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 This paper designs a multi-sensor data fusion method for the nondestructive testing system 

using both ultrasonic sensors and magnetic flux leakage (MFL) sensors. Firstly, the detected 

data were fused by fuzzy linear regression and Dempster–Shafer theory (DST). Next, the fused 

results were presented intuitively by computing the fuzzy upper and lower bounds of the 

damage size in a certain interval of reliability and confidence. The application in several cases 

shows that our method can represent any test data in a form closer to the actual damage size, 

and display the fused data in an intuitive manner. The research findings have great applicable 

potential in many industries. 
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1. INTRODUCTION 

 

During nondestructive testing of oil pipelines, the quality of 

data collection and processing directly hinges on the sensor, 

the collection method and the data source [1]. In general, 

single-sensor data collection cannot obtain complete and 

precise data. The collected data are often highly uncertain, 

because each sensor has a unique level of quality, performance 

and noise [2, 3]. By contrast, multi-sensor data fusion reduces 

the data uncertainty through integration of data from multiple 

signals, making it easier to make robust decisions [4]. For 

example, multiple ultrasonic sensors and magnetic flux 

leakage (MFL) sensors can be coupled to make up for their 

respective defects and limitations, creating an effective 

nondestructive method to capture the abnormal parameters of 

oil pipelines [5, 6]. The combination between the two types of 

sensors can provide more accurate data for pipeline 

management and maintenance. 

This paper designs a multi-sensor data fusion method 

capable of detecting wall thickness and pipe damage at any 

position, with a few number of ultrasonic sensors [7]. The 

fused data can approximate the actual size of damages, and 

thus improve the safety of oil pipelines [8, 9]. Example 

analysis shows that the proposed method did not mistake 

excessive damage for non-excessive damage, eliminating the 

need for costly and risky error checking. 

 

 

2. DESIGN OF MULTI-SENSOR DATA FUSION 

ALGORITHM 

 

The multi-sensor data fusion falls into three categories, 

namely, data level fusion, the feature level fusion, and the 

decision level fusion [10]. Among them, the feature level 

fusion can work flexibly and output precise results in real time, 

as it compresses the raw data and suppresses the interference. 

In this method, the fusion feature vectors of different test 

sources are integrated into a comprehensive feature vector [11]. 

The integration is achieved in two steps: extracting the amount 

or statistic is extracted from the data collected by each sensor, 

and analyzing the extracted information in a comprehensive 

manner [12]. Considering its advantages, the feature level 

fusion was adopted to design our multi-sensor data fusion 

algorithm. 

The Dempster-Shafter theory (DST) was employed to fuse 

the data collected by ultrasonic sensors and the MFL sensors 

in our multi-sensor nondestructive testing system [13]. The 

application process is illustrated in Figure 1. In the DST, the 

basic probability assignment function, trust function and 

likelihood function of each evidence are computed, followed 

by the solving the three functions of the combination of all 

evidences; finally, the hypothesis of the maximum support 

under the joint action is selected according to certain decision-

making rules. 

In the nondestructive testing of oil pipeline, the author 

performed D-S evidence reasoning over the data collected by 

both ultrasonic and MFL sensors, and carried out the reasoning 

again on the fused data. The two-stage fusion process helps to 

rationalize the decision-making. 

Considering the fuzziness of the data collected by multiple 

sensors, the fuzzy algorithm based on cognition model was 

introduced to process the multi-sensor fuzzy (MSF) data. 

Specifically, the uncertainty was expressed directly as fuzzy 

logic, and subjected to multivalve logic reasoning [14]. Next, 

the data fusion was realized by merging multiple propositions 

as per the fuzzy set theory of calculus. 
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Figure 1. Application of the DST in multi-sensor data fusion

 

 

3. REALIZATION OF MULTI-SENSOR DATA FUSION 

ALGORITHM 

 

3.1 DST-based fuzzy linear regression 

 

(1) According to the DST, the confidence function of sensor 

i relative to the measure function of damage j can be expressed 

as: 
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The measure function of the uncertainty θ of sensor i can be 

described as: 
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where, ω is the performance coefficient of sensor i (e.g. 

geometry and surface roughness); αi is the maximum 

correlation coefficient between sensor i and each damage; βi is 

the distribution coefficient of sensor i; Ri is the reliability 

coefficient of sensor i; Nc is the type of damage.  

Two confidence functions were cited to explain the fusion 

rule. In essence, the rule combines the probability assignments 

of two evidences under the same recognition framework into 

an overall probability assignment. Let mi(1) and mi(2) be the 

confidence functions relative to the measure functions of the 

two evidences under the same recognition framework, with the 

focal elements being A1, A2, ⋯, Ak and B1, B2, ⋯, Br, 

respectively. Then, we have: 
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Then, the overall probability assignment can be expressed 

as: 
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(2) Damage membership, fuzzy interval and membership 

estimation. The values and probabilities of the same physical 

quantity measured by multiple sensors generally obey the 

normal distribution [15]. Hence, this paper takes the standard 

normal distribution function as the membership function of 

fuzzy set. 

Through the analysis on the data collected by ultrasonic and 

MFL sensors, the estimated size z and the measured size z' of 

a damage has the following correlation: 

 
' 2 ' ' 2

0 1 2( ) ( ) ( ) ( ) , ~ (0, )m

mz z z z N         = + + + + + (5) 

 

where, the polynomial about )(•  is the estimated size of the 

damage; )(•  is the real function; ε is a normally-distributed 

error term; λi, i=1, 2, ⋯, m and σ2 are the parameters to be 

regressed. 

In most cases, zz ln)( = , 
'' ln)( zz =  and m=1. Then, 

formula 5 can be converted into: 

 
' 2

0 1ln ln , ~ (0, )z z N    = + +               (6) 

 

The next step is to determine parameters λ0, λ1 and σ2. Let 

z1, z2, ⋯, zn and 𝑧1
′ , 𝑧2

′ , ⋯ 𝑧𝑛
′  be the estimated sizes and 

measured sizes of n damages, respectively. The n damages 

were assumed to subjected to an independent nondestructive 
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test. It can be seen from regression analysis that the values of 

λ0 and λ1 can be estimated as: 
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The regression equation of the above formulas can be 

expressed as: 

 
'

0 1
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where, �̃� is the median size of the damage.  

Then, the value of variance σ2 can be obtained by: 
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Since the fuzzy membership function is assumed to obey 

standard normal distribution, the membership of the damage 

in the interval (0, z) can be derived from formulas (9) and (10) 

as: 

 

0 1
ˆ ˆ ˆˆ ˆ( ) [(ln ln ) / ]F z z z z  = − −             (11) 

 

similarly, the membership of the damage in the interval [Z,+∞) 

can be expressed as: 
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where, 𝛷(•) is the standard normal distribution function; 

𝐹(𝑧|�̂�)  is the fuzzy distribution of the damage size in the 

detection range. 

Substituting the measured size �̂�of the said damage into 

formulas (9) and (10), the logarithm mean and the logarithm 

standard deviation can estimate as zz ˆlnˆˆ~ln 10  += . Hence, 

the lower and upper limits, 𝐹𝐿(𝑧0|�̂�) = 𝛷(𝑢𝑃𝐿)  and 

𝐹𝑈(𝑧0|�̂�) = 𝛷(𝑢𝑃𝑈) , of the confidence γ of the damage 

relative to the membership interval (0,z0) can be obtained as: 
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similarly, the unilateral confidence of lower and upper limits 

of confidence γ relative to the membership interval [z0,+∞) can 

be derived as: 

0
ˆ( ) 1 ( )U PLP z z u= −                             (16) 

 

0
ˆ( ) 1 ( )L PUP z z u= −                              (17) 

 

In nondestructive testing, the use of 𝐹𝐿(𝑧0|�̂�) and 𝑃𝑈(𝑧0|�̂�) 
can prevent the mistake of excessive damage for non-

excessive damage, but cannot prevent the mistake of non-

excessive damage for excessive damage. If the damage falls 

between the excessive level and the non-excessive level, more 

independent nondestructive tests should be conducted and the 

test results should be regressed repeatedly to increase the 

sample size n. Then, the confidence intervals 𝐹𝑈(𝑧0|�̂�) -

𝐹𝐿(𝑧0|�̂�) and 𝑃𝑈(𝑧0|�̂�)-𝑃𝐿(𝑧0|�̂�) can be greatly shortened. 

(3) Fuzzy data fusion of multiple data sources. Let �̂�1 and 

�̂�2  be the sizes of the same damage measured in two 

independent nondestructive tests. Substituting them into 

formula (11), the fuzzy distributions 𝐹(𝑧|�̂�1) and 𝐹(𝑧|�̂�2) of 

the damage size can be obtained as: 
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Then, the DST was applied to deduce the unilateral 

confidence lower limit of the membership in the interval (0,z0): 
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similarly, 𝑃𝑈(𝑧0|�̂�1),𝑃𝑈(𝑧0|�̂�2), and the unilateral confidence 

limit of the membership interval [z0,+∞) can be derived by 

formula (14) as: 
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Obviously, the number of independent testing sources is 

positively correlated with the number of iterations and the 

computing load. 

 
3.2 Fuzzy representation of the size of the same damage 

measured by one type of sensors 

 

Let �̂� be the size of a damage on an oil pipeline measured 

by one type of sensors in a nondestructive test [16]. Then, the 

fuzzy distribution of the damage size can be expressed as: 

0 0 0 1
ˆ ˆ ˆˆ( ) [(ln ln ) / ]F z z z  = − − . 

For the damage size, the upper limit and lower limit of 

reliability can be obtained respectively by: 
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where, ν=n-2. 

 

3.3 Fuzzy representation of the sizes of the same damage 

measured by two type of sensors 

 

In this paper, the MFL sensors and ultrasonic sensors are 

applied to measure the same damage interpedently. The 

measured data must satisfy the following formulas: 
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Compared with the measurement method in 3.2, the 

variance (
1
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1
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 of ln Z in this section is relatively small, 

indicating that different sensors can detect the same damage 

independently and accurately. The logarithm means of the 

measured sizes of ultrasonic sensors and the MFL sensors can 

be denoted as 
1

)ˆ(ln z  and 
2

)ˆ(ln z , respectively. If the sample 

space is sufficiently large, the actual statistics can be replaced 

by their respective statistical estimators: 

 
2 2

1 2
1 2 2 2 2

1 2 1 2

ˆ ˆ1/
ˆ

ˆ ˆ ˆ ˆ1/ 1/
r

•

 

   
= =

+ +
                 (28) 

 
2 2

2 1
2 2 2 2 2

1 2 1 2

ˆ ˆ1/
ˆ

ˆ ˆ ˆ ˆ1/ 1/
r

•

 

   
= =

+ +
                 (29) 

1

2

2 2

1 2

1 1
ˆ

ˆ ˆ


 

−

 
= + 
 

                          (30) 

 

2 2

0 1

1 1

1

2

2 2

1 2

ˆ ˆˆ ˆ ˆln (ln )

ˆ( )

1 1

ˆ ˆ

i i i i i

i i

z r r z

F z z

 

 

= =

−

 
 

− − 
=   

  
 + 
   

              (31) 

 

Then, the upper and lower limits of the reliability can be 

expressed as: 
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where, ν=ν1+ν2, ν1=n1-2, ν2=n2-2. 

 

 

4. FUSION EFFECT ANALYSIS 

 

4.1 Data fusion effect of fuzzy linear regression 

 

The ultrasonic sensors were used to measure the damage 

size of a stainless-steel fitting of an oil pipeline. The measured 

results (Table 1) were compared with the actual damage sizes. 

 

 

Table 1. Measured damage size by ultrasonic sensors (mm) 

 
Serial number i 1 2 3 4 5 6 7 8 9 10 11 12 

True height of crack zi 7.6 2.9 9.0 1.6 9.2 2.1 6.6 1.9 1.8 1.8 1.3 2.9 

Crack detection heigh 𝑧𝑖
′  9.0 1.5 10.0 1.0 8.0 1.5 6.0 1.5 1.5 2.0 1.0 1.0 

The measured data were processed by the fuzzy linear 

regression algorithm. Then, the regression relationship 

between the measured and actual damage sizes can be 

expressed as: 

 
'ln 0.4841 0.7434lnz z= +                      (36) 

 

The standard deviation can be estimated as: �̂�=0.2728. 

Let U be the space of q damages, denoted as 𝛿𝑖, i=1,2,⋯q, 

in the oil pipeline. If the damage size of each damage was 

measured by ultrasonic sensors, then the membership of the 

measured damage sizes in [z0,+∞) can be obtained as: 

 

0 0
ˆ ˆ( ) 1 [(ln 0.4841 0.7434ln ) / 0.2728],

1,2,

i i iP z z z z

i q

= − − −

=

 (37) 

 

The measured damage size �̂�𝑖 thus obtained belongs to the 

membership interval of excessive damage size z0. If 

95.0)ˆ( 0min =izzP
 
is the street membership, then any damage with 

measured size )ˆ()ˆ( 0max0 iii zzPzzP   is an excessive damage. 
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Figure 2. Fused data curve vs. the curve of actual damage size 

 

The test data in Table 1 were fused by formula (36). The 

fusion results in Figure 2 indicate that the fused data curve was 

close to the curve of actual damage size, which proves the 

effectiveness of our algorithm. 

The fuzzy linear regression can also judge if a damage is of 

excessive size. Based on the above calculation, it is assumed 

that three independent ultrasonic tests were performed to 

detect the same damage in the same stainless-steel fitting. The 

damage sizes measured in the three tests were respectively 

�̂�=4.8mm, �̂�=4.2mm and �̂�=4.9mm. Under the confidence level 

of 95 %, the memberships of the damage sizes were 

respectively 𝑃𝑈(𝑧0 = 5|�̂� = 4.8) =77.34 %, 𝑃𝑈(𝑧0 = 5|�̂� =
4.2)=63.87 % and 𝑃𝑈(𝑧0 = 5|�̂� = 4.9)=79.10 %. Then, the 

three damage sizes were fused by formula (21) as z≥5mm, 

whose membership was 𝑃𝑈(𝑧0 = 5|�̂� = 4.8,4.2,4.9)=95.80 % 

under the confidence level of 95 %. 

The comprehensive analysis shows that the damage size is 

greater than or equal to 5mm, that is, the size of excessive 

damage, at a certainty of 95.77 %. If the traditional method is 

adopted, then the variance or mean will indicate that the 

damage size is smaller than 5mm. However, the actual size of 

the damage on the stainless-steel fitting was 5.3mm. Hence, 

the proposed fuzzy linear regression data fusion method 

enjoys high accuracy and prevents the mistake of excessive 

damage for non-excessive damage. 

 

4.2 Example analysis of fuzzy representation of damage 

size 

 

The seam damage of a 16MnR steel fitting was measured 

by ultrasonic and the MFL sensors. The measured damage 

sizes (Table 2) and the actual size are compared below. 

The measured data were processed by the proposed fuzzy 

linear regression algorithm. Then, the regression relationship 

between the measured and actual damage sizes can be 

expressed as: 

 
'ln 0.4456 0.8773lnchao chaoz z= +             (38) 

 

The standard deviation of the damage size measured by 

ultrasonic sensors can be described as: 

 

ˆ 0.1593chao =  

'ln 0.2723 0.9278lnlou louz z= +              (39) 

 

The standard deviation of the damage size measured by the 

MFL sensors can be described as: �̂�𝑙𝑜𝑢=0.1835. 

Based on the above formulas and the data in Table 2, the 

fused data curve is plotted and compared with the curve of 

actual damage size in Figure 3.  

 

Table 2. Measured damage sizes by ultrasonic and the MFL 

sensors (mm) 

 

Serial 

number 

Damage 

real size zi 

Ultrasonic 

testing data z1i 

Magnetic flux 

leakage test data 

z2i 

1 1.4 1.0 2.0 

2 1.8 1.3 1.2 

3 2.1 1.5 1.5 

4 2.5 1.7 2.0 

5 2.8 3.0 3.0 

6 3.2 2.0 2.3 

7 3.2 2.3 2.5 

8 3.6 2.2 2.3 

9 3.9 3.2 3.5 

10 4.3 3.0 4.5 

11 4.7 3.2 3.3 

12 4.9 3.5 3.8 

13 5.2 4.0 5.8 

14 5.5 4.0 4.5 

15 5.8 4.3 4.8 

16 6.1 5.0 5.3 

17 6.6 3.2 5.5 

18 6.6 6.5 6.0 

19 7.2 8.0 5.0 

20 7.7 6.2 8.0 

21 8.2 5.5 6.2 

22 8.5 6.0 6.7 

23 9.0 7.5 7.8 

24 9.4 7.0 7.3 

25 10.0 8.0 8.7 
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Figure 3. Fused data curve vs. the curve of actual damage size 

 

Unlike the fused data curve of one type of sensors, the fused 

data curve of two types of sensors tracks the curve of actual 

damage size closely. This means the proposed data fusion 

method for the data collected by ultrasonic and the MFL 

sensors can reflect the actual situation well. 

To evaluate the extent of damage, the fuzzy feature size of 

the data in Table was computed by formulas (32) and (33), and 

the results are displayed in Figure 4. Generally speaking, the 

lower bound of fuzzy feature size is closer to the actual size 

than the upper bound, but shows no specific correlation with 

the actual size. Hence, the upper bound is often adopted to 

judge the damage extent. According to the results in Figure 4, 

the lower bound curve of the fuzzy feature size coincided with 

the curve of actual damage size. This means the fuzzy feature 

size is consistent with the actual size. 

 

 
 

Figure 4. Lower bound curve of fuzzy feature size vs. the curve of actual damage size 

 

 

5. CONCLUSIONS 

 

The data collected by ultrasonic and the MFL sensors 

exhibit heavy noises and high redundancy. To solve the 

problems, this paper designs a multi-stage data fusion method, 

which integrates fuzzy algorithm with linear regression, and 

relies on membership to describe damage size and judge if the 

damage is excessive. The application in several cases shows 

that our method can represent any test data in a form closer to 

the actual damage size, and display the fused data in an 

intuitive manner. Coupled with visual inspection and expert 

database, this algorithm can determine the exact size and type 

of damage, judge if the pipeline needs repairing or 

replacement, and disclose other important information. The 

research findings have great application potential in 

nondestructive testing for oil and gas transport and mining. 
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