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 In this work, we confer the propagation of nonlinear Kinky periodic wave and breather wave 

for the dominant nonlinear pseudo-parabolic physical models: the one-dimensional 

Oskolkov equation is explored. By executing simple equation method, compilation of 

disguise adaptation of exact nonlinear wave solutions with some noteworthy parameters for 

the Oskolkov equations is accessible. The elements of acquired nonlinear wave 

arrangements are broke down and delineated in figures by choosing suitable parameters. The 

simple equation scheme is solid treatment for seeking fundamental nonlinear waves that 

improve assortment of dynamic models emerges in designing fields. The presentation of this 

technique is dependable, direct, and easy to execute contrasted with other existing strategies. 
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1. INTRODUCTION 

 

In the last few decennary, the study of nonlinear evolution 

equations established much concentration in diverse fields of 

nonlinear science, such as fluid mechanics, nuclear physics, 

solid-state physics, plasma physics, chemical physics, optical 

fibre and geochemistry. Many scholars planned through NEEs 

to construct traveling wave solution by implement several 

methods. The procedures that are well established in recent 

literature such as extended Kudryashov method [1], Modefied 

simple equation method [2],  New extended (G’/G) expansion 

method [3-4], Darboux transformation [5], trial solution 

method [6], Exp-Function Method [7], Multiple Simplest 

Equation Method [8]. In this paper we implement simple 

equation method to execute innovative traveling wave solution. 

Nofal applied Simple equation method for nonlinear partial 

differential equations [10]. Diverse authors are solved some 

numerous models by simple equation method [10-13].  

Pseudo parabolic model is one kind of partial differential 

equations in which the time derivative emerged in highest 

order derivative and they have been exploiting for different 

areas of mathematics and physics such as instance, for fluid 

flow in fissured rock, consolidation of clay, shear in second-

order fluids, thermodynamics and propagation of long waves 

of small amplitude. Nowadays, much attention has been paid 

to investigate NEEs such as Pseudo parabolic model [15-20]. 

It is important to note that a completely integrable Pseudo 

parabolic model provides innovative and explicit different 

type exact traveling wave solution. 

In the present work, we reflect on the one dimensional 

Oskolkov equation. Implementing the simple equation method, 

we attain the kinky periodic wave and breather wave solutions. 

We utilize numerical reproduction to ponder the one 

dimensional Oskolkov equation. We consider (1+1) 

Dimensional Oskolkov Equation in the following form  

 

 .0=+−− xxxxxtt UUUUU             (1) 

This equation is pseudoparabolic equation and one-

dimensional analogue of the oskolkov system 

 

( ) ( ) ,1 222 fpUUUU t +−•−=−   where 

.0=• U                                              (2) 

 

This system illustrates the dynamics of an incompressible 

viscoelastic Kelvin-Voigt fluid. It was indicated in [20-21] that 

the parameter λ can be negative and the negativeness of the 

parameter λ does not deny the physical meaning of equation 

(2). We implemented the simple equation method to solve 

equation (1) and obtained new solutions which could not be 

attained in the past. Mamunur found exact and explicit 

solution from Oskolkov equation with the help of MSE 

method [15], Faruk applied the tanh-coth method for some 

nonlinear pseudo parabolic equations to obtained exact 

solution [16], Turgut Propagation of nonlinear shock waves 

for the generalized oskolkov equation and its dynamic motions 

in the presence of an external periodic perturbation by 

implement inified method [17] and others author solve this 

model by different dominant method [14-20]. 

The objective of this article is to pursue new study for 

anticipate to the simple equation method to explore wave 

solutions of Oskolkov equations. The principal convenience of 

this method over the existing other methods is that it provides 

more new exact traveling wave solutions. 

 

 

2. METHODOLOGY 

 

The methodology of the simple equation method used up to 

now is appropriate for solving model nonlinear PDEs. The 

extension of the methodology is presented in the following 

subsection 

 

0.........),,,,,( = xtxxttxt uuuuuu ,    (3) 
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where 𝑢(𝜉) = 𝑢(𝑥, 𝑡)
 
is an unknown function, ℜ is a 

polynomial of 𝑢(𝑥, 𝑡)
 
and its partial derivatives in which the 

highest order derivatives and nonlinear terms are involved. 

The accompanying advances are engaged with finding the 

arrangement of nonlinear Equation (3) utilizing this strategy. 

Step 1: The given PDE (3) can be changed into ODE 

utilizing the change𝜉 = 𝑥 ± 𝜔𝑡  , where  is the speed of 

traveling wave such that𝜔 ∈ 𝑅 − {0}. 

The traveling wave transformation permits us to reduce Eq. 

(3) to the following ODE: 

 

0.........),.........,,( = uuu ,           (4) 

 

where   is a polynomial in 𝑢(𝜉) and its derivatives, where  

𝑢′(𝜉) =
𝑑𝑢

𝑑𝜉
, 𝑢″(𝜉) =

𝑑2𝑢

𝑑𝜉2, and so on. 

Step 2. We seek the solution of Eq. (3) in the following form:  

 


=

=
n

i

i

iFaU
0

)()(        (5)

          
  

 

 

where 𝑎𝑖(𝑖 = 0,1,2, . . . . 𝑁)  are arbitrary constants to be 

determined later and 𝐹(𝜉) satisfies some trial simple equation. 

The simple equation has two properties, the first one it is of 

lesser order than Eq. (5) and the second its general solution is 

known. 

In this paper, the simple equations we shall utilize are the 

Riccati and Bernoulli differential equations which are surely 

understood nonlinear ordinary differential equations, and their 

solutions can be communicated by elementary functions. 

Step-3. We recognize the positive integer 𝑁 in Eq. (5) by 

considering into account the homogeneous balance between 

the highest order derivatives and the nonlinear terms in Eq. (5). 

Moreover the degree of 𝑈 as 𝐷(𝑈(𝜉)) which gives the order 

of others expression as follows 

 

𝐷 (
𝑑𝑞𝑈

𝑑𝜉𝑞) = 𝑁 + 𝑞, 𝐷 (𝑈𝑝 (
𝑑𝑞𝑈

𝑑𝜉𝑞)
𝑠

) = 𝑠𝑁 + 𝑠(𝑁 + 𝑞) 

 

Therefore we can obtain the value of N in equation (5) with 

the guide of above formula. 

Step-4. We discuss the general solutions of the simplest 

equation method. For the Bernoulli equation  

 

)()()( 2  hFRFF +=           (6) 

 

where 𝑅 and ℎ are arbitrary constants. 

The general solution of Eq. (6) takes the following form: 

 

𝐹(𝜉) =
𝑅𝑒 𝑥 𝑝[𝑅(𝜉 + 𝜁0)]

1 − ℎ 𝑒𝑥𝑝[ 𝑅(𝜉 + 𝜉0)]
, ℎ < 0, 𝑅 > 0

  

where 𝜉0is the integration constant and 

 

𝐹(𝜉) = −
𝑅𝑒 𝑥 𝑝[𝑅(𝜉 + 𝜁0)]

1 + ℎ 𝑒𝑥𝑝[ 𝑅(𝜉 + 𝜉0)]
, ℎ < 0, 𝑅 > 0 

 

Remark: 

When 𝑅 = 𝛿  and ℎ = −1 , Eq. (6) has another form the 

Bernoulli equation 

𝐹′(𝜉) = 𝛿𝐹(𝜉) − 𝐹2(𝜉)
 

 

The general solution of Eq. (6) takes the following 

 

𝐹(𝜉) =
𝛿

2
[1 + 𝑡𝑎𝑛ℎ (

𝛿

2
(𝜉 + 𝜉0))],

 

where 𝛿 > 0 and

 
𝐹(𝜉) =

𝛿

2
[1 − 𝑡𝑎𝑛ℎ (

𝛿

2
(𝜉 + 𝜉0))],

 

where 𝛿 < 0 

 

For the Riccati equation 

 

𝐹′(𝜉) = 𝑐𝐹2(𝜉) + 𝑑            (7) 

 

The general solutions of Eq. (7) take the following form 

When 𝑐𝑑 < 0 and 𝜉0 is a positive number 

 

𝐹(𝜉) = −
√−𝑐𝑑

𝑐
𝑡𝑎𝑛ℎ (√−𝑐𝑑𝜉 −

𝑣 𝑙𝑛( 𝜉0)

2
)

  

When 𝑐𝑑 > 0 and 𝜉0 is a real number 

 

𝐹(𝜉) =
√𝑐𝑑

𝑐
𝑡𝑎𝑛(√𝑐𝑑(𝜉 + 𝜉0))

  

 

3. APPLICATION 

 

In this section we execute the simple equation method on 

(1+1) dimension Oskolkov equation to evaluate new 

innovative traveling wave solution. The (1+1) dimensional 

Oskolkov equation describe incompressible viscoelastic 

Kelvin-Voigt fluid in the following from  

 

0=+−− xxxxxtt UUUUU                       (8) 

 

where 𝛽, 𝛼 are arbitrary constant and 𝑈(𝑥, 𝑡) is an unknown 

function. Using the traveling wave variable 𝑈(𝑥, 𝑡) = 𝑈(𝜉) 

and 𝜉 = 𝑘𝑥 − 𝜔𝑡 where k is a constant and   is wave speed. 

Now we transfigure the Eq. (8) into the accompanying 

Ordinary differential equation. 

 

0222 222 =+−− kUUUkUk  ,      (9) 

 

where the prime denote the derivative with respect to 𝜉. 
According to step-3, the balance number between the linear 

term 𝑈″ and the nonlinear term 𝑈2 is 𝑁 = 2. So the solution 

of the Eq. (9) is the following form 

 

( ) ( ) ( )( ) .
2

210  FaFaaU ++=
           (10)

 
 

Differential Eq. (10) with respect to  with the guide of Eq. 

(6) then we get 

 

𝑈′ = 𝑎1𝑅𝐹(𝜉) + (𝑎1ℎ + 2𝑎2𝑅)𝐹2(𝜉) + 2ℎ𝑎2𝐹3(𝜉)

 𝑈″ = 𝑎1𝑅2𝐹(𝜉) + (4𝑅2𝑎2 + 3𝑅ℎ𝑎1)𝐹2(𝜉) + 
(2𝑎1ℎ2 + 10ℎ𝑎2𝑅)𝐹3(𝜉) + 6𝑎2ℎ2𝐹4(𝜉) 

 

Substituting the value of𝑈, 𝑈′, 𝑈″ in the Eq. (9) and equating 

the coefficient of 𝐹𝑖(𝜉) are zero where 
 
𝑖 = 0,1,2. . . . .., then 

we get polynomials in the following,  
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12𝑘2𝜔𝛽𝑎2ℎ2 + 𝑘𝑎2
2 = 0

 −4𝛼𝑘2𝑎2ℎ + 2𝑘𝑎1𝑎2 + 4𝑘2𝜔𝛽𝑎1ℎ2 + 
20𝑘2𝜔𝛽𝑎2𝑅ℎ = 0

 −4𝛼𝑘2𝑎2𝑅 − 2𝜔𝑎2 + 8𝑘2𝜔𝛽𝑎2𝑅2 + 2𝑘𝑎0𝑎2 
−2𝛼𝑘2𝑎1ℎ + 𝑘𝑎1

2 + 6𝑘2𝜔𝛽𝑎1𝑅ℎ = 0

 2𝑘𝑎0𝑎1 − 2𝜔𝑎1 + 2𝑘2𝜔𝛽𝑎1𝑅2 − 2𝛼𝑘2𝑎1𝑅 = 0

 𝑘𝑎0
2 − 2𝜔𝑎0 = 0

  

Now we solve the polynomial with the guide of maple 18.  

We gauge the resulting solution 

 

𝑘 =
1

6
√

−6

𝛽
, 𝜔 =

𝛼

5𝛽𝑅
, 𝑎0 = 𝑎1 = 0, 

𝑎2 = −
8

5
√

−6

𝛽
𝛼ℎ2 

𝑘 =
1

𝑅
√

1

6𝛽
, 𝜔 =

𝛼

5𝛽𝑅
, 𝑎0 =

2𝛼

5√𝛽
6

, 𝑎1 = 0, 

𝑎2 = −
8

5
√

−6

𝛽
𝛼ℎ2 

𝑘 =
1

𝑅
√

−1

6𝛽
, 𝜔 = −

𝛼

5𝛽𝑅
, 𝑎0 = −

2𝛼

5√𝛽
6

, 

𝑎1 =
24𝛼ℎ√

−1
6𝛽

5𝑅
, 𝑎2 =

8

5𝑅2
√

−6

𝛽
𝛼ℎ2 

𝑘 =
1

𝑅
√

1

6𝛽
, 𝜔 = −

𝛼

5𝛽𝑅
, 𝑎0 = 0, 𝑎1 =

24𝛼ℎ√
−1
6𝛽

5𝑅
, 

𝑎2 =
12

5𝑅2
√

1

6𝛽
𝛼ℎ2

 

 

Case-01: when

 

 

𝑘 =
1

6
√

−6

𝛽
, 𝜔 =

𝛼

5𝛽𝑅
, 𝑎0 = 𝑎1 = 0, 

𝑎2 = −
8

5
√

−6

𝛽
𝛼ℎ2, 

𝑈1,1(𝜉) = −
8

5
√

−6

𝛽
𝛼ℎ2 (

𝑟 𝑒𝑥𝑝[𝑟(𝜉+𝜁0)]

1−𝑑 𝑒𝑥𝑝[𝑟(𝜉+𝜉0)]
)

2

,     ℎ < 0  and 

𝑅 > 0 

𝑈1,2(𝜉) =
8

5
√

−6

𝛽
𝛼ℎ2 (

𝑟 𝑒𝑥𝑝[ 𝑟(𝜉 + 𝜁0)]

1 + 𝑑 𝑒𝑥𝑝[ 𝑟(𝜉 + 𝜉0)]
)

2

,

 
ℎ > 0 and 𝑅 < 0 

 

If we set 𝑅 = 𝛿 and ℎ = −1, then the solution tern to the 

following form 

 

𝑈1,3(𝜉) = −
8

5
√

−6

𝛽
𝛼ℎ2 (

𝛿

2
[1 + 𝑡𝑎𝑛ℎ (

𝛿

2
(𝜉 + 𝜉0))])

2

,  𝛿 >

0 

𝑈1,4(𝜉) = −
8

5
√

−6

𝛽
𝛼ℎ2 (

𝛿

2
[1 − 𝑡𝑎𝑛ℎ (

𝛿

2
(𝜉 + 𝜉0))])

2

,  𝛿 <

0 

 

where 

 

𝜉 =
1

6
√

−6

𝛽
𝑥 −

𝛼

5𝛽𝑅
𝑡. 

 

Case-02: when 

 

 𝑘 =
1

𝑅
√

1

6𝛽
, 𝜔 =

𝛼

5𝛽𝑅
, 𝑎0 =

2𝛼

5√
𝛽

6

, 𝑎1 = 0, 

𝑎2 = −
8

5
√

−6

𝛽
𝛼ℎ2 

𝑈2,1(𝜉) =
2𝛼

5√
𝛽

6

−
8

5
√

−6

𝛽
𝛼ℎ2 (

𝑟 𝑒𝑥𝑝[𝑟(𝜉+𝜁0)]

1−𝑑 𝑒𝑥𝑝[𝑟(𝜉+𝜉0)]
)

2

 ℎ < 0  and 

𝑅 > 0 

𝑈2,2(𝜉) =
2𝛼

5√
𝛽

6

+
8

5
√

−6

𝛽
𝛼ℎ2 (

𝑟 𝑒𝑥𝑝[𝑟(𝜉+𝜁0)]

1+𝑑 𝑒𝑥𝑝[𝑟(𝜉+𝜉0)]
)

2

 ℎ > 0  and 

𝑅 < 0 

 

If we set 𝑅 = 𝛿 and ℎ = −1, then the solution tern to the 

following form 

 

𝑈2,3(𝜉) =
2𝛼

5√𝛽
6

−
8

5
√

−6

𝛽
𝛼ℎ2 

(
𝛿

2
[1 + 𝑡𝑎𝑛ℎ (

𝛿

2
(𝜉 + 𝜉0))])

2

, 𝛿 > 0 

𝑈2,4(𝜉) =
2𝛼

5√𝛽
6

−
8

5
√

−6

𝛽
𝛼ℎ2 

(
𝛿

2
[1 − 𝑡𝑎𝑛ℎ (

𝛿

2
(𝜉 + 𝜉0))])

2

, 𝛿 < 0 

 

where 

 

𝜉 =
1

𝑅
√

1

6𝛽
𝑥 −

𝛼

5𝛽𝑅
𝑡. 

 

Case-03: when 

 

𝑘 =
1

𝑅
√

−1

6𝛽
, 𝜔 = −

𝛼

5𝛽𝑅
, 𝑎0 = −

2𝛼

5√𝛽
6

, 

𝑎1 =
24𝛼ℎ√

−1

6𝛽

5𝑅
, 𝑎2 =

8

5𝑅2 √
−6

𝛽
𝛼ℎ2  

𝑈3,1(𝜉) = −
2𝛼

5√𝛽
6

+
24𝛼ℎ√

−1
6𝛽

5𝑅
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(
𝑟 𝑒𝑥𝑝[ 𝑟(𝜉 + 𝜁0)]

1 − 𝑑 𝑒𝑥𝑝[ 𝑟(𝜉 + 𝜉0)]
) + 

8

5𝑅2
√

−6

𝛽
𝛼ℎ2 (

𝑟 𝑒𝑥𝑝[ 𝑟(𝜉 + 𝜁0)]

1 − 𝑑 𝑒𝑥𝑝[ 𝑟(𝜉 + 𝜉0)]
)

2

, ℎ < 0 

𝑎𝑛𝑑 𝑅 > 0

 

 

𝑈3,2(𝜉) = −
2𝛼

5√𝛽
6

−
24𝛼ℎ√

−1
6𝛽

5𝑅
 

(
𝑟 𝑒𝑥𝑝[ 𝑟(𝜉 + 𝜁0)]

1 + 𝑑 𝑒𝑥𝑝[ 𝑟(𝜉 + 𝜉0)]
) 

−
8

5𝑅2 √
−6

𝛽
𝛼ℎ2 (

𝑟 𝑒𝑥𝑝[𝑟(𝜉+𝜁0)]

1+𝑑 𝑒𝑥𝑝[𝑟(𝜉+𝜉0)]
)

2

,

 

 

ℎ > 0and 𝑅 < 0 

 

If we set 𝑅 = 𝛿 and ℎ = −1, then the solution tern to the 

following form 

 

𝑈3,3(𝜉) = −
2𝛼

5√𝛽
6

+
24𝛼ℎ√

−1
6𝛽

5𝑅
 

(
𝛿

2
[1 + 𝑡𝑎𝑛ℎ (

𝛿

2
(𝜉 + 𝜉0))]) + 

8

5𝑅2 √
−6

𝛽
𝛼ℎ2 (

𝛿

2
[1 + 𝑡𝑎𝑛ℎ (

𝛿

2
(𝜉 + 𝜉0))])

2

, 𝛿 > 0 

𝑈3,4(𝜉) = −
2𝛼

5√𝛽
6

+
24𝛼ℎ√

−1
6𝛽

5𝑅
 

(
𝛿

2
[1 − 𝑡𝑎𝑛ℎ (

𝛿

2
(𝜉 + 𝜉0))]) + 

8

5𝑅2
√

−6

𝛽
𝛼ℎ2 (

𝛿

2
[1 − 𝑡𝑎𝑛ℎ (

𝛿

2
(𝜉 + 𝜉0))])

2

, 

𝛿 < 0; where  

𝜉 =
1

𝑅
√−

1

6𝛽
𝑥 +

𝛼

5𝛽𝑅
𝑡. 

 

Case-04: when 

 

𝑘 =
1

𝑅
√

1

6𝛽
, 𝜔 = −

𝛼

5𝛽𝑅
, 𝑎0 = 0, 𝑎1 =

24𝛼ℎ√
−1
6𝛽

5𝑅
, 

𝑎2 =
12

5𝑅2
√

1

6𝛽
𝛼ℎ2, 

 

𝑈4,1(𝜉) =
24𝛼ℎ√

−1

6𝛽

5𝑅
(

𝑟 𝑒𝑥𝑝[𝑟(𝜉+𝜁0)]

1−𝑑 𝑒𝑥𝑝[𝑟(𝜉+𝜉0)]
) 

+
12

5𝑅2 √
1

6𝛽
𝛼ℎ2 (

𝑟 𝑒𝑥𝑝[𝑟(𝜉+𝜁0)]

1−𝑑 𝑒𝑥𝑝[𝑟(𝜉+𝜉0)]
)

2

,      ℎ < 0 and 𝑅 > 0 

𝑈4,2(𝜉) = −
24𝛼ℎ√

−1
6𝛽

5𝑅
(

𝑟 𝑒𝑥𝑝[ 𝑟(𝜉 + 𝜁0)]

1 + 𝑑 𝑒𝑥𝑝[ 𝑟(𝜉 + 𝜉0)]
) 

−
12

5𝑅2 √
1

6𝛽
𝛼ℎ2 (

𝑟 𝑒𝑥𝑝[𝑟(𝜉+𝜁0)]

1+𝑑 𝑒𝑥𝑝[𝑟(𝜉+𝜉0)]
)

2

,

 

0h  and 0R  

 

If we set 𝑅 = 𝛿 and ℎ = −1, then the solution tern to the 

following form 

 

𝑈4,3(𝜉) =
24𝛼ℎ√

−1
6𝛽

5𝑅
(

𝛿

2
[1 + 𝑡𝑎𝑛ℎ (

𝛿

2
(𝜉 + 𝜉0))]) 

+
12

5𝑅2 √
1

6𝛽
𝛼ℎ2 (

𝛿

2
[1 + 𝑡𝑎𝑛ℎ (

𝛿

2
(𝜉 + 𝜉0))])

2

, 𝛿 > 0, 

𝑈4,4(𝜉) =
24𝛼ℎ√

−1
6𝛽

5𝑅
(

𝛿

2
[1 − 𝑡𝑎𝑛ℎ (

𝛿

2
(𝜉 + 𝜉0))]) + 

12

5𝑅2 √
1

6𝛽
𝛼ℎ2 (

𝛿

2
[1 − 𝑡𝑎𝑛ℎ (

𝛿

2
(𝜉 + 𝜉0))])

2

, 𝛿 < 0 

 

where 

 

𝜉 =
1

𝑅
√

1

6𝛽
𝑥 +

𝛼

5𝛽𝑅
𝑡. 

 

Differential Eq. (10) with respect to  with the guide of 

Riccati Eq. (7) then we get 

 

𝑈′ = 𝑎1𝑑 + 2𝑎2𝑑𝐹(𝜉) + 𝑎1𝑐𝐹2(𝜉) + 2𝑎2𝑐𝐹3(𝜉)

 𝑈″ = 2𝑎2𝑑2 + 2𝑎1𝑐𝑑𝐹(𝜉) + 8𝑎2𝑑𝑐𝐹2(𝜉) 
+2𝑎1𝑐2𝐹3(𝜉) + 6𝑎2𝑐2𝐹4(𝜉)

 
 

Substituting the value of 𝑈, 𝑈′, 𝑈″  in the Eq. (9) and 

equating the coefficient of 𝐹𝑖(𝜉)  are zero where 
 

𝑖 =
0,1,2. . . . .., then we get,  

 

12𝑘2𝜔𝛽𝑎2𝑐2 + 𝑘𝑎2
2 = 0

 −4𝛼𝑘2𝑎2𝑐 + 2𝑘𝑎1𝑎2 + 4𝑘2𝜔𝛽𝑎1𝑐2 = 0

 𝑘𝑎1
2 − 2𝜔𝑎2 + 2𝑘𝑎0𝑎2 − 2𝛼𝑘2𝑎1𝑐 

+16𝑘2𝜔𝛽𝑎2𝑐𝑑 = 0    2𝑘𝑎0𝑎1 − 2𝜔𝑎1 + 4𝑘2𝜔𝛽𝑐𝑑𝑎1 −
4𝛼𝑘2𝑎2𝑑 = 0

 4𝛽𝑑2𝑘2𝜔𝑎2 − 2𝛼𝑑𝑘2𝑎1 + 𝑘𝑎0
2 − 2𝜔𝑎0 = 0

 
 

Solving polynomial we find that solution of Eq. (8) exists 

only in the following four cases 

 

𝑘 =
1√6

12√𝛽𝑐𝑑
, 𝜔 =

1𝛼

10√−𝑑𝑐𝛽
, 𝑎0 =

1𝛼√6𝛽𝑐𝑑

10√−𝑑𝑐𝛽
, 

𝑎1 =
1

5

𝛼√6𝛽𝑐𝑑

𝑑𝛽
, 𝑎2 =

1√6𝑐2𝛼

10√𝛽𝑐𝑑√−𝑑𝑐
,

 

𝑘 =
1

2√−6𝛽𝑐𝑑
, 𝜔 =

1𝛼

10√−𝑑𝑐𝛽
, 𝑎0 =

3𝛼√−6𝛽𝑐𝑑

10√−𝑑𝑐𝛽
, 

𝑎1 =
1

5

𝛼√−6𝛽𝑐𝑑

𝑑𝛽
, 𝑎2 =

3𝑐2𝛼

5√−6𝛽𝑐𝑑√−𝑑𝑐
, 

 

Case-05:  

 

𝑘 =
1√6

12√𝛽𝑐𝑑
, 𝜔 =

1𝛼

10√−𝑑𝑐𝛽
, 𝑎0 =

1𝛼√6𝛽𝑐𝑑

10√−𝑑𝑐𝛽
, 

𝑎1 =
1

5

𝛼√6𝛽𝑐𝑑

𝑑𝛽
, 𝑎2 =

1√6𝑐2𝛼

10√𝛽𝑐𝑑√−𝑑𝑐
, 

 

when 𝑐𝑑 < 0 and 𝜉0 is a positive number 
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𝑈5,1(𝜉) =
1𝛼√6𝛽𝑐𝑑

10√−𝑑𝑐𝛽
−

1

5

𝛼√6𝛽𝑐𝑑

𝑑𝛽

√𝑐𝑑 − 𝑐𝑑

𝑐
 

𝑡𝑎𝑛ℎ (√−𝑐𝑑𝜉 −
𝑣 𝑙𝑛( 𝜉0)

2
) + 

1√6𝑐2𝛼

10√𝛽𝑐𝑑√−𝑑𝑐
 

(
√𝑐𝑑 − 𝑐𝑑

𝑐
𝑡𝑎𝑛ℎ (√−𝑐𝑑𝜉 −

𝑣 𝑙𝑛( 𝜉0)

2
))

2

, 

 

when 𝑐𝑑 > 0 and 𝜉0 is a positive number 

 

𝑈5,2(𝜉) =
1𝛼√6𝛽𝑐𝑑

10√−𝑑𝑐𝛽
+

1

5

𝛼√6𝛽𝑐𝑑

𝑑𝛽

√𝑐𝑑

𝑐
 

𝑡𝑎𝑛(√𝑐𝑑(𝜉 + 𝜉0)) +
1√6𝑐2𝛼

10√𝛽𝑐𝑑√−𝑑𝑐
 

(
√𝑐𝑑

𝑐
𝑡𝑎𝑛(√𝑐𝑑(𝜉 + 𝜉0)))

2

,

 

 

where 

 

𝜉 =
1√6

12√𝛽𝑐𝑑
𝑥 +

1𝛼

10√−𝑑𝑐𝛽
𝑡. 

 

Case-06: 

 

𝑘 =
1

2√−6𝛽𝑐𝑑
, 𝜔 =

1𝛼

10√−𝑑𝑐𝛽
, 𝑎0 =

3𝛼√−6𝛽𝑐𝑑

10√−𝑑𝑐𝛽
 

, 𝑎1 =
1

5

𝛼√−6𝛽𝑐𝑑

𝑑𝛽
, 𝑎2 =

3𝑐2𝛼

5√−6𝛽𝑐𝑑√−𝑑𝑐
, 

 

when 𝑐𝑑 < 0 and 𝜉0 is a positive number 

 

𝑈6,1(𝜉) =
3𝛼√−6𝛽𝑐𝑑

10√−𝑑𝑐𝛽
−

1

5

𝛼√−6𝛽𝑐𝑑

𝑑𝛽
 

√𝑐𝑑 − 𝑐𝑑

𝑐
𝑡𝑎𝑛ℎ (√−𝑐𝑑𝜉 −

𝑣 𝑙𝑛( 𝜉0)

2
) + 

3𝑐2𝛼

5√−6𝛽𝑐𝑑√−𝑑𝑐
 

(
√𝑐𝑑 − 𝑐𝑑

𝑐
𝑡𝑎𝑛ℎ (√−𝑐𝑑𝜉 −

𝑣 𝑙𝑛( 𝜉0)

2
))

2

, 

 

When 𝑐𝑑 > 0 and 𝜉0 is a positive number. 

 

𝑈6,2(𝜉) =
3𝛼√−6𝛽𝑐𝑑

10√−𝑑𝑐𝛽
+ 

1

5

𝛼√−6𝛽𝑐𝑑

𝑑𝛽

√𝑐𝑑

𝑐
𝑡𝑎𝑛(√𝑐𝑑(𝜉 + 𝜉0)) + 

3𝑐2𝛼

5√−6𝛽𝑐𝑑√−𝑑𝑐
(

√𝑐𝑑

𝑐
𝑡𝑎𝑛(√𝑐𝑑(𝜉 + 𝜉0)))

2

, 

 

where 

 

𝜉 =
1

2√−6𝛽𝑐𝑑
𝑥 −

1𝛼

10√−𝑑𝑐𝛽
𝑡. 

4. NUMERICAL RESULT AND DISCUSSION 

 

In this area, we will talk about the physical portrayal of the 

acquired exact and solitary wave solution to the (1+1) 

Dimensional Oskolkov equation. We speak to these solutions 

in graphical and check about the sort of solution. Now we 

pictorial some obtain solutions realize by simple equation 

method for the Oskolkov equation.  

 

 
 

Figure 1. Periodic breather wave solution of the real part of 

the solution 𝑈3,1 for the parametric standards ℎ = −1, 𝑅 =
𝛽 = 𝛼 = 1, 𝜉0 = −0.01

 
 

The solutions 𝑈2,1, 𝑈4,1, 𝑈4,2, 𝑈5,1, 𝑈6,1, 𝑈5,2, 𝑈2,1 represent 

same type solution for different values of this parameter  

shown as Figure 1. 

 

 
 

Figure 2. Periodic wave solution of the imaginary part of the 

solution 𝑈3,1 for the parametric standards ℎ = −1, 𝑅 = 𝛽 =

𝛼 = 1, 𝜉0 = −0.01
 

464



 

The solutions 𝑈2,1, 𝑈4,1, 𝑈4,2, 𝑈5,1, 𝑈6,1, 𝑈5,2, 𝑈2,1 represent 

same type solution for different values of these parameter 

shown as Figure 2. 

 

 

 
 

Figure 3. Periodic breather wave solution of the imaginary 

part of the solution 𝑈3,1 for the parametric standards ℎ =
−1, 𝑅 = 𝛽 = 1, 𝛼 = −1, 𝜉0 = −0.01  

 

The solutions 𝑈1,1 𝑈1,2𝑈2,1, 𝑈4,1,
 

𝑈4,2, 𝑈5,1, 𝑈6,1, 𝑈5,2, 𝑈2,1  represent same type solution for 

different values of this parameter shown as Figure 3. 

 

 
 

Figure 4. kinky Periodic wave solution of the imaginary part 

of the solution 𝑈3,1 for the parametric standardsℎ =

−1.5, 𝑅 = 1.5, 𝛽 = 1, 𝛼 = 3, 𝜉0 = −0.01 

 

 
 

 
 

Figure 5. Kink shape solution of the solution 𝑈3,1 for the 

values ℎ = −0.2, 𝑅 = 𝛽 = 𝛼 = 1, 𝜉0 = −0.1  

 

For different values of free parameters, the solutions 

𝑈3,2, 𝑈1,1, 𝑈1,2, 𝑈3,3, 𝑈3,4 show the same type solution as Figure 

5. 

 
 

Figure 6. Anti-kink shape solution of 𝑈4,1 for the valuesℎ =

−0.2, 𝑅 = 𝛽 = 𝛼 = 1, 𝜉0 = −0.1 

 

The solutions 𝑈4,2, 𝑈2,1, 𝑈2,2, 𝑈2,3, 𝑈5,1, 𝑈5,2, 𝑈6,2, 𝑈6,1 show 

the same type solution as Figure 6. 

 

 

5. CONCLUSION 

 

In this paper, the principle exertion is to discover, test and 

break down the new voyaging wave arrangements and 

physical properties of the nonlinear Oskolkov condition by 

applying dependable scientific procedures. The simple 

equation scheme performance a substantial trick to find 

traveling wave solutions in-terms of exponential, 

trigonometric and hyperbolic function from which we can 

build specially Kinky periodic wave, breather wave solution, 

solitary and periodic wave solutions. This technique offers 

arrangements with free parameters that may be essential to 

clarify some unpredictable nonlinear physical marvels. 
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