
Design and Simulation of a Collision-free Path Planning Algorithm for Mobile Robots Based on 

Improved Ant Colony Optimization 

Lu Bai*, Chenglie Du 

School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China 

Corresponding Author Email: bailu614@mail.nwpu.edu.cn 

https://doi.org/10.18280/isi.240313 ABSTRACT 

Received: 27 February 2019 

Accepted: 20 April 2019 

This paper attempts to solve the 2D global path planning problem in a known environment. 

For this purpose, a smooth path planning method was designed for mobile robots based on 

dynamic feedback A* search algorithm and the improved ant colony optimization (ACO). 

Specifically, the ACO was improved from three aspects: optimizing the initial pheromone, 

improving evolutionary strategy and implementing dynamic closed-loop adjustment of 

parameters. The planned path was then smoothened by the cubic B-spline curve. The 

simulation results show our method converged to a shorter path in less time than the original 

ACO, and avoided the local optimum trap. 
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1. INTRODUCTION

In the field of mobile robot, autonomous navigation [1-2] is 

the key technology of intelligent robot motion system. 

Whether a mobile robot can complete tasks with high quality 

depends on two factors, namely, reliable positioning and 

efficient path planning. Currently, it is a challenging issue to 

plan efficient paths and locate targets accurately in mobile 

robot navigation system. 

So far, many achievements have been made in path planning 

and target positioning of mobile robots. However, there are 

still some problems with the existing methods. For example, 

robot positioning and environment map-making should be 

more accurate and stable, the path planning algorithm should 

satisfy the features and constraints of robot motion, and the 

paths should be planned more efficiently in a short time. 

Therefore, the path planning of mobile robots is selected as the 

object of this research. 

Depending on the mastery of environmental information, 

the existing path planning methods for mobile robots mainly 

fall into two categories: the local path planning based on 

sensor environment, and the global path planning based on 

environmental information [3-4]. Local path planning aims to 

construct a collision-free path when part or all environmental 

information is unknown. The information of obstacles, 

including size, shape and location, needs to be updated in real 

time by the sensors on the mobile robot. Otherwise, it would 

be impossible to obtain the obstacle distribution in the 

surroundings.  

In global path planning, the environmental information like 

the initial pose and target is already known, and the optimal 

collision-free path from the start node to the target node can 

be planned through repeated computations. The path quality 

should be evaluated against certain criteria, such as distance, 

time, smoothness or energy. Among them, distance and time 

are the most common criteria.  

2. LITERATURE REVIEW

Skeleton-based search algorithm [5], heuristic search 

method [6] and intelligent optimization algorithm [7] are the 

leading techniques for global path planning of mobile robots. 

Skeleton-based search algorithm relies on either visibility 

graph [8-9] or Voronoi diagram [10]. The visibility graph 

describes each obstacle of mobile robot with a convex polygon, 

treats each position of the robot as a node, and links up the start 

node S, target node G and the polygon vertices with edges. 

Thus, the path planning is to select the combination of edges 

with the shortest distance. Liu et al. [11] reduced the number 

of edges in the visibility graph based on the impacts of 

obstacles on path planning, and proved through simulation that 

the reduction makes the path planning algorithm more 

efficient. Faigl et al. [12] proposed two time-efficient methods 

for global path planning of robots. Kim et al. [13] proposed a 

fast, dynamic visibility graph to construct a simplified path 

map to circumvent the convex polygons (obstacles). 

Tsardoulias et al. [14] put forward a global path planning 

method based on visibility graph, which reduces the path 

length by 14% on average while maximizing the curvature 

plus its derivative and continuity. The Voronoi diagram is 

inspired by the Cartesian space partitioning in convex domain. 

Based on Voronoi diagram, the path planning algorithm can 

simplify complex spatial search into a path search in a 

weighted graph. Shao et al. [15] developed a local smooth path 

planning algorithm based on Voronoi diagram for mobile 

robots with vehicle motion features.  

The heuristic search algorithm looks for the optimal path by 

the heuristic function, and estimates the distance between the 

current node and the target node. For example, the A* search 

algorithm, due to its simple principle, has been adopted widely 

for global path planning of 2D mobile robots. However, this 

heuristic search algorithm faces several problems: some 

planned nodes are redundant, and the inflection nodes of the 

planned path have a fixed attitude. To solve these problems, 

Yuan et al. [16] improved the A* search algorithm for indoor 
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mobile robots, and successfully optimized the path in grid 

environment. 

The intelligent optimization algorithm has many advantages 

in path planning, owing to the progress in modern control 

technology. Considering the features of terrain and landform, 

Akbarimajd et al. [17] proposed an offline robot path planner 

based on ant colony optimization (ACO) to find the ideal path 

between any points of a given terrain. Das et al. [18] developed 

an optimal path planning algorithm for mobile robots, drawing 

on gravity search algorithm and particle swarm optimization 

(PSO). Wang et al. [19] employed the ACO to search for the 

global optimal path for mobile robots based on raster map. 

Navarro et al. [20] designed a path planning method for mobile 

robots based on adaptive ACO in global static environment, 

aiming to speed up the convergence of the ACO and prevent 

the algorithm from falling into the local optimum trap. Oleiwi 

et al. [21] combined the ACO and the genetic algorithm (GA) 

into a hybrid global path planning algorithm for multi-

objective optimization of mobile robots. 

 

 

3. ENVIRONMENT MODELING OF GLOBAL PATH 

PLANNING 

 

In the global path planning of mobile robots, the 

environment model mainly aims to describe the location of the 

mobile robot, obstacles, as well as initial and end points in the 

real environment. A good environment model enables the 

mobile robot to navigate autonomously with high accuracy 

and flexibility, and to plan the optimal, feasible path more 

efficiently. 

In this paper, the raster map is selected to build the 

environment model and partition the workspace of the mobile 

robot. By this common method for map modelling, the 

environment is characterized with a binary raster array, and the 

robot workspace is meshed into a series of large grids, in the 

light of the size of the mobile robot. So far, the raster map has 

been successfully coupled with various algorithms for global 

path optimization, because it is simple, effective, and suitable 

for computer storage and data processing. 

The raster map is essentially a mapping between the features 

of the actual environment space and the nodes of the abstract 

space. During the mapping process, the environment space is 

firstly transformed into a raster map. Then, the path-finding 

algorithm looks for the set of continuous nodes that make up 

the optimal path, and connect them with edges or arcs. Based 

on the raster map, the environment modeling can be 

implemented in three steps. 

(1) Raster division 

The 2D finite workspace of the mobile robot is shown in 

Figure 1, where WS is the workspace; 𝑋𝑚𝑎𝑥  and 𝑌𝑚𝑎𝑥  are the 

maximum value of the workspace on X and Y axes, 

respectively; d is the minimum step length of the robot. In this 

step, the workspace was divided by a set of lines with the 

length of d, creating 𝑁𝑥 × 𝑁𝑦 grids. 

(2) Obstacle expansion 

For convenience, the mobile robot was transformed into 

particles based on its size. Meanwhile, the obstacles in the 

environment were expanded in size. 

(3) Construction of 2D raster array matrix 

After obstacle expansion, the workspace was divided into 

two raster sets: the obstacle raster set OS and the free raster set 

FS. The corresponding value of the elements in the former set 

is 1, while that in the latter set is 0. Thus, the raster space can 

be expressed as: 

 

𝑊𝑆(i, j) = {
1     𝑊𝑆𝑖𝑗 ∈ 𝑂𝑆

0     𝑊𝑆𝑖𝑗 ∈ 𝐹𝑆 
                       (1) 

 

In raster environment, the order and position of a raster in 

the map are usually described with a serial number and 

coordinates, respectively. The serial number is unique to each 

raster because the grids were numbered from left to right and 

from bottom to top, starting from the lower left corner of the 

raster map. The relationship between raster coordinates and 

serial number is illustrated in Figure 2. 

 

 
 

Figure 1. Raster division of the workspace 

 

 
 

Figure 2. The relationship between raster coordinates and 

serial number 

 

Based on the above relationship, the transformation can be 

expressed as: 

 

{
𝑥𝑖 = 𝑖 𝑚𝑜𝑑 𝑁𝑥
𝑦𝑖 = 𝑖  𝑖𝑛𝑡  𝑁𝑦

                                (2) 

 

where, 𝑚𝑜𝑑  is the exponentiation operation; 𝑖𝑛𝑡  is the 

rounding operation. 
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4. IMPROVED ACO-BASED COLLISION-FREE PATH 

PLANNING ALGORITHM 

 

To speed up the search of the ACO, a simplified A* 

algorithm was introduced to optimize the distribution and thus 

quality of the initial pheromone, making the initial search 

more targeted. In addition, the closed-loop feedback was 

adopted to adjust the parameters dynamically and adaptively, 

aiming to further enhance the adaptability and avoid the local 

optimum trap. Finally, the planned path was smoothened with 

cubic B-spline curve. 

 

4.1 Improvement of initial pheromone 

 

In the initial iteration of the ACO, most of the initial 

pheromones are distributed uniformly, due to the lack of the 

prior information on the whole graph. In other words, all paths 

have the same initial value of pheromone, denoted by a 

constant C. To speed up the initial search and reduce the 

number of iterations, the simplified A* algorithm and map 

information were introduced to optimize the initial pheromone 

distribution. 

The A* algorithm [22], a classical heuristic search 

algorithm, is the most effective direct method to search for the 

shortest path in static environment. The evaluation function 

𝑓(n) of the current node n can be expressed as: 

 

𝑓(𝑛) = 𝑠(𝑛) + 𝑡(𝑛)                              (3) 

 

where, 𝑠(𝑛) is the actual cost to move from the current node 𝑛 

to the initial point 𝑆(𝑥𝑠, 𝑦𝑠); 𝑡(𝑛) is the evaluated cost to move 

from the current node 𝑛 to the target node 𝐺(𝑥𝑔, 𝑦𝑔). 

Taking the start node as the starting point of the search, the 

simplified A* algorithm selects collision-free nodes from the 

nodes connected to the start node, and adds them to the OPEN 

table based on the evaluation function of the current node. 

Then, the adjacent node with the minimum evaluated cost will 

be stored in the CLOSE table. After that, this node will be 

placed in the OPEN table and serve as the current node in the 

search of the next node. Similarly, the node with the minimum 

evaluated cost will be stored in the CLOSE table. The above 

steps are repeated until the end node appears in the OPEN 

table.  

In this way, the optimal path can be found based on the 

evaluation function, and expressed by the nodes stored in the 

CLOSE table. Let 𝑅𝑏 be the search path obtained based on the 

evaluation function 𝑓(𝑛) . Then, the initial value of the 

pheromone on the enhanced path can be described as: 

 

𝜏(𝑅𝑏) = 𝑘 × 𝐶, (𝑘 > 1)                            (4) 

 

4.2 Dynamic closed-loop adjustment of ACO parameters 

 

The ACO’s ability to handle practical problems hinges 

directly on its parameters [23]. There are five parameters in 

the improved ACO, namely, the number of ants in the colony, 

m; the adjustment probability of the search space, 𝑝0 ; the 

pheromone heuristic factor, 𝛼; the visibility heuristic factor, 

𝛽; the pheromone volatilization coefficient, 𝜌. The impacts of 

each parameter on path length are given in Table 1. 

 

Table 1. Parameter analysis for path length 

 

Parameter 

Environment 1 Environment 2 

Scope Shortest path 

value 

Longest path 

value 

Difference 

value 

Shortest path 

value 

Longest path 

value 

Difference 

value 

𝛽 28.33 30.12 1.79 30.76 31.08 0.32 2-20 

𝜌 28.33 29.75 1.42 30.76 31.51 0.75 0.2-0.8 

𝑝0 28.33 78.64 50.31 30.76 83.67 52.91 0.1-1 

 

As shown in Table 1, 𝑝0 is the main factor affecting path 

length, and was thus selected as the target of dynamic closed-

loop adjustment. The adjustment formula of parameter 𝑝0 can 

be expressed as: 

 

{
 

 𝑞0
𝑡+1 = 𝑞0

𝑡 × (1 −
(𝐿𝑏
𝑡+1−𝐿𝑏

𝑡 )

𝐿𝑏
𝑡 ) ,                       𝑖𝑓 𝐿𝑏

𝑡+1 ≠ 𝐿𝑏
𝑡

𝑞0
𝑡+1 = 𝑞0

𝑡 ,    𝑖𝑓 𝐿𝑏
𝑡+1 = 𝐿𝑏

𝑡 ∧ 𝑛𝑢𝑚(𝐿𝑏
𝑡+1 = 𝐿𝑏

𝑡 ) < 𝑁𝑚𝑎𝑥
𝑞0
𝑡+1 = 𝜀𝑞0

𝑡 ,   𝑖𝑓 𝐿𝑏
𝑡+1 = 𝐿𝑏

𝑡 ∧ 𝑛𝑢𝑚(𝐿𝑏
𝑡+1 = 𝐿𝑏

𝑡 ) ≥ 𝑁𝑚𝑎𝑥

   (5) 

 

4.3 Path smoothing based on cubic B-spline curve 

 

The path planned for mobile robot must be smooth enough 

for the robot to maneuver easily in actual environment. Since 

the ACO plans the path in the raster map, the output path is 

prone to peak at the turning point (Figure 3). This calls for 

smoothing of the planned path. 

The cubic B-spline curve, with a second-order continuous 

derivative, can plan a continuous path for the robot to travel at 

required speed and acceleration, facilitating the control and 

track of the robot. The n-th order B-spline curve can be 

expressed as: 

 

𝑝(𝑡) = ∑ 𝑃𝑡 ∙ 𝐹𝑡,𝑛(𝑡),   𝑡 ∈ [0,1]
𝑛
𝑡=0                 (6) 

where, 𝑃𝑡 are the coordinates of the given n + 1 control points 

𝑃𝑖(𝑖 = 0,1,2, … , 𝑛); 𝐹𝑡,𝑛(𝑡) is n-th B-spline basis function: 

 

𝐹𝑡,𝑛(𝑡) =
1

𝑛!
∑ (−1)𝑗𝐶𝑛+1

𝑗𝑛−1
𝑗=0 (𝑡 + 𝑛 − 𝑖 − 𝑗)𝑛        (7) 

 

where, 𝐶𝑛+1
𝑗

= (𝑛 + 1)! 𝑗! (𝑛 + 1 − 𝑗)!⁄ . 

If n=3, then the base function of cubic B-spline curve can 

be expressed as: 

 

{
 
 

 
 𝐹0,3(𝑡) =

1

6
(−𝑡3 + 3𝑡2 − 3𝑡 + 1)

𝐹1,3(𝑡) =
1

6
(3𝑡3 − 6𝑡2 + 4)

𝐹2,3(𝑡) =
1

6
(−3𝑡3 + 3𝑡2 + 3𝑡 + 1)

𝐹3,3(𝑡) =
1

6
𝑡3

               (8) 

 

Therefore, the quadratic B-spline curve can be described as: 

 

𝑃0,3(𝑡) =
1

6
[1 𝑡 𝑡2 𝑡3] ⌊

1    4   1   0
−3  0   3  0
3 − 6   3  0
−1  3 − 3  1

⌋ [

𝑃0
𝑃1
𝑃2
𝑃3

] ,   𝑡 ∈ (0,1)   (9) 
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Figure 3. Smoothing result of B-spline curve 

 

 

5. SIMULATION AND RESULTS ANALYSIS 

 

Our algorithm was verified through simulation in three steps. 

Firstly, the simplified A* search-ACO was compared with the 

original ACO. Then, the overall performance of dynamic 

feedback A* search-ACO was contrasted with that of the 

original ACO. Finally, the path planning effect of our 

algorithm was investigated under the disturbance of static 

obstacles. 

 

5.1 Comparison of pheromone initialization 

 

The original ACO was compared with the ACO, in which 

only the pheromone initialization had been improved. The 

simulation parameters were initialized as: number of ants in 

the colony, 30; the maximum number of iterations, 40; 𝛼 = 1; 

𝛽 = 7; 𝜌 = 0.12. Environment 1 was taken as the map, the 

first raster as the start node, and the 400th raster as the target 

node. Fifty simulations were conducted and the mean value 

was obtained. Figure 4 shows the planned paths of these 

simulations. 

 

 
 

Figure 4. The paths planned by the simplified A* search-

ACO and the original ACO 

 

Table 2 compares the convergence time, the number of 

iterations and the optimal path length of the two algorithms.  

Table 2. Comparison of the parameters about initial 

pheromone 

 

Algorithm 
Shortest 

path 
Time 

Number of 

iterations 

Original ACO 29.32 16.26 27 

Simplified A* ACO 

(k=5) 
27.89 6.92 13 

Simplified A* ACO 

(k=10) 
27.89 3.62 6 

 

The results show that the simplified A* search-ACO output 

better initial pheromone distribution and faster convergence 

than the original ACO. This means the simplified A* search-

ACO can improve the quality of the optimal path from the 

level of the original ACO, with fewer iterations. 

 

5.2 Overall comparison 

 

The dynamic feedback A* search-ACO was contrasted with 

the original ACO using a 30×30 raster map. Raster 1 was 

taken as the start node and Raster 900 as the end node. The 

paths planned by the two algorithms are compared in Figure 5 

and Table 3. 

 

 
 

Figure 5. Smooth path planning of A* ACO (start: start 

node; goal: target node) 

 

Table 3. Comparison of the path planning results 

 

Algorithm 
Shortest 

path 

Mean 

path 

length 

Time 
Mean number 

of iterations 

Original 

ACO 
49.66 51.42 56.33 42.8 

Simplified 

A* ACO 
43.91 45.82 9.72 15.1 

 

From Table 3, it can be seen the improved ACO outperform 

the original ACO in terms of path quality, mean path length, 

convergence speed (time). The comparison demonstrates the 

fast convergence and strong search ability of our dynamic 

feedback A* search-ACO. 

 

5.3 Path planning under static obstacles 

 

Finally, a simulation was conducted with the following 

initial conditions: 𝛼 = 1 , 𝛽 = 7 , 𝜌 = 0.12  and 𝑝0 = 0.85 . 
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Several obstacles were added after the 10th iteration. Path 1 

and path 2 were generated before and after the addition, 

respectively (Figure 6). 

 

 
 

Figure 6. Path planning under static obstacles (start: start 

node; goal: target node) 

 

As can be seen from Figure 6, A* search-ACO simplified 

by the initial pheromone achieved fast initial search and output 

a short optimal path, thus a good search efficiency. Figure 6 

also shows that the improved ACO can converge quickly after 

10th iterations. The algorithm can adapt to the environment 

well, because it selects the dynamic control parameter 𝑝0 

according to the feedback on path length. Overall, the 

simulation results prove that our algorithm can converge to the 

optimal path quickly, despite the presence of static obstacles. 

 

 

6. CONCLUSIONS 

 

This paper proposes a smooth path planning method for 

mobile robots based on closed-loop A* search algorithm and 

improved ACO, aiming to enhance the search efficiency of the 

ACO and solve the contradiction between global search ability 

and convergence speed. The improved ACO outputs a path 

with a good evaluated cost by simplified A* search algorithm, 

and increases the initial value of pheromone on the path 

searched by the A* search algorithm. Finally, the planned path 

was smoothened by cubic B-spline curve. The simulation 

results show that the improved ACO found a shorter path 

within less time than the original ACO. 
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