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 The physical phenomena with fractal features cannot be described by the standard Brownian 

motion (BM), but by the improved method of fractional Brownian motion (FBM). This paper 

explores the fractal features of fractional Brownian motion (FBM) and then applies the FBM 

to interpret the fractal features and fractal scales of gold price fluctuations in China. The results 

show that the gold price fluctuations in China have obvious, scale-invariant fractal features. 

Hence, the Chinese gold market is advised to introduce fractal risk management to control the 

risks. This research widens the applicable scope of the FBM and sheds new light on financial 

market analysis. 
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1. INTRODUCTION 

 

The theory of Brownian motion (BM), a.k.a. Gaussian 

process and Wiener process, provides an effective tool to 

disclose the dynamic features of heat and fluid and to describe 

the complex evolution of these features. The research and 

application of the BM features have become a hot topic such 

fields as thermodynamics, hydrology and water resources. 

With the continuous improvement of experimental techniques, 

many fractal features have been observed to deviate from the 

BM features in such environments as turbulence and the 

seepage into porous media.  

The concept of fractal was proposed by the French-

American mathematician Mandelbrot in 1975. It is defined as 

a physical feature that the components are similar in some way 

to the whole. Based on the similarity between local and global 

structures, the law that applies to small time scale could be 

used in large time scale and vice versa, and this method could 

also be adopted for predictive research [1]. 

Fractal features exist widely in thermal phenomena and 

fluid motions. The fractal is closely correlated with many 

physical phenomena, such as turbulence, fissure seepage and 

thermal diffusion. Benzi et al. [2] pointed out that fractal is 

related to many intermittent phenomena in turbulent diffusion. 

Benzi et al. [2] held that fissure seepage has fractal features, 

which bolsters the diffusing capacity of the seepage. Katz and 

Thompson [3]; Krohn and Thompson [4] discovered the 

fractal features of pore distribution in sandstone. Heutschel 

and Procaccia [5] illustrated the energy spectral density [6] of 

temperature pulsations in open oceans with two power law 

theories, revealing the fractal features of the energy spectral 

density. Hurst, British hydrologist and “Father of the Nile”, 

determined the suitable size of dams based on the fractal 

features of river flow, and developed the Hurst exponent to 

measure the persistence of time sequence [7]. Tabeling [8] 

noticed that the spiral Taylor-Görtler (TG) vortex has fractal 

features and its fractal dimension increases regularly. 

The standard BM obeys the Gaussian (normal) distribution 

and cannot explain the fractal features of physical phenomena. 

The BM is highly stochastic, that is, the future data cannot be 

predicted based on the historical data. Hence, the past motion 

will not reappear in the future. This calls for a novel means to 

interpret the fractal features, which are prevalent in thermal 

phenomena and fluid motions. The fractional Brownian 

motion (FBM) is a desirable way to explain the fractal features 

and solve nonlinear problems of the BM [9]. Extended from 

the classic BM, the FBM has a self-similar, non-stationary 

independent incremental process, whose mean square 

displacement (MSD) is a power function of time [10]. Loveioy 

and Sehertzer [11, 12] relied on the FBM to study hydrological 

records. Yu et al. [13] employed the FBM to explore the heat 

transfer process, and noted the nonlinear relationship between 

the MSD of molecules with time, i.e. the MSD of molecules is 

proportional to the fractional power of time. 

The FBM’s fractal features are mostly measured by the 

rescaled range (R/S) analysis. The R/S analysis was proposed 

and refined by Hurst [14-16]. This method reflects the scale 

invariance of nonlinear statistical features [17], and enjoys a 

wide range of applications, without needing any assumption. 

The R/S analysis can explain the long memory and persistence 

of Non-normal distribution distribution, and provide valuable 

information for comprehending the complexity of fluid 

motions. Compared with traditional methods (e.g. 

autocorrelation function method and power spectrum method), 

the R/S analysis is suitable for identification and intensity 

determination of fractal features in non-stationary time 

sequence. 

This paper uses the FBM to analyze fractal features in 

physical phenomena. The fractal concept, an indicator of the 

similarities between local and global structures, allows the 

correlation between the current data and the past data in the 

time sequence. The results demonstrate the ability of the FBM 

to interpret the fractal features that the standard BM cannot 

measure. In addition, this feature of fluid mechanics was 

applied to economics, expanding the range of applications of 

the BM. The framework of this paper is as follows. Firstly, the 

fractal features of the FBM were described, and the advantage 

of the FBM over the standard BM were enumerated. Next, the 
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R/S analysis was adopted to evaluate the Hurst exponent under 

the FBM. Finally, numerical examples were cited to prove the 

broad applicability of the FBM [18, 19]. 

 

 

2. FRACTAL FEATURES OF THE FBM 

 

In 1827, Brown discovered the BM, an irregular random 

motion, in his study on the movement of pollen. In the BM, 

the increments in different time intervals are independent of 

each other, and comply with normal distribution with the mean 

of zero and the variance of interval length. As mentioned 

before, the standard BM cannot illustrate the fractal features 

of physical phenomena, because of the random walk and 

memoryless data of the BM (i.e. the past data cannot be used 

to predict the future data). 

The FBM is extended from the classic BM by expanding the 

Hurst exponent from 1/2 to any real number in (0, 1). The FBM 

has independent incremental process with self-similarity, non-

stationarity, whose MSD is a power function of time. Hence, 

the FBM can interpret the fractal features of physical 

phenomena [10]. 

Based on the moving average of Brownian increments, the 

FBM can be defined as a stochastic process BH(t) satisfying 

the following condition: 

 

𝐵𝐻(𝑡) =
1

𝛤(𝐻+1/2)
∫ 𝐾(𝑡 − 𝑠)
𝑡

−∞

𝐻−1/2
𝑑𝐵(𝑠)            (1) 

 

where, H is the Hurst exponent (0<H<1); BH(0)=b0 is a random 

number; 𝛤(·) is the gamma function; B(s) is the BM; K(t-s) is 

defined as: 

 

𝐾( 𝑡 − 𝑠) = {
(𝑡 − 𝑠)𝐻−1/2 ,                    0 ≤ 𝑠 ≤ 𝑡 

(𝑡 − 𝑠)𝐻−1/2 − (−𝑠)𝐻−1/2 ,      𝑠 ≤ 0 
    (2) 

 

 
 

Figure 1. The FBM trajectories at different H values 

 

In the FBM, the increments in different time intervals are 

not independent of each other but are correlated in different 

degrees. The correlation varies with the Hurst exponent. If 

H=1/2, then the FBM is a standard BM and its time increment 

sequence obeys the normal distribution; if 0<H<1, the 

sequence property changes with the H value; if 0<H<1/2, the 

sequence oscillates about the mean; if 1/2<H<1 the sequence 

is persistent. The FBM trajectories at H=0.3, 0.5 and 0.7 are 

presented in Figure 1. It can be seen that the greater the H, the 

steeper the curve, and the weaker the noise. The inverse is also 

true. Therefore, the Hurst exponent can measure the curve 

tortuosity. 

By its definition, the FBM has the following fractal features: 

(1) Statistical self-similarity 

The FBM has significant self-similarity, because, for Vγ>0 

and t0, the increment of the random process {Xt} of the FBM 

satisfies: 

 

{𝑋((𝑡0+𝜏) − 𝑋(𝑡0)}
𝑑 = 𝛾−𝐻{𝑋((𝑡0+𝛾𝜏) − 𝑋(𝑡0)}   (3) 

 

Self-similarity means that the structures or processes in a 

system are similar on different spatial or temporal scales. The 

FBM reflects the self-similar statistical properties of stochastic 

processes at different time scales, indicating the stability of the 

dynamic process. 

(2) Long-term memory 

Long-term memory, a.k.a. long-term correlation, is related 

to the autocorrelation coefficient of the sequence. The autoco-

rrelation function of the FBM increments satisfies: 

 

𝐶𝐻(𝜏) =
𝐶𝑜𝑣{𝛥𝐵𝐻(𝑡, 𝜏),𝛥𝐵𝐻(𝑠,𝜏)}

𝑉𝑎𝑟[𝛥𝐵𝐻(𝑡, 𝜏)]
                     (4) 

 

where, 𝐶𝑜𝑣[𝛥𝐵𝐻(𝑡, 𝜏), 𝛥𝐵𝐻(𝑠, 𝜏)] is the covariance between 

the FBM increments. This covariance can be expressed as: 

 

𝐶𝑜𝑣[𝛥𝐵𝐻(𝑡, 𝜏), 𝛥𝐵𝐻(𝑠, 𝜏)] = 𝐸[𝛥𝐵𝐻(𝑡, 𝜏), 𝛥𝐵𝐻(𝑠, 𝜏)] = 
𝑉𝐻

2
{|𝑡 − 𝑠 + 𝜏|2𝐻 + |𝑡 − 𝑠 − 𝜏|2𝐻 − 2|𝑡 − 𝑠|2𝐻}       (5) 

 

The autocorrelation coefficient ρt of the stationary sequence 

{Xt} decreases slowly at the negative power exponent rate 

(double curvature) with the growth of the interval order τ [18]: 

 

𝜌𝑡 ∝ 𝐶𝑡
2𝑑−1,   𝜏 → ∞                           (6) 

 

where, C is a nonzero constant ensuring the long-term memory 

of the sequence. According to the definition of the autoco-

rrelation coefficient of the FMB increment sequence, the H 

value depends on the positivity/negativity of the correlation 

coefficient. If H=1/2, then CH(τ)=0 and the increments are not 

correlated; if 0<H<1/2, then CH(τ)<0 and the increments are 

negatively correlated; if 1/2<H<1, then CH(τ)>0 and the 

increment are positively correlated. 

To sum up, in the standard BM, the increments in different 

time intervals are independent of each other, and comply with 

normal distribution with the mean of zero and the variance of 

interval length. The BM is a continuous random walk, its 

increments are not affected by historical fluctuations, and the 

same data will not reappear. Thus, the standard BM cannot 

describe fractal features. By contrast, in the FBM, increments 

in different time intervals are correlated to different degrees, 

rather than independent of each other. The correlation varies 

with the Hurst exponent. Therefore, the structures or processes 

of the FBM are similar on different spatial or temporal scales, 

and have fractal features. Thanks to the fractal features, the 

FBM acts as a useful tool in thermodynamics, fluid mechanics 

and even economics. 
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3. MEASUREMENT OF THE FBM 

 

The R/S analysis is a popular non-parametric statistical 

method, capable of identifying the fractal structure, a structure 

between stochastic and deterministic structures, from the time 

sequence. Since its proposal, the R/S analysis has been 

improved. It is an important way to explore the fractal 

structure. Without requiring any assumption, the R/S analysis 

uses the Hurst exponent to determine the fractal structure and 

state persistence of the time sequence, and outputs stable 

evaluation results. The R/S analysis can be expressed as: 

 

(𝑅/𝑆)𝑛 = 𝐶 ⋅ 𝑛𝐻                             (7) 

 

where, n is the length of the time interval for an increment; C 

is a constant; H is the Hurst exponent. To estimate the H value, 

it is necessary to compute the R/S sequence and its time 

increment sequence, and then perform the regression analysis. 

The specific steps of the estimation are as follows: 

Step 1. Divide the time sequence {Rt} of the length N 

equally into A non-overlapping, consecutive subsequences Da 

(a=1,2,…, A), each of which is of the length n (3≤n≤N/2), and 

denote the elements in each subsequences as Rk,a. 

Step 2. Compute the cumulative deviation of each 

subsequence Da, and record the mean of all subsequence Da as 

ea. 

 

𝑋𝑘,𝑎 = ∑ (𝑅𝑘,𝑎 −𝑒𝑎)
𝑁
𝑘=1                           (8) 

 

Step 3. Compute the R/S of each subsequence Da, and 

record the range (difference between the maximum and 

minimum cumulative deviations) and standard deviation of 

subsequence Da as Ra and Sa, respectively. Repeat the above 

process for each subsequence, and obtain a R/S sequence: 

 

(𝑅/𝑆)𝑎 = 𝑅𝑎/𝑆𝑎                               (9) 

 

Step 4. Find all subsequence length n (3≤n≤N/2) that are 

divisible by the sequence length N. Repeat the above steps. 

Then, evaluate the H value by least squares method according 

to the following formula: 

 

𝑙𝑜𝑔( 𝑅/𝑆)𝑛 = 𝑙𝑜𝑔( 𝐶) + 𝐻⋅ log(𝑛)                (10) 

 

where, log(n) is the explanatory variable; log(R/S) is the 

explained variable. The coefficient of the explanatory variable 

is the H value. The R/S analysis can output the most stable 

results with few or no assumptions. It reveals the intrinsic 

statistical law of the time sequence, in addition to the nonlinear 

features. Thus, the R/S analysis has a clear advantage over 

traditional analysis methods for the time sequence. 

There are three possible uses of the R/S analysis. First, the 

R/S analysis can measure the correlation of the time sequence. 

If H=1/2, the elements are not correlated; if 0<H<1/2, the 

elements are negatively correlated; if 1/2<H<1, the elements 

are positively correlated. 

Second, the R/S analysis can determine if the time sequence 

is stochastic or deterministic. If H=1/2, the time sequence is a 

stochastic one with independent identically distributed 

elements, and belongs to the BM (random walk); otherwise, 

the time sequence is a deterministic one, and belongs to the 

FBM. 

Third, the R/S analysis can judge the persistence of the time 

sequence after determining the stochasticity/determinacy. If 

1/2<H<1, the time sequence enjoys has state persistence, or 

long-term memory (long-term correlation), i.e. the time 

sequence maintains the rising/falling trend in the past. Besides, 

the state persistence is invariant to scale, i.e. state persistence 

does not change whether the time scale is day or week. The 

closer the H value is to one, the stronger the persistence of the 

time sequence. If 0<H<1/2, the time sequence oscillates about 

the mean value, i.e. the future trend is opposite to the current 

trend. The closer the H value is to zero, the more significant 

the oscillation about the mean. 

 

 

4. EXAMPLE ANALYSIS  

 

The fractal features of the FBM have been widely adopted 

to solve many real-world problems: estimating the area of river 

basin based on river length [8], exploring the viscous fingering 

of water in clay mud using radial Hele-Shaw cell. 

Besides fluid mechanics, the FBM can also solve problems 

in other fields like the financial sectors. The price fluctuations 

of financial assets have nonlinearity, long-term memory and 

fractal features. The fractal features of the FBM can be utilized 

to solve economic problems. This section adopts the FBM to 

analyze the fractal features and fractal scale of gold price in 

China, aiming to expand the application range of the BM. 

 

4.1 Data source 

 

The samples are the daily closing prices (daily prices) and 

5-day mean closing prices (weekly prices) of Au99.99 in 

Shanghai Gold Exchange. Considering data availability, the 

samples were collected from October 8, 2004 to April 23, 2018, 

and the missing values were filled up by mean value 

interpolation. 

 

4.2 Normality test 

 

The histogram of the gold price sequence was plotted 

(Figure 2). Since the density function curve of the histogram 

differed greatly from that of normal distribution, the gold price 

sequence does not obey the normal distribution. 

Table 1 lists the descriptive statistics of the daily prices and 

weekly prices of Au99.99 in China. As shown in the table, the 

skewness was negative and the kurtosis was smaller than 3, 

indicating that the gold price sequence does not obey normal 

distribution. Then, the gold price sequence was subjected to 

Shapiro–Wilk (S-W) test and Kolmogorov–Smirnov (K-S) 

test, with the original hypothesis that the sequence follows 

normal distribution. The original hypothesis is proved invalid, 

for the estimated values were all far greater than 1 %. The 

distribution of the gold price sequence deviated greatly from 

normal distribution. 

The quantile-quantile (Q-Q) plot was also drawn to verify 

the normality of the sequence. As shown in Figure 3, the two 

ends of the sequence both deviated far from the normal 

distribution, which agrees with the results in Table 1. 

In the histogram of the gold price distribution, many price 

data were concentrated near the mean, and some were 

scattered in the tails on the left and right sides. Thus, the 

distribution of gold prices cannot be described accurately by 

normal distribution. This calls for a new theory to analyze the 

fluctuations of gold price based on non-normal features. 
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Figure 2. The histogram of the gold price distribution 

 

Table 1. Statistical analysis of gold price sequence 

 
Statistics Total number of samples Mean Standard deviation Kurtosis Skewness S-W statistic K-S statistic 

Daily prices 3,327 237.08 66.09 2.83 -0.18 0.970 0.073 

Weekly prices 714 237.13 66.13 2.29 -0.19 0.970 0.076 

 

 
 

Figure 3. The Q-Q plot of the gold price distribution 

 

4.3 Empirical analysis on FBM fractal features 

 

The BM only applies to the time sequence in which the 

elements are independent of each other and obey normal 

distribution. By contrast, the FBM can interpret the time 

sequence data which deviate from the normal distribution. 

This subsection analyzes the fractal features of gold prices on 

2 time scales (daily price and weekly price), and computes the 

H values of two moving average lengths (60 days and 240 

days). The gold prices are shown in log values. 

As shown in Figures 4 and 5, the estimated coefficients of 

H values were around 0.65, much larger than 0.5. This means 

the daily prices of gold in China have long-term correlations, 

and carry obvious fractal features. The results echo with the 

growing trend in gold price trend chart in the medium and long 

term. In Figure 4, the H value plunged to below 0.5 only at the 

beginning of 2018, with the moving average length of 60 days, 

revealing that the daily price of gold will change randomly in 

the short term. Meanwhile, the H value in the same period in 

Figure 5 was greater than 0.6, indicating the growing trend of 

the daily price of gold in the long run. 

Figures 6 and 7 show that the daily prices and weekly prices 

of gold in China had similar H values, i.e. the gold price 

sequences on the time scale of day and week have the same 

fractal features. In other words, the gold prices in China is 

invariant to scale. 

866



 
 

Figure 4. The H value of daily prices with the moving average length of 60 days 

 

 
 

Figure 5. The H value of daily prices with the moving average length of 240 days 

 

 
 

Figure 6. The H value of weekly prices with the moving average length of 60 days 

 

 
 

Figure 7. The H value of weekly prices with the moving average length of 240 days 
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5. CONCLUSIONS

This paper first explores the fractal features of the FBM, and 

then explores the measurement of the FBM’s fractal measures. 

Finally, the FBM’s fractal features were applied to explain the 

sequence of gold prices with similar fluctuation features. This 

widens the application range and proves the universality of the 

FBM’s fractal features. 

The FBM model can effectively estimate time sequences 

with fractal features. The FBM not only applies to problems in 

fluid mechanics and thermodynamics, but also those in 

fluctuating phenomena with fractal features, such as the capital 

price fluctuations in economics. In fact, the FBM provides the 

scientific principle for things with fractal features. The 

physical phenomena with fractal feature cannot be solved by 

standard BM, but can be explained by the FBM, an improved 

version of the BM. 

The FBM was introduced to analyze the fractal features of 

gold price in spot market of China. The analysis achieved a 

good fitting effect and complemented the traditional market 

hypothesis. It is confirmed that the gold prices in China have 

strong fractal features and scale invariance. The gold price 

sequences on different time scales follow the same or similar 

statistical laws. If the sequences are assumed to obey normal 

distribution, the financial investment risk will be underes-

timated, and a huge loss may occur. The research on the fractal 

theory of China’s gold market helps to extract more valuable 

and accurate risk management information, opens a new way 

to explore the complexity of China’s gold market, and 

promises to improve the level of financial risk management. 
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