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 In the present study natural convective flow of air in a two dimensional cavity with three 

different aspect ratios (AR) are analyzed using direct numerical simulation. Established open 

source CFD package OpenFOAM, has been utilized to run the simulation. In this problem, 

the vertical walls are assumed to be maintained at an isothermal temperature with left vertical 

wall has high temperature than the right wall and the other walls are assumed to be thermally 

insulated. The governing equations of this problem are expressed in dimensionless form and 

are solved by using the finite volume method. For spatial derivatives, the second order 

upwind linearization technique was used. The CGS method was employed as an effective 

acceleration means. The divergent and Laplacian terms in the governing equations are 

discretized by the QUICK and Gauss linear schemes, respectively. The computations are 

conducted for Rayleigh number until 106. An attempt has been made to gather the 

visualization techniques such as streamlines, isotherms, energy streamlines and field synergy 

principle to analyse the flow behavior. When Ra is small, vertical energy streamlines 

appeared, as Ra further increases, free energy streamlines at the boundary are observed 

whereas trapped energy streamlines at the centre appeared in the horizontal direction. For a 

fixed Ra, as AR increases, average synergy angle (𝛽𝑚) increases. This result implies that 

synergy between temperature field and velocity gets worse, which leads to the mild growth 

rate of 𝑁𝑢̅̅ ̅̅ .  The field synergy principle shows that the improving synergy between the 

temperature gradient and velocity vector, the heat transfer can be enhanced with less 

increased flow resistance. 
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1. INTRODUCTION 

 

Laminar natural convection in closed enclosures was 

broadly studied both experimentally and numerically on 

account of special interest in large number of engineering 

applications: nuclear reactors, solar collectors, refrigeration in 

electronic components. In the past few decades, many 

experimental and theoretical studies on laminar natural 

convection in closed enclosures are studied. Because of this, 

the heat and fluid flow caused by laminar natural convection 

has received substantial awareness from numerous researchers. 

Recent work of Altac and Ugurlubilek [1] shows that research 

is continuing on these issues, with regard to three-dimensional 

effect and various turbulence models. In this line another 

recent study carried out by Obyn and Van Moeseke [2] with 

the focus on the impact of convective heat transfer coefficient. 

They used their computations to calculate the heating and 

cooling loads of buildings. 

Fluids, such as air, in the absence of external forces like fans 

or exterior wind, move due to density variations in their bulk. 

These density variations are caused by temperature gradients 

and buoyancy forces that appear in the presence of gravity. 

Consequently, the rising of low-density particles occurs along 

with the falling of high-density particles; this phenomenon is 

known as natural or free convection. Inside buildings where 

free and forced convection coexist, the common practice is to 

evaluate the importance of each convection type separately, to 

determine whether either is dominant with respect to the other 

or if they must be considered simultaneously [3]. 

In thermal simulation programs, such as ESP-r, Energy 

Plus , DOE-2, and TRNSYS [4-7], the CHTC is fixed as a 

constant value; or, at most, the programs make the coefficients 

depend on the velocity and temperature difference between the 

surfaces. In such cases, a flat-plate correlation is used, or 

another empirical correlation is applied as obtained from Awbi 

and Hatton [8], or Novoselac et al. [9]. On the other hand in 

several cases, the flow pattern, which is one of the salient 

factors in calculating such heat transfer coefficients, is not 

taken into account. This flow pattern directly relies on the 

problem and its geometry, such as the enclosure aspect ratio 

(AR).  

From the literature survey [10-12], it is found that plotting 

of velocity vectors, streamlines and isotherms are the general 

visualization tools. The other visualization technique using the 

theory of heatfunction and heatlines was proposed by Kimura 

and Bejan [13]. In the given domain for the visualization of 

energy flow, Heatline concept was used. Later Costa [14, 15] 

presented an approach to visualize the physical aspects of the 

flow with the aid of the heatfunction and heatlines. Similar to 

heatlines Mahmud and Fraser [16] found new visualization 

technique related to the convective heat transfer, called, 

energy streamlines. Hooman [17] introduced and developed 
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new visualization tool known as the energy flux vectors. These 

vectors represent the flow of energy and are tangent to 

heatlines [18, 19]. 

Along with the idea of field synergy, interlink between the 

conduction and convection states was suggested by Guo et al. 

[20, 21]. The angle between the speed and isotherms is known 

as the synergy angle. However, they observed in the absence 

of fluid movement, only for diffusive heat transfer, the heat 

flux is parallel to both temperature gradient and velocity. Thus, 

the heatlines are vertical to the isotherms. But to get a 

convective heat transfer without a diffusive flux, the heat flux 

must be parallel to the velocity vector. 

Mallinson and de Vahl Davis [22] performed calculations 

until Ra ~ 106 for the 3D geometry. Later Pepper and Hollands 

[23] studied flow in the 3D enclosures and paid attention on a 

range of Ra varying from laminar to turbulence. The AR 

effects with 1 ≤ AR ≤ 2 for 106 ≤ Ra ≤ 108 in the 3D 

differentially heated cubical cavity was investigated by Ravnik 

et al. [24] using the boundary element method. According to 

results reported by Rincon Casado et al. [25] for AR= 1 three-

dimensional effects are less pronounced with a reduction of 2–

4% compared to a 2D model for Ra ≤ 1012. This is due to the 

fact that the 3D effect of the boundary layer is not significant 

in the average Nusselt number with high Ra. For this reason, 

the present work considers negligible 3D effects, which 

produces a saving in computational cost and a focus on the 

influence of the enclosure aspect ratio. 

 

1.1 Previous experimental works on vertical surfaces 

 

In the past, advanced experimental techniques were used, 

although not without difficulty; for the low absolute velocity 

values accurate experimental work was limited and whereas 

for a rectangular cavity, the fluid flow and heat transfer are 

highly sensitive to the experimental setup and boundary 

conditions. The majority of the most rigorous research in this 

field is oriented towards the study of rectangular enclosures, 

where heat flux is unidirectional; i.e., flotation is induced from 

the vertical walls or from the floor to the roof. This is reported 

in the general review works by Catton [26] and Ostrach [27] 

on the natural convection in closed cavities. 

A considerable number of experimental works have been 

done in the past decade to comprehend turbulent flow in 

enclosures, heated and cooled from opposing isothermal faces. 

The increase in the Rayleigh number has been gradual, 

beginning with Ra =104 in previous years, to Ra ≥1010 in the 

recent decade. These experiments are need to provide 

benchmark data for other studies, such as that developed by 

Leong et al. [28], who reported the Nusselt number result for 

vertical walls for a cubical air-filled cavity in laminar flow 

(Ra= 4×104), tilted at 0°, 45°, or 90°. Betts and Bokhari [29] 

studied a tall enclosure in laminar natural convection for Ra 

=0.86×106and Ra =1.43×106. Mamun et al. [30] published an 

extension to previous work in which the mean Nusselt number 

for 104<Ra< 3×108 was calculated. The outcomes are viewed 

as reasonable for the testing of computational codes. Ampofo 

[31] conducted an experiment and collected benchmark data 

study of low level turbulent natural convection in an air filled 

vertical square cavity. Bairi [32] experimentally and 

numerically studied the natural convection in air-filled 2D 

tilted square cavities. In his study, different geometrical and 

thermal configurations were considered for 10 ≤ Ra ≤ 1010 and 

tilt angles ranging from 0 to 360. Saury et al. [33] presented an 

experimental work for large Ra numbers in a 4m high cavity 

with a horizontal cross-section equal to 0.86 ×  1.00 m2 

(4×1010 ≤ Ra ≤ 1.2×1011). Inan et al. [34] numerically and 

experimentally studied the heat transfer in a rectangular cavity. 

They simulated a double-skin façade and included natural 

convection with 8.59×109≤Ra≤ 1.41×1010, and a correlation 

for the Nusselt number was developed. However, in the past 

studies the AR analysis was paid very less attention due to 

difficulties in experimentation; therefore, the correlations 

from the experimental work are not general and the 

applicability is limited. 

 

1.2 Previous numerical works on vertical surfaces 

 

In numerical and theoretical studies, strong coupling of the 

boundary layer and the core flow makes the computation very 

difficult. In addition, the direct simulation of turbulent natural 

convection in a cavity is still too costly. Numerical results 

from various k-ε models are non-unique. In addition, none of 

the turbulence models can correctly predict whole velocity and 

temperature fields. The limitations of computer technologies 

have restricted the numerical studies to 2D models until the 

last few decades. Among the works that have studied heat 

transfer on vertical walls of a square enclosure with an 

adiabatic floor and ceiling, it is worth highlighting the 

developments by Barakos et al. [35], Markatos and Pericleous 

[36], De Vahl Davis and Jones [37], and Lari et al. [38], who 

studied the effects of radioactive transfer in participating 

media. These results are often used to validate methodologies 

and calculation models. More recently, Altac and Ugurlubilek 

[1] used the results reported by other authors for comparison 

with various models of turbulence. However, one can observe 

in these works that the influence of the AR on rectangular 

enclosures has been poorly studied. Bejan [3] provided further 

insight into the AR influence, although for small aspect ratios 

and only in the laminar regime. Osman et al. [39] continued 

this work, but the turbulent regime was not investigated. Trias 

et al. [40] developed a set of direct numerical simulations of a 

differentially heated cavity of AR 4 with adiabatic horizontal 

walls in turbulent flow. Five configurations based on the 

cavity height were presented (Ra = 6.4×108, 2×109, 1010 and 

1011). These are valid configurations for façades of buildings, 

but are not suitable for rooms or spaces in which the AR is less 

than 1. 

 

1.3 Motivation of the present work 

 

Based on the current state of natural convection 

investigations, the knowledge gap lies in the calculation of 

flow and thermal characteristics oriented to building 

enclosures. In this case, the Ra is predominant, and the 

enclosure AR and enclosure average air temperature must be 

studied. In this work, the concept of flux density vector, energy 

streamlines and field synergy principle for different Ra have 

been explained and calculated for different AR's to implement 

in the building's thermal simulation programs. To resolve this 

problem, the flow between the vertical walls is studied by 

keeping the horizontal walls are adiabatic. The influence of the 

AR and Ra studied on both configurations. The challenges of 

this work pertains in solving problems in natural convection 

and steady flow with Ra until 106, where reaching a steady 

state is necessary to solve the transient state. 
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1.4 Problem definition 

 

A better approximation is proposed in the present article 

which consists of approximating a 2D enclosure with different 

temperatures. In the given enclosure, the top and bottom walls 

(horizontal walls) are assumed to be adiabatic, and the left and 

right walls are at different temperatures in which temperature 

(TH) of left wall is more than temperature of right wall (TC) ΔT 

= TH -TC >0 as shown in Figure 1.  

 

 
 

Figure 1. Schematic diagram of 2D cavity 

 

 

2. GOVERNING EQUATIONS 

 

The dimensionless form for the continuity, momentum and 

energy equations with inclusion of the buoyant Boussinesq 

approximations for the density variation are written as  

 

𝛻. 𝑽 = 0                                (1) 

 

𝑽. 𝛻𝑽 =  −𝛻𝑃 + 𝑃𝑟 𝛻2𝑽 + 𝑅𝑎 𝑃𝑟 𝑇∗                (2) 

 

𝑽. 𝛻𝑇∗ = 𝛻2𝑇∗                                 (3) 

 

In the above Eqns. (1)-(3), V = (U, V), P, 𝑇∗ represent the 

dimensionless velocity vector along the (X, Y) directions, 

pressure and temperature respectively. The following non-

dimensional parameters were used. 𝑋 =  
𝑥

𝐿
, 𝑌 =  

𝑦

𝐿
, 𝑈 =

𝑢𝐿

𝛼
, 𝑉 =

𝑣𝐿

𝛼
, 𝑃 =  

𝑝𝐿2

𝜌𝛼2 , 𝑇∗ =  
𝑇−𝑇𝐶

∆𝑇
, 𝑃𝑟 =  

𝑣

𝛼
 and 𝑅𝑎 =

 𝑔𝛽(∆𝑇)𝐿3

𝜈𝛼
, where the notations are explained in the 

Nomenclature. ∆𝑇 be the temperature difference between two 

vertical walls, ∆𝑇 = (𝑇𝐻 − 𝑇𝐶). 

 

V= 0 at X = 0, 1; Y = 0, 1. 

𝑇∗ = 1 at X = 0, and 𝑇∗ = 0 at X = 1 and          (4) 
𝜕𝑇∗

𝜕𝑌
= 0, at Y = 0, 1. 

 

The non-dimensional heat transfer rate at the hot wall is 

calculated by the Nusselt number whose local value along the 

hot wall is given by Nu = (
𝜕𝑇∗

𝜕𝑋
)

𝑋 = 0
. The average Nusselt 

number 𝑁𝑢̅̅ ̅̅ is obtained by integrating the local Nusselt number 

along the hot wall and is calculated as 𝑁𝑢̅̅ ̅̅  = − ∫ (
𝜕𝑇∗

𝜕𝑋
) 𝑑𝑋

𝑋=1

𝑋=0
. 

3. NUMERICAL METHOD AND VALIDATION 
 

The finite volume method [41] is employed to discretize the 

Eqns. (1-3). In this method, the computational domain of the 

cavity is divided into rectangular volumes with velocity vector 

calculated at the corner of the volume and the scalar unknowns 

P and T*are positioned in the center of the finite volume. 

Established open source CFD package OpenFOAM, has been 

utilized. The geometry, volume and boundary conditions are 

set in the buoyantBoussinesqSimpleFoam. The upwind 

numerical method of second order was employed for the 

derivatives and the CGS method to accelerate convergence. 

The QUICK and Gauss linear schemes used to discretize the 

divergent and Laplacian terms respectively. The post 

processing is done in Tecplot, the Paraview and LibreOffice 

Calc.  

 

Table 1. Validation of 2D results in terms of 𝑁𝑢̅̅ ̅̅  (H/L = 1) 

 
Ra 103 104 105 106 

Grid size 80x80 80x80 80x80 160x160 

De Vahl Davis and Jones 

[37] 
1.1182 2.243 4.519 8.799 

Markatos and Pericleous 

[36] 
1.108 2.201 4.430 8.754 

Fusegi et al. [10] 1.105 2.302 4.646 9.012 

Barakos et al. [35] 1.114 2.245 4.510 8.806 

Rincon Casado et al. [25] 1.118 2.241 4.522 8.819 

Present Work 1.128 2.194 4.515 8.843 

 

 
(a) 

 
(b) 

 

Figure 2. Grid independent test for Ra = 105. (a) Profiles of 

velocity (V) component at mid height of cavity (b) 

Temperature (T*) distribution at mid height of cavity 
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The Table 1 tabulates the comparison of the simulated 

results obtained by different authors in the study of a square 

cavity (AR = 1) with lateral walls at different temperatures. 

The Ra is varied through the cavity size and the variable of 

interest is the 𝑁𝑢̅̅ ̅̅ .  From the Table 1, it can be observed that 

𝑁𝑢̅̅ ̅̅  obtained in the present study is in good agreement with 

those in the literature. 

Figure 2 shows the V and T* solutions calculated using 

different meshes, namely 402, 802 and 1602 for Ra = 105. 

Figures 2 (a) and (b) show profiles of velocity component and 

temperature distribution at mid height of the cavity, 

respectively. Also it is observed that currently employed 802 

uniformly stretched mesh results did not deviate much from 

those when the mesh resolution was amplified by 50 %. Thus 

the 802 mesh resolution was employed in the present study. 

 

 

4. RESULTS AND DISCUSSION 
 

In this section, the concept of Streamlines, isotherms, 

energy streamlines and field synergy principle are explained 

and used in the present study to visualize and analyse the flow 

behavior. 

 

4.1 Streamlines 

 

Figure 3 demonstrates the simulated streamlines for various 

values of Ra and AR. As anticipated due to uniformly heated 

vertical walls in which the flow along the hot left wall and the 

flow down along the cold right wall developing a roll inside 

the cavity with clockwise rotation. It is observed, when Ra is 

103, principal vortex seems to be main characteristic of the 

flow. As Ra increases, stream function value also increases, 

i.e., the flow rate increases. Due to convection, secondary 

circulation formed at the left corner of the top wall and also 

the hot fluid shift towards the left corner of the cavity. Also it 

is noticed that vortex happen to be become elliptic and split 

into two or more. The rotation is clockwise owing to a very 

small positive temperature gradient at the centre of the cavity. 

The vortices become narrow for even high Ra improving the 

stratification of the flow at the principal part of the cavity.  

Figures 3 (a, d, g, j) show the streamlines in enclosures of 

buildings for Ra: 103-106 and AR= 0.5. In Fig. 3(a), the 

innermost vortex seems to be most important feature of the 

flow due to dominant conduction mode of heat transfer. As Ra 

increases, the innermost vortex breaks up into two vortices 

noticed in Figure 3(d). The vortices move close to the walls, 

providing a space for third vortex to generate in the direction 

of horizontal walls as shown in Figure 3(g). As Ra further 

increases to 106, the convection mechanism becomes more 

evident and the velocity at the boundaries has higher value 

than velocity at the center of the cavity because the fluid is 

moving very fast at the boundaries. Hence there is formation 

of two more vortices at the top left corner and bottom right 

corner of the cavity as observed in Figure 3(j). Figures 3(b, e, 

h, k) show the simulated results for Ra: 103-106 and AR = 1. 

For lower value of Ra = 103, the innermost vortex seems to be 

dominant feature of the flow (Figure 3(b)) and as Ra increases 

to 104, the vortex attains an elliptic shape (Figure 3(e)). For 

further increasing values of Ra, as shown in Figure 3(h), the 

innermost vortex breaks up into two vortices horizontally. As 

Ra still increases to 106, the innermost vortex breaks up into 

two vortices noticed in Figure 3(k). Figures 3(c, f, i, l) 

streamline flow for Ra: 103-106 numbers and AR = 2. In Figure 

3(c, f), the primary vortex seems to be dominant feature of the 

flow. As Ra increases to 105, it is noticed that primary vortex 

breaks up into two vortices in the vertical direction as observed 

in Figure 3(i). As 105<Ra ≤ 106 and especially when equal to 

106, it is observed that the third vortex formed at the center of 

the cavity along with two more emerging eddies formed at 

corners of top left and bottom right walls. This is due to the 

fact that the velocity at the boundaries is higher than velocity 

at the center of the cavity in Figure 3(l). [25, 35-37]. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

 

Figure 3. The simulated streamlines for Ra = 103 (a, b, c), 

104 (d, e, f) , 105 (g, h, i) and 106 (j, k, l) for different AR = 0.5 

(a, d, g, j),  1 (b, e, h, k) and 2(c, f, i, l) 

 

4.2 Isotherms 

 

Figure 4 depicts the simulated isotherms for different values 

of Ra and AR. When Ra = 103, the following heat transfer 

modes are comparable i.e., conduction and convection. The 

temperature distribution and flow fields are affected from the 

above two modes. When Ra increases moderately, weaker 

secondary recirculating zone is formed over the top of the 

cavity. The primary recirculation cell fills the entire space and 

becoming larger towards the secondary recirculating cell 

formed at the top. In this case, the prominent point is that there 

exists a bigger isothermal section on the upper half of 

enclosure. 

For low Ra (= 103) and as AR increases from 0.5 to 2, it is 

observed the presence of isotherms which are almost vertical 

as displayed in Figures 4(a, b, c). This is due to conduction of 

heat, which is transferred between hot wall and cold wall. 

When the mode of heat transport changes from conduction to 

convection, the isotherms departs from the vertical to curved 

position as depicted in Figures 3(d - i). After this transition as 

noticed in Figures. 3(j, k, l) there is an appearance of horizontal 

isotherms at the center of the cavity and vertical isotherms at 

the boundaries. Similar vertical structures are noticed by de 
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Vahl Davis and Jones and Markatos and Pericleous, Rincon-

Casado et al. [25, 36, 37].  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

Figure 4. The simulated isotherms for Ra=103(a, b, c), 104(d, 

e, f), 105(g, h, i) and 106 (j, k, l) for different AR=0.5(a, d, g, 

j), 1(b, e, h, k), and 2(c, f, i, l) respectively 

 

4.3 Energy streamlines 

 

In a 2D flow, the energy streamlines are obtained by solving 

a Poisson equation of the type: ∇2Φ = (∇ ×  �̅�).�̅�, where Φ is 

called the energy streamfunction and �̅� is the unit vector. For 

2D convective heat transfer system, in Cartesian coordinate 

system, �̅� can be written as 

 

�̅� = 𝜌𝑽 (
1

2
𝑽2 + ℎ) − 𝑽. 𝜎 − 𝐾∇𝑇                     (5) 

 

where the notations are explained in the Nomenclature. Energy 

streamlines include contribution of energy due to surface 

forces and energy fluxes. Hence, they can provide a complete 

view for configurations where these impacts are significant. 

Therefore, the simultaneous utilization of energy streamlines 

and heatlines are helpful to examine the quantitative details 

regarding the participation of the extra energy fluxes from the 

energy stream function. The energy flux density vectors are 

utilized to reveal an imaginary energy flow path, which is like 
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pathline trace [22]. According to Mahmud and Fraser [16], 

'free energy streamline' is defined as streamline of the flow that 

originates at the hot wall, forms circular rolls and then 

intersects at the cold wall. This line is due to the participation 

of convective thermal energy and kinetic energy is negligible 

in comparison to conductive thermal energy, where the 

velocity components are modest. While 'trapped energy 

streamline' is streamline of the flow that begins at hot wall, 

moves through the fluid and creates a closed loop because of 

kinetic energy and convective thermal energy dominates the 

conductive thermal energy.  

Figures 5(a, d, g, j) demonstrates streamline flow in the 

cavity for Ra: 103 - 106 and with fixed AR = 0.5. In Figure 5(a), 

it is noted the existence of free horizontal energy streamlines 

at Ra = 103, i.e., the flow started at left hot wall, moves through 

the fluid and then terminated at the right cold wall and trapped 

streamlines formed at the center of the cavity. It is observed 

that trapped energy streamlines occupy more space when Ra 

increases to 105 as noticed in Figures 5(d, g). When Ra = 106, 

single eddy emerged at the left center of the cavity (Figure 

5(j)). Similar pattern is also observed in Figures. 5(b, e, h, k) 

when AR = 1. When Ra is small vertical energy streamlines 

formed (Figure 5(b)) and as Ra increases the free and trapped 

energy streamlines are observed at the left boundary and at the 

center, respectively. When Ra = 106, it is observed the two 

emerging eddies each at the top left and top right corners of 

the cavity are also similar to the trapped energy streamlines 

and occupy more region in the cavity (Figure 5(k)).   

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 
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(k) 

 
(l) 

 

Figure 5. The simulated energy streamlines for Ra=103(a, b, 

c), 104(d, e, f), 105(g, h, i) and 106 (j, k, l) for different 

AR=0.5(a, d, g, j), 1(b, e, h, k) and 2(c, f, i, l) respectively. 

 

Figures 5(c, f, i, l) show flow inside the cavity with AR=2. 

When Ra =104, the free energy streamlines at the left boundary 

are noticed while the trapped energy streamlines at the center 

appear in the vertical direction and occupy more region in the 

cavity. When Ra increased further more (=106) circularly 

trapped streamlines in vertical direction are observed (Figure 

5(i)) along with one emerging eddy at left top of cavity (Figure 

5(l)) [16]. 

 

4.4 Field synergy angle 

 

Local intersection angle is given by (Guo et al. (1998))  

 

𝛽𝑚 = 𝑐𝑜𝑠−1 (
𝑽.∇𝑇

|𝑽||∇𝑇|
)            (6) 

 

The value of 𝛽 is the angle between the velocity vector and 

heat flow vector (temperature gradient). In Eq. (6), there are 

three scalar fields, namely, |𝑽|, |∇𝑇| and Cos  𝛽𝑚  or two 

vector fields, namely V and ∇𝑇. Thus, along with the velocity 

vector and the temperature gradient, their synergy determines 

the strength of the convective heat transfer.  

Figure 6 shows the contours of 𝛽𝑚 value for different values 

of Ra and AR. When AR=0.5, at the boundaries the synergy 

angle decreases with the increase of Ra (Figures 6(a, d, g, j)). 

Similar pattern is observed when AR=1 and 2. It is also 

observed that the flow is symmetric and the included angle has 

lower values in the bottom half of the cavity in-comparison 

with the upper half of the cavity. This implies that the velocity 

and temperature gradient vectors aligned parallel and 

perpendicular at the upper half and lower half of the cavity, 

respectively. This is due to the dominant heat transfer 

mechanism that switches from conduction to convection state. 

More conduction/convection occurs in the upper/lower half of 

the cavity. The interchange of these two states is not 

symmetric with increasing Ra. Thus, there is a reduction of the 

intersection angle between velocity and temperature gradient 

in the lower half of the cavity and thereby in this region there 

is an effective enhancement of convective heat transfer.  It can 

be said that the synergy is improved at the locations where the 

isotherms crossly intersected by the flow velocities. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 
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 (f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

 

Figure 6. The simulated synergy angle for Ra=103(a, b, c), 

104(d, e, f), 105(g, h, i) and 106 (j, k, l) for different 

AR=0.5(a, d, g, j), 1(b, e, h, k) and 2(c, f, i, l) respectively 

 

Table 2. Average synergy angle 𝛽𝑚 variation with Ra under 

different AR 

 
 

Ra 

𝛽𝑚 

AR = 0.5 AR = 1 AR = 2 

103 74.25 76.99 80.21 

104 77.12 79.51 81.58 

105 78.58 80.82 81.68 

106 80.21 81.32 81.75 

 
Table 2 shows the variation of average synergy angle with 

Ra under different values of AR. Field synergy principle could 

disclose the character of improved heat transport. From the 

tabulated values, it can be seen that with the increase of Ra 

(103 ~ 106) and for a fixed AR (0.5-2), 𝛽𝑚  increases. It is noted 

that as Ra increases, synergy angle increases for different AR. 

This result implies that synergy between temperature field and 

velocity gets worse, which leads to the mild growth rate of 𝑁𝑢̅̅ ̅̅ . 
The synergy angle of buoyant-aiding flow is greater while the 

buoyant-opposing flow is significantly less than that of natural 

convection flow when AR = 1. This result is leads to the fact 

that the relation between temperature field and velocity at 

buoyant-aiding flow is at the worst situation, and leads to the 

increasing values of 𝑁𝑢̅̅ ̅̅  [42]. 

 

 

5. CONCLUSION 

 

The present paper demonstrates the energy pathlines and 

field synergy principle to visualize the natural convective flow 

and thermal characteristics for laminar regime (103 ≤ Ra ≤106) 

in enclosures with aspect ratio (AR) of 0.5, 1 and 2. For the 

small values Ra and AR=0.5 the innermost vortex seems to be 

dominant feature of the flow. As Ra increases, the innermost 

vortex breaks up into two vortices thus providing a space for 

third vortex to emerge in the horizontal direction. As Ra 

further increases to 106, the velocity at the boundaries is higher 

than velocity at the center of the cavity because of the 

increased convection. Hence formation of two more vortices 

at the top left corner and bottom right corner of the cavity is 

observed. Similar pattern is observed in the vertical direction 

when AR=2. 

When Ra=103 and AR increases from 0.5 to 2, almost 

vertical isotherms are observed due to the initial conduction 

state. When the mode of heat transport changes from 

conduction to convection the isotherms depart from the 
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vertical position, become curved and then appear as the 

horizontal isotherms at the center of the cavity and vertical 

isotherms at the boundaries.  

For small values of Ra, the horizontal free energy 

streamlines and trapped energy streamlines are observed. As 

Ra increases, the trapped energy streamlines occupy more 

space at the center of the cavity. When AR=0.5, single eddy at 

left center of the cavity is formed, whereas when AR=2, two 

emerging eddies each at the top left and top right corners of 

the cavity are observed. 

When Ra increases, synergy angle decreases for different 

AR. This result implies that synergy between temperature field 

and velocity gets worse, which leads to the mild growth rate 

of 𝑁𝑢̅̅ ̅̅ . The synergy angle of buoyant-aiding flow is greater 

while the buoyant-opposing flow is significantly less than that 

of natural convection flow when AR=1. This result is leads to 

the fact that the relation between temperature field and 

velocity at buoyant-aiding flow is at the worst situation, and 

leads to the increasing values of 𝑁𝑢̅̅ ̅̅ . 
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NOMENCLATURE 

 

AR aspect ratio (H/L) 

Cp Specific heat  

E̅ energy flux density vector, W m-2 

g gravitational acceleration m s-2 

Gr Grashof number (=  
gβ(∆T)L3

ν3 ) 

H height of the cavity, m 

K Thermal conductivity, W m-1 K-1 

L Length of the cavity, m 

Nu Local Nusselt number  

Nu̅̅ ̅̅  Average Nusselt number  

p non dimensional pressure 

Pr Prandtl number (=  
ν

α
) 

Ra Rayleigh number (=  
gβ(∆T)L3Pr

ν3 ) 

Re Reynolds number (= U0h/ν)  

Ri Richardson number (= Gr.Re-2) 

T Dimensional temperature, K 

T∗           Dimensionaless temperature (=  
T−TC

∆T
) 

U0 Top wall velocity, m s-1 

V Dimensionless velocity vector 

X,Y Dimensionless distance along x and y coordinates  

 

Greek letters 

 

α coefficient of thermal diffusion, m2 s-1 

β coefficient of thermal expansion, K-1 

v molecular kinematic viscosity, m2 s-1 
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σ viscous stress tensor, N m-2 

ρ Density, kg m-3 

βm field synergy angle between V and the temperature 

gradient 

∆T characteristic temperature difference 

∇T∗ dimensionless temperature gradient  
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