
  

  

A Dynamic Swarm Firefly Algorithm Based on Chaos Theory and Max-Min Distance Algorithm 
 

Xinmiao Lu1*, Qiong Wu2, Ying Zhou2, Yao Ma2, Chaochen Song2, Chi Ma1 

 
1 School of Measurement-Control Tech & Communications Engineering, Harbin University of Science and Technology, 

Harbin 150080, China 
2 Heilongjiang Network Space Research Center, Harbin 150090, China 

 

Corresponding Author Email: lvxinmiao0611@126.com 

 

https://doi.org/10.18280/ts.360304 

  

ABSTRACT 

   

Received: 6 April 2019 

Accepted: 3 June 2019 

 The k-means clustering (KMC) algorithm easily falls into the local optimum trap, if the initial 

cluster centers are not reasonable. To solve the problem, this paper puts forward a dynamic 

swarm firefly algorithm based on chaos theory and max-min distance algorithm (FCMM). 

Firstly, the number of cluster centers, k, and their positions were determined by the maxi-min 

distance algorithm (MM). Then, a chaotic space was constructed by tent map based on the 

cluster centers, and the cluster centers were updated through chaotic search. In this way, the 

initial cluster centers are no longer concentrated in a small area, and the algorithm is not prone 

to the local optimum trap. The simulation results show that the FCMM successfully avoids the 

local optimum trap, achieves efficient classification of the initial dataset, and converges to the 

global optimal solution in an accurate manner. 
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1. INTRODUCTION 

 

With the dawn of the big data era, great progress has been 

made in the field of data mining. As a classical method of data 

mining and analysis [1, 2], cluster analysis enjoys a huge 

application potential in pattern recognition, indoor positioning 

and statistics. The improvement of clustering accuracy has 

long been a research hotspot, aiming to satisfy the growing 

demand for data accuracy [3, 4]. 

Since the traditional k-means clustering (KMC) algorithm 

is easily affected by the initial cluster centers and abnormal 

data [5, 6], many scholars have attempted to optimize the 

initial cluster centers of the traditional KMC in the light of 

feature correlation [7, 8] and develop clustering algorithms 

based on adaptive weight [9, 10]. The firefly algorithm (FA), 

a stochastic optimization algorithm mimicking the firefly 

behaviors, has been widely adopted to optimize the KMC for 

its ability to improve the accuracy of clustering algorithms. 

The FA is highly robust, easy to operate and supports parallel 

processing [11, 12], providing an effective solution to various 

optimization problems. 

Considering the fact that the KMC, relying heavily on the 

initial cluster centers, is prone to fall into the local optimum 

trap, Pan et al. [13] proposed a firefly partitional clustering 

algorithm based on adaptive step length, which avoids the 

local optimum trap by replacing the fixed step length of the 

KMC with adaptive step length. Wang et al. designed a novel 

niche firefly partitional clustering algorithm to enhance 

population diversity [14]. Chen et al. [15] introduced a 

weighted Euclidean distance to optimize the initial cluster 

centers of the KMC, utilizing the strong global search ability 

and easy implementation feature of the FA.  

The above FA-optimized KMC algorithms can achieve 

better clustering effect when the cluster centers are given. 

However, none of them clearly defines how to determine the 

number of cluster centers, k. The firefly partitional clustering 

algorithm based on adaptive step length has a small step length 

in the late stage of optimization, which easily causes slow 

convergence. What is worse, the dataset cannot jump out of 

the current cluster center, thus reducing the clustering 

accuracy. 

To solve the above problems, this paper puts forward a 

dynamic swarm FA based on chaos theory and max-min 

distance algorithm (FCMM). Firstly, the max-min distance 

algorithm (MM) was adopted to determine the number of 

cluster centers, k, and the positions of the initial cluster centers. 

Then, the chaotic tent map, featuring uniform ergodicity and 

fast iteration, was employed to set up a chaotic search space 

with the initial cluster centers as the reference points. Next, the 

initial cluster centers were optimized by chaotic tent search, 

such that the algorithm can jump out of the local optimum trap 

and converge to the global optimum rapidly. Finally, the 

position update formula of the FA was used to allocate the 

sample points other than the cluster centers to suitable clusters, 

putting an end to the clustering process. 

 

 

2. BASIC ALGORITHMS 

 

2.1 The KMC 

 

The essence of the KMC is to classify a given dataset 𝑋 =
{𝑋1, 𝑋2, . . . , 𝑋𝑛}  into k classes {𝐶1, 𝐶2, . . . , 𝐶𝑘} . The classic 

KMC contains the following steps: First, selecting k objects 

randomly from the dataset X and taking them the initial cluster 

centers 𝐶𝑗(𝑗 = 1,2, . . . , 𝑘) of k classes; Then, computing the 

Euclidean distance is computed between each remaining 

object 𝑋𝑖(𝑖 = 1,2, . . . , 𝑛)  and each cluster center, and 

allocating each remaining object to the nearest class 𝐶𝑗; Next, 

recalculating the mean value of all objects in each class, and 

taking it as the new cluster center [16]. The above steps are 
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repeated until the cluster center of each class no longer 

changes. 

Definition 1. Euclidean distance 

The Euclidean distance is the linear distance between two 

points in Euclidean space [17]. In an m-dimensional space, the 

Euclidean distance between the samples 𝑋𝑖  and 𝑋𝑗  can be 

expressed as: 
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The KMC determines the similarity between samples based 

on the Euclidean distance. 

 

2.2 The FA 

 

Inspired by firefly motions, the FA computes the objective 

function value and relative attractiveness of each firefly 

according to its position and light intensity. The lighter 

fireflies move towards the brighter ones, using the position 

update formula. The moving distance depends on the 

attractiveness. The optimization of the FA adheres to the 

following three principles: 

(1) Any two fireflies can attract each other, regardless of 

their gender. 

(2) The attractiveness of a firefly is negatively correlated 

with its distance to another firefly and positively correlated 

with its light intensity. The lighter fireflies are attracted by and 

move towards the brighter ones, while the brightest firefly 

moves randomly. 

(3) The light intensity of a firefly depends on the objective 

function value at its position. 

Definition 2. The light intensity I of each firefly can be 

defined as: 

 

( ) nixfI i − 1,
                         (2) 
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where, 𝑓(𝑥𝑖)  is the objective function; 𝑥𝑖  is the spatial 

position of firefly i ; 𝐼0 is the maximum light intensity; 𝛾 is a 

constant representing the light intensity absorption; 𝑟𝑖𝑗  is the 

Euclidean distance between 𝑋𝑖 and 𝑋𝑗. 

Definition 3. The attractiveness of each firefly can be 

defined as: 

 

( )2

0 *exp ijr −=
                          (4) 

 

where, 𝛽0 is the maximum attractiveness? 

Definition 4. The position update formula can be described 

as: 

 

( ) ( ) ( ) ( )( ) iijii txtxtxtx  +−+=+1
        (5) 

 

where, 𝛼  is the initial step length; 𝜀𝑖  is a random factor 

obeying the Gaussian distribution. 

  

 

 

3. OPTIMIZATION OF THE KMC 

 

After initializing the cluster centers, the traditional KMC 

can be optimized with the randomness and global search 

ability of the FA. The FA-based optimization simulates the 

KMC process as the mutual attraction between fireflies, 

classifies the remaining objects accurately and speeds up the 

global convergence of the KMC. However, there are two 

defects with this optimization approach: 

(1) No algorithm is available to determine the value of k, 

the number of cluster centers. If improperly selected, the k 

value may severely affect the clustering accuracy and 

computing complexity.   

(2) The optimal clustering results correspond to the extreme 

points of the objective function, i.e. the cluster centers are 

close to local minimum points. Therefore, the algorithm easily 

falls into the local optimum trap.  

To overcome these defects, this paper puts forward a 

dynamic swarm FA based on chaos theory and uses it to 

improve the KMC. The proposed FA draws on the sensitivity 

and ergodicity of chaotic mapping to initial values [18]. 

 

3.1 Determination of k by the MM 

 

Like the traditional KMC, the MM allocates the sample 

points to cluster centers based on the nearest neighbor 

principle according to the Euclidean distance. The difference 

between the two algorithms lies in the determination of k. 

Instead of directly giving the k value, the MM selects a random 

object 𝑋𝑖  from the sample points as the first cluster center, 

computes the Euclidean distances of the remaining objects to 

𝑋𝑖 by formula (1), and takes the object the furthest away from 

𝑋𝑖 as the new cluster center. These steps are repeated until no 

new cluster center emerges, yielding the k value. 

The MM is implemented in the following steps: 

Step 1. Input θ (0<θ<1) and select the initial cluster center 

𝑍1 = 𝑥1. 

Step 2. Generate a new cluster center. 

(1) Compute the Euclidean distance 𝐷𝑖1 between each point 

and 𝑍1, and take the 𝑥𝑘 corresponding to 𝐷𝑘1 = 𝑚𝑎𝑥{𝐷𝑖1} as 

the new cluster center 𝑍2; 

(2) Compute the Euclidean distances Di1 and Di2 between 

each point and cluster centers 𝑍1  and 𝑍2 . If 𝐷𝑘1 =
𝑚𝑎𝑥{𝐷𝑖1}𝐷𝐷𝑙 = 𝑚𝑎𝑥{𝑚𝑖𝑛( 𝐷𝑖1, 𝐷𝑖2)}, 𝑖 = 1,2, . . . 𝑛  and 

𝐷𝑙 > 𝜃 ∗ 𝐷12, take 𝑥𝑙  as the third cluster center 𝑍3. 

Note that 𝐷12 is the distance between 𝑍1 and 𝑍2: 

 

𝐷𝑖1 = ||𝑥𝑖 − 𝑍1|| = √∑|𝑥𝑖 − 𝑍1|
2

𝑑

𝑖=1

, 𝐷𝑖2 = ||𝑥𝑖 − 𝑍2|| 

 

(3) If 𝑍3  exists, judge if 𝐷𝑗 = 𝑚𝑎𝑥{𝑚𝑖𝑛(𝐷𝑖1 , 𝐷𝑖2, 𝐷𝑖3)} , 

𝑖 = 1,2, . . . 𝑛 . If yes and 𝐷𝑙 > 𝜃 ∗ 𝐷12  determine the fourth 

cluster center. Repeat the above process until 𝐷𝑙 ≤ 𝜃 ∗ 𝐷12. 

Step 3. Count the total number of cluster centers k. 

The clustering results of the MM rely heavily on the 

selection of parameters and the first cluster center. If the 

sample distribution is not known in advance, repeated tests are 

needed for this algorithm to achieve a good clustering effect. 

As a result, this paper only uses the MM to determine the value 

of k. 
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3.2 Optimization of cluster centers with chaos theory 

 

The random, ergodic and regular chaotic variables were 

introduced to improve the FA-optimized KMC, whose cluster 

centers often fall near local minimum points, aiming to 

enhance the global search ability and avoid the local minimum 

trap. 

The logistic chaotic map faces obvious uneven ergodicity 

when the r value falls between 0 and 1, which suppresses the 

algorithm efficiency. Shan Liang et al. proved that the tent 

map outperforms logistic map in convergence speed and 

ergodic evenness, because the chaotic sequence generated by 

the tent map is more helpful to algorithm optimization [19]. 

(1) Tent chaotic sequence 

The tent map can be expressed as: 
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Through dyadic transform, the tent map can be rewritten as: 

 

( ) 1mod21 tt xx =+                             (7) 

 

The tent chaotic sequence is generated through the 

following steps: 

Step 1. Randomly generate an initial value 𝑥0  not in the 

range of (0.20,0.40,0.60,0.80) and denote it as 𝑧, 𝑧(1) =
𝑥0, 𝑖 = 𝑗 = 1. 

Step 2. Iteratively generate a sequence x by formula (7). 

Step 3. Implement Step 2 if 𝑥(𝑖) = [0,0.25,0.5,0.75]  or 

𝑥(𝑖) = 𝑥(𝑖 − 𝑘), (𝑘 = [0,1,2,3,4]). 
Step 4. Change the initial value for iteration by 𝑥(𝑖) =

𝑧(𝑗 + 1), replace j with j+1, and implement Step 2. 

Step 5. If the maximum number of iterations has been 

reached, terminate the iteration and save the sequence x. 

(2) Chaotic search 

The proposed FCMM generates a tent chaotic sequence 

based on the best-known local optimal solution, and jumps out 

of the local optimum trap through tent search, thereby 

converging to the global optimal solution. 

Specifically, the distances 𝐷𝑖𝑥  between all cluster centers 

𝐶𝑖(𝑖 = 1,2, . . . 𝑘) and the current cluster center 𝐶𝑥 were ranked 

in descending order. Then, the smallest n classes (30% of all 

cluster centers) 𝐶𝑖1, 𝐶𝑖2, . . . , 𝐶𝑖𝑛  and 𝐶𝑥 were selected, and the 

maximum 𝑋𝑗
𝑚𝑎𝑥  and minimum 𝑋𝑗

𝑚𝑖𝑛  of the n+1 classes in 

the j-th dimension were computed, forming a new chaotic 

search space. After that, a chaotic sequence was generated 

based on cluster center 𝑋𝑥 of 𝐶𝑥, and used for chaotic search. 

The optimal solution obtained through the search was taken as 

the new cluster center. 

Assuming that 𝐶𝑥  is the cluster center, 𝑋𝑘 =
{𝑥𝑘1, 𝑥𝑘2, . . . 𝑥𝑘𝑑} and 𝑥𝑘𝑗 ∈ [𝑋𝑚𝑖𝑛 , 𝑋𝑚𝑎𝑥], then the main steps 

of tent chaotic search can be explained as: 

Step 1. Map 𝑋𝑥  to (0,1) by 𝑧𝑘𝑗
0 = (𝑥𝑘𝑗 − 𝑋𝑚𝑖𝑛

𝑗
)/(𝑋𝑚𝑎𝑥

𝑗
−

𝑋𝑚𝑖𝑛
𝑗

), where 𝑘 = 1,2, . . . , 𝑛, 𝑗 = 1,2, . . . , 𝐷. 

Step 2. Substitute the above formula into formula (7) for tent 

map, and iteratively generate the chaotic variable sequence 

𝑧𝑘𝑗
𝑚(𝑚 = 1,2, … , 𝐶max), where, 𝐶max is the maximum number 

of iterations for the chaotic search [11]. 

Step 3. Restore 𝑧𝑘𝑗
𝑚  to the neighborhood of the original 

solution space by formula (8), producing a new 𝑉𝑘: 

 

( ) ( ) 212minmax −−+= m
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            (8) 

 

Step 4. Compute the light intensity 𝐹(𝑣𝑘) of 𝑣𝑘, compare it 

with the local optimal light intensity 𝐹(𝑥𝑘), and save the better 

solution. 

Step 5. If the number of iterations has reached 𝐶max , 

terminate the search; otherwise, return to Step 2. 

 

3.3 Basic steps of the FCMM 

 

Step 1. Initialize the parameters: the total number of objects 

N, the light intensity absorption coefficient 𝛾, the step length 

𝛼, the maximum number of iterations for chaotic search 𝐶𝑚𝑎𝑥, 

the maximum light intensity 𝐼  and the maximum 

attractiveness 𝛽0. 

Step 2. Determine the number of cluster centers k by the 

MM, and record the position of the initial cluster center 

obtained by the MM. 

Step 3. Construct the chaotic search space based on the 

cluster centers by tent map. 

Step 4. Update the position of the initial cluster center by 

tent map until no new cluster center emerges. 

Step 5. Consider cluster centers as fireflies with the highest 

light intensity, compute the Euclidean distances between 

remaining objects and each cluster center, and assign different 

light intensities to these objects by formula (3). 

Step 6. If 𝐼𝑖 > 𝐼𝑗 , then firefly j has a smaller objective 

function value than firefly i, i.e. j is in a superior position than 

i. In this case, i is attracted by and moves towards j. Determine 

the movement pattern by formula (4) and update the firefly 

positions by formula (5). 

Step 7. Repeat Step 6 until all fireflies have been allocated 

to their respective cluster centers. 

Step 8. Output the results. 

 

 

4. EXPERIMENTS AND RESULTS ANALYSIS 

 

4.1 Experimental environment 

 

Three experiments were carried out to verify the 

effectiveness of the FCMM. The first experiment compares the 

clustering effects of the FCMM with the KMC and the FA; the 

second experiment tests the clustering accuracy and 

convergence speed of the three algorithms on the UCI datasets; 

the third experiment contrasts the clustering results of the 

FCMM with the firefly partitional clustering algorithm based 

on adaptive step length (Algorithm 1) and the KMC improved 

by weighted Euclidean distance (Algorithm 2). 

 

4.2 Results analysis 

 

(1) The first experiment 

There are 200 samples scattering across the solution space. 

The number of cluster centers k was determined as 4 by the 

MM. Since the FA parameter setting has a great impact on 

experimental results, this paper obtains the parameter 

combination that leads to the most frequent occurrences of the 

optimal solution through parallel tests. A series of 

combinations between the step length 𝛼 and the light intensity 

229



 

absorption coefficient 𝛾  were enumerated, and compared 

based on 30 sets of test results. Finally, the optimal parameters 

were determined as the maximum attractiveness 𝛽0=100, the 

light intensity absorption coefficient 𝛾 =1, the step length 

𝛼=0.06, the maximum number of iterations 𝐶𝑚𝑎𝑥 =50, the 

maximum light intensity 𝐼=100, and 𝜃 = 0.4 . Using these 

parameters, the clustering results of the three algorithms are 

obtained as Figure 1. 

As shown in Figure 1, the KMC clearly fell into the local 

optimum trap, as some of its cluster centers concentrated in a 

small area. The FA’s cluster centers were more distributed 

evenly than those of the KMC, but still need to be improved. 

The FCMM achieved better clustering effect than the KMC 

and the FA, evidenced by the uniform distribution of the 

cluster centers and the avoidance of the local minimum trap. 

(2) The second experiment 

The KMC, FA and FCMM were tested independently on six 

datasets, using the same parameters as the first experiment. 

The mean clustering accuracy of each algorithm is given in 

Table 1, and the convergence curve of each algorithm is 

presented in Figure 2. 

 

Table 1. The mean clustering accuracy of each algorithm (%) 

 
Dataset KMC FA FCMM 

Iris 87.93 91.13 92.16 

Wine 56.85 70.23 72.15 

Seed 86.97 88.07 90.46 

Glass 54.05 57.18 63.12 

Hayes-Roth 77.32 81.06 82.35 

New-thyroid 72.34 79.63 80.28 

 
(a) The KMC                                                  (b)The FA                                               (c)The FCMM 

 

Figure 1. Clustering effects of the three algorithms 
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Figure 2. Convergence curves of the three algorithms on six datasets 

 

Table 1 shows that the FCMM improved the mean 

clustering accuracy by 7.51 % and 2.2 % from the levels of the 

KMC and the FA, respectively, owing to the determination of 

the k value by the MM and the optimization of cluster centers 

by the chaotic theory. It can be seen from Figure 2 that the 

FCMM converged to the global optimal solution faster than 

the KMC and the FA, without sacrificing the clustering 

accuracy. 

(3) The third experiment 

This experiment mainly compares the clustering accuracy 

and runtime of the FCMM with those of Algorithm 1 and 

Algorithm 2. 

Table 2 demonstrates that the FCMM achieved much higher 

clustering accuracy than the two contrastive algorithms, 

despite the relatively long runtime. The time complexity of the 

FCMM is attributable to the analysis on the initial cluster 

center by the MM. 
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Table 2. Comparison of results via the different algorithms 

Data set 

Algorithm 1 Algorithm 2 FCMM 

Clustering accuracy 

(%) 

Runtime 

(s) 

Clustering accuracy 

(%) 

Runtime 

(s) 

Clustering accuracy 

(%) 

Runtime 

(s) 

Iris 91.49 8.342 91.22 9.234 92.16 8.34 

Wine 70.43 14.432 70.71 13.832 72.15 13.725 

Seed 89.70 9.232 89.52 8.342 90.46 8.282 

Glass 60.70 18.345 62.45 17.532 63.12 17.425 

Hayes-Roth 81.46 11.243 81.28 10.734 82.35 10.432 

New-

thyroid 
79.98 11.344 79.01 10.232 80.28 10.109 

5. CONCLUSIONS

The KMC may easily fall into the local optimum trap, if the 

initial cluster centers are not suitable. To solve the problem, 

this paper designs a novel algorithm, the FCMM, that 

optimizes the KMC in two aspects: the number of initial 

cluster centers, k, and the position of cluster centers. Our way 

to determine the k value can effectively reduce the impact of k 

on the clustering algorithm. In addition, the positions of cluster 

centers were updated through chaotic search, based on the FA-

optimized KMC. The chaotic map weakens the impacts of 

initial clustering position on the clustering effect, and fully 

utilizes the global search ability and fast convergence of the 

FA, making it possible to avoid the local optimum trap and 

converge to global optimal solution rapidly. The clustering 

effect of the FCMM was compared with that of other 

clustering algorithms and tested on several UCI datasets. The 

results show that the FCMM can achieve fast convergence, 

accuracy clustering and avoid the local optimum trap, when it 

is applied to cluster a few amounts of data. 
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