

and quadratic stator flux components. Moreover, in this frame, 

even the PWM generator block may be removed, as discussed 

below. 

 

3.1 Controlling stator flux in (α, β)s reference frame and 

elimination of direct Park rotation 

 

In the (α, β)s reference frame, when the stator resistance is 

neglected, the expression that links the stator flux and voltage 

become: 
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In order to achieve the stator flux control in the (α, β)s 

reference frame, we use the so-called discrete derivative 

controllers [1],which ensures the following computations : 
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where �̂�𝑠𝑎𝑘−1
and �̂�𝑠𝛽𝑘−1

 represent the estimated stator flux 

components at the time instant tk-1, and Ts is the used sampling 

time. Thus, the DRFOC diagram becomes: 
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Figure 2. DRFOC drive diagram in (α, β)s 

 

We note that this technique is very close to the DTC-SVM. 

The only difference is the angle used for reverse Park rotation.  

The DTC-SVM uses the angle of the stator flux vector whereas 

here it is rather the rotor flux one. 

 

3.2 Elimination of the PWM generator 

 

Actually, in the stationary reference frame (α, β)s, it is 

possible to achieve stator flux control through hysteresis 

controllers as detailed in [28]. The diagram of the DRFOC 

could be illustrated as given by figure 3, where, Table I 

presents the switching table and the two chosen controllers are 

shown respectively in figures 4 and 5. 

In fact, according to the effect brought by each voltage 

vector to the stator flux components in the (α, β)s reference 

frame, a switching table I is summarized as follow [28]: 

 

 
 

Figure 3. DRFOC drive diagram in (α, β)s using a switching 

table 

 

 
 

Figure 4. DRFOC drive diagram in (α, β)s using a switching 

table 

 
 

Figure 5. φsα hysteresis controller 

 

Table 1. Switching table I 

 

Eφ
sα

 1 -1 

Eφ
sβ

 1 0 -1 1 0 -1 

𝑣𝑠  𝑣𝑠2  𝑣𝑠1  𝑣𝑠6  𝑣𝑠3  𝑣𝑠4  𝑣𝑠5  

 

Eφsα  =1 (Eφsβ=1) means that φsα (φsβ) should increase, Eφsα  

=-1 (Eφsβ=-1 ) means that φsα (φsβ)  should decrease, and Eφsβ 

=0 means that φsβ should be kept unchanged. While Hφsα and 

Hφsβ represent respectively the half of the desired φsα and φsβ 

hysteresis bounds. 

From figure 3, it’s clear that the DRFOC diagram, could be 

achieved by controlling the stator flux components expressed 

in the (α, β)s reference frame using two hysteresis controllers 

and a simple switching table (only six rules).  

 

 

4. EXPERIMENTAL RESULTS 
 

In order to validate the proposed DRFOC (figure 3), in 

terms of torque dynamics and both flux and stator current 

distortions, practical tests with various torque references were 

carried out. The realized experimental test rig is shown in 

figure 6. Indeed, it consists of:  

(1) An IGBTs static voltage inverter (AC/DC/AC) that 

includes two current sensors (0.1 V for 1 A),  

(2) Two voltage sensors (1 V for 120 V),  

(3) A 1.5 kW IM mechanically linked to a 1.5 kW DC 

generator. The parameters of the used IM are presented in 

Table II.  

(4) A DSPace 1104 board based on a 250 MHz 603-

PowerPC-64-bit processor is used for data acquisition, IM 

states estimation and algorithm computing,  

(5) A control PC where the DSPace is plugged,  

(6) A/D converters (12-bit, 800 ns),  

(7) An interface that converts the IGBTs control signals 

from TTL to CMOS,  

(8) A/D converters and  

(9) A 2 kW resistive bank (box switches) which is 

supplied by the DC generator and was adjusted in such a way 

that the produced load torque reaches the nominal IM torque 

at nominal speed.  

After building the proposed DRFOC real-time Simulink-

blocks, the C code is automatically generated by the Real-

Time Workshop in conjunction with the DSPace’s Real-Time 

Interface. The Real-Time Application is downloaded and 

executed in the DSPace’s global memory (32 MB, SDRAM). 

To monitor and save all the experiment data, we use the 

ControlDesk which is a DSPace’s experiment software. 

 

 

 

 
Fig. 2. DRFOC drive diagram in (α, β)s . 
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Figure 6. The experimental platform 

 
Table 2. The IM parameters values 

 
p 2 P 1.5 kW  

Rs 4.75 Ω Isn 4.2 A 

Rr 1.2 Ω Vsn 380 V 

Ls 0.4 H Ten 10 N.m 

Lr 0.072 H ωn 175 rad/s 

Lm 0.163 H f=fIM+fload 25 ×10-4 Kg.m2/sec 

J=JIM +Jload 0.025 Kg.m2 Ten 10 N.m 

 

In order to limit torque and stator flux ripples within ±2.5% 

of their nominal values, the synthesis of DRFOC controller has 

been done as detailed in [28]. The adopted controllers’ 

parameters are given as follow: 

 

Hφsα=Hφsβ1=1.38×10-4 Wb (12) 

 

Hφsβ2=1.5×10-2 Wb (13) 

 

0.12=pk
 (14) 

 

444.ik =
 (15) 

 

The torque reference sequence lasts 35 (sec): Te * = [8, 5, 

2, -6, -2, 6] N.m (figure 7). It is clear that this sequence covers 

different operating torque points (large steps, positive, 

negative, small and medium torque values). After a first 

implementation, we have obtained a computation time Tc = 50 

(μsec). So we have chosen to execute the control with a 

sampling time Ts = 60 (μsec). The obtained experimental 

results are presented in the following figures: 

 

 
 

Figure 7. Estimated (Te est), reference (Te ref) and filtered 

(Te estf) torques 

 
 

Figure 8. Stator flux vector locus 

 

 
 

Figure 9. Stator flux: d-axis component (Fluxsd ref), q-axis 

component (Fluxs qref), reference magnitude (Fluxs ref) and 

estimated magnitude (Fluxs est) 

 

 
 

Figure 10. Stator flux α-axis component: (a) reference and 

estimated, (b) zoomed figure 

 

 
 

Figure 11. Stator flux β-axis component: (a) Reference and 

estimated, (b) zoomed figure 
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Figure 12. Stator current (a) measured, (b) zoomed figure 

 
From Figure 7, we clearly see that the filtered estimated 

torque (dashed line) does not present any error with the use of 

the proposed DRFOC including a PI torque controller. 

Because the used sampling time is not small enough, we note 

that the torque ripple goes beyond the set hysteresis bounds 

(±0.25 N.m). Further, we note that the use of hysteresis stator 

flux controllers has improved the DRFOC torque dynamic that 

has become comparable to that of the classical DTC. The 

figure 8 shows that the flux vector locus presents few 

distortions, few ripples and closer circle shape. 

From Figure 9, it’s clear that the estimated stator flux 

magnitude follows the desired magnitude reference and 

presents few ripples. For the same raison as for the torque, the 

magnitude flux ripples go beyond the set limits (±0.03 Wb). 

Less distortion could be achieved if less sampling time could 

have been used. The same figure shows also that the stator flux 

reference q-component follows exactly the torque shape, while, 

the d-component remains constant. 

Figures 10 and 11 present the stator flux components 

waveforms in the stator reference frame. Indeed, Figures 10(b) 

and 11(b) show that the estimated values of these two 

components follows exactly their references and present 

almost-perfect sinusoidal forms. Thereby, even the stator 

current shape presents a sinusoidal form, as shown in Figure 

12.  

 

 

5. CONCLUSIONS 

 

This paper has presented a novel approach to achieve 

DRFOC. In fact, from the possibility of realizing the DRFOC 

through stator flux inner loops performed in the stationary 

reference frame, we have confirmed theoretically and 

practically that this control can be achieved using: i) a linear 

torque controller, ii) Park inverse rotation, iii) a reduced 

switching table, iv) two hysteresis controller and v) a rotor flux 

angle and stator flux components estimator. In this case, 

DRFOC achieves better torque dynamic. Our practical 

realization was performed on a 1.5 kW IM torque drives.  

The proposed control design has improved the torque 

dynamics and proved that the DRFOC could be achieved 

without using any current inner loop and no PWM bloc. 

In this paper we have shown that the DRFOC could achieve 

the DTC dynamics. As a perspective, comparison with 

classical DRFOC and classical DTC, in terms of dynamic and 

steady state performance, might be investigated. Further, a 

comparison of THD/Torque ripple performance should be 

realized.  
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NOMENCLATURE 

 

vs, is Stator voltage and current. 

φs, φr Stator and rotor flux. 

θφs ,θφr Positions of stator and rotor flux in the stator 

frame. 

ω Mechanical rotor speed. 

2.p number of poles. 

Te Electromagnetic torque. 

Tr Rotor time constant. 

Rs Stator resistance. 

Ls ,Lr ,Lm Stator, rotor and mutual inductances. 

σ Total leakage factor. 

H(.) Denotes hysteresis bound for a chosen variable. 

E(.) Denotes logical decision for a chosen variable. 

(.)* Denotes a reference value. 

(^) Denotes an estimated value. 

(.)α,β Denotes α and β axis-components for a chosen 

variable. 

(.)d,q Denotes d and q axis-components for a chosen 

variable. 
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