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 This paper enumerates the strengths and defects of the traditional least mean square (LMS) 

algorithm for adaptive filtering, and then designs a novel LMS algorithm with variable step 

size and verifies its performance through simulation. In our algorithm, the step size is no longer 

adjusted by the square of the error (e2(n)), but by the correlation between the current error and 

the error of a previous moment e(n-D). In this way, the algorithm becomes less sensitive to the 

noise with weak autocorrelation, and manages to achieve fast convergence, high time-varying 

tracking accuracy, and small steady-state error. The simulation results show that our algorithm 

outperformed the traditional LMS algorithm with fixed step size in convergence speed, 

tracking accuracy and noise suppression. The research findings provide a new tool for many 

other fields of adaptive filtering, such as adaptive system identification and adaptive signal 

separation. 
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1. INTRODUCTION 

 

In the electronic data processing (EDP) system, the filter is 

a basic circuit to extract the useful ones out of complex signals, 

while suppressing noises or interferences. A digital filter takes 

digital signals as input and output. This device can change the 

relative ratio of the frequency components in the input, or filter 

out some frequency components by a certain computational 

relationship. To optimize the filtering effect, the digital filter 

can be used adaptively, that is, automatically adjust the filter 

parameters at the current time based on those acquired at the 

previous moment. This kind of adaptive digital filtering can 

deduce the unknown time-varying statistical properties of 

signals and noises [1-3].  

One of the classical adaptive filtering algorithms is the least 

mean square (LMS) algorithm. With a simple structure and 

good stability, this minimum mean square error algorithm has 

been widely adopted in adaptive control, radar, system 

identification and signal processing. However, the traditional 

LMS algorithm cannot achieve fast convergence, high 

tracking accuracy and small steady-state error at the same time, 

owing to the fixed step size. To solve this problem, many 

improved LMS algorithms with variable step size have been 

developed for adaptive filtering [4-9]. 

Drawing on existing LMS algorithms, this paper designs a 

novel LMS algorithm with variable step size and verifies its 

performance through simulation. The simulation results show 

that our algorithm achieved fast convergence and small 

tracking error, and effectively eliminated interferences. 

Moreover, our algorithm minimized the parameter size and 

computing load, facilitating the hardware implementation. 

Overall, our algorithm can achieve the optimal filtering effect, 

striking a balance between convergence speed, tracking 

accuracy and steady-state error [10-12]. 

 

 

 

2. PRINCIPLE OF ADAPTIVE FILTER 

 

An adaptive filter generally consists of two parts: an 

adaptive processer and an adaptive algorithm. The former is a 

digital structure of adjustable parameters. The adaptive filter 

can be designed without knowing the statistical properties of 

the inputs and noises. In actual operations, these features are 

gradually learned or estimated by the adaptive filter, and used 

to adjust the parameters to optimize the filtering effect. The 

key features of adaptive filter can be summed up as learning 

and tracking. 

 

 
 

Figure 1. Principle of adaptive filter 

 

The principle of adaptive filter is illustrated in Figure 1, 

where the discrete time linear system stands for an actual 

programmable filter, x(n) is the input of adaptive filter, y(n) is 

the output of the adaptive filter, d(n) is the desired output, and 

e(n) is the error inputted to the adaptive algorithm. Note that 

error is the difference between output and desired output.  

The filter parameters of the adaptive filter can be 

characterized by the shock response h(n), which is affected by 

e(n). During the operation, the adaptive filter automatically 

adjusts the shock response such that the output gradually 

approaches the desired output. 

Hence, the most significant difference between adaptive 

filter and ordinary filter lies in the fact that the adaptive filter 

can adjust its impulse response or filter parameters according 
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to the external environment. After a while, the adaptive filter 

can achieve the optimal filtering effect. 

The adaptive algorithm is critical to the performance of the 

adaptive filter. To track the changes in external environment, 

the adaptive algorithm must keep regulating filter parameters 

according to the preset criterion, considering the input, output 

and original values of the filter parameters. In this research, 

the LMS algorithm is selected as the adaptive algorithm [13]. 

 

 

3. PRINCIPLE AND IMPROVEMENT OF LMS 

ALGORITHM 

 

3.1 Principle of LMS algorithm 

 

The LMS algorithm is a linear adaptive filtering algorithm. 

The algorithm involves two operations, namely, filtering and 

adaptation. The goal is to minimize the mean square error of 

e(n)=d(n)-y(n) through parameter adjustment, and to modify 

weight accordingly. Given input and desired output, the LMS 

algorithm can achieve a small computing load without off-line 

calculation. There are many variants of the LMS algorithm. 

For example, the following LMS algorithm is coupled with the 

method of steepest descent [14]. 

 
e(n) = d(n) - w(n - 1)x(n)                      (1) 

 

W(n) = W(n - 1) + 2μ(n)e(n)X(n)               (2) 

 

where x(n) is the input of adaptive filter; d(n) is the desired 

output; e(n) is the error; w(n) is the weight; μ(n) is the step size. 

The filter parameters are adjusted by the adaptive algorithm in 

the light of error and input, aiming to minimize the error. 

The convergence condition of the LMS algorithm is 0 

<μ(n)< 1/λmax, where λmax is the maximum eigenvalue of the 

input autocorrelation matrix. The simplest way for parameter 

selection is to take the step size as a constant: μ(n) =μ (0 <μ 

<1/λmax). However, the fixed step size makes it impossible to 

achieve fast convergence, high tracking accuracy and small 

steady-state error at the same time. In other worse, the 

contradiction between convergence and stability will arise 

from the fixed step size. For instance, a high tracking accuracy 

helps to speed up the convergence, but increases the steady-

state error; a low tracking accuracy improves steady-state 

performance, but slows down convergence. 

 

3.2 LMS algorithm with variable step size 

 

To solve the contradiction between convergence and 

stability, the LMS should adopt variable step size in different 

iterative processes. The basic ideas of the LMS algorithm with 

variable step size are as follows: in the initial phase, a large 

step size is needed to speed up convergence; then, the step size 

should be reduced with the growth in convergence speed, thus 

reducing the steady-state error. 

In the existing LMS algorithms with variable step size, the 

step size is made proportional either to error or to the estimated 

cross-correlation of error and input. Practice shows that these 

algorithms can achieve fast convergence at a small tracking 

error, and effectively eliminate interferences. Besides, these 

algorithms are easy to implement with hardware, thanks to 

their small parameter size and computing load [15-16]. 

 

 

3.3 Improvement of LMS algorithm 

 

The performance of LMS algorithm in adaptive filtering can 

be evaluated accurately by three technical indices: 

convergence speed, time-varying tracking accuracy and 

steady-state error. To solve the contradiction between these 

indices, the key lies in the design of the mapping relationship 

between step size and error. 

Drawing on the abovementioned LMS algorithms with 

variable step size, this paper designs a new LMS algorithm 

with variable step size: 

 

)()()(2)1()( nXnennWnW +−=                  (3) 

 

)|)(|exp(1()( mnen  −−=                     (4) 

 

where α(>0) is the shape factor controlling the shape of 

function; β(>0) is the range factor controlling the value range 

of the function. 

 

 
 

Figure 2. Relationship curves between step size and error 

 

Figure 2 shows the relationship curves between step size 

and error at the range factor of 0.2, the shape factor of 10 and 

the exponential change factor (m) of 1, 2, 3, 4 and 6. It can be 

seen that, when m=1, the error oscillated about zero (i.e. the 

algorithm reached the steady state), and the step size fluctuated 

significantly rather than changing slowly; when m=2, the 

algorithm reached the steady state, the steps size changed very 

slowly; when m=3, the step size increased with the error in the 

initial phase of convergence and tracking, and changed slowly 

as the error approached zero (i.e. the algorithm was near the 

steady state); when m=4 and 6, the step size reached zero 

before the error approached zero (i.e. the algorithm was near 

the steady state), causing a high steady-state error, despite the 

gentle change at the bottom of the curve. 

Considering the computing load, practical performance and 

other indices, the exponential change factor was set to 2. Then, 

the variable step length can be defined as: 

 

)|)(|exp(1()( 2nen  −−=                      (5) 

 

The LMS algorithm thus designed is very simple, and 

ensures that the step size change slowly after the error is 

stabilized. However, the algorithm is so sensitive to noise that 

it cannot achieve desired results on convergence speed, 

tracking accuracy and steady-state error at a low signal-to-

noise ratio (SNR) [17-18]. 
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To overcome this defect, the step size was no longer 

adjusted by the square of the error (e2(n)), but by the 

correlation between the current error and the error of a 

previous moment e(n-D), where D is a positive integer falling 

between the time-dependent radius of the input and that of the 

noise, after the error decreases to zero after a certain period. 

Since the autocorrelation of the noise drops to zero, the noise 

has much less impact on the step size, reducing the sensitivity 

of our algorithm to noise. The improved formula for variable 

step size can be expressed as: 

 
))()(exp(1)( Dnenen −−−=                   (6) 

 

Thus, our algorithm now relies on the correlation value of 

the error e(n)e(n-D) to adjust the step size. This adjustment 

method fully considers convergence speed and steady-state 

error, and reduces the noise sensitivity of the algorithm with 

weak autocorrelation. 

As mentioned before, the convergence condition of the 

LMS algorithm is 0 <μ(n)< 1/λmax, where λmax is the maximum 

eigenvalue of the input autocorrelation matrix. Thus, the range 

factor must be smaller than λmax: β< 1/λmax. Under this 

condition, the algorithm will eventually converge, and the step 

size will gradually decline and minimize after the convergence. 

 

 
 

Figure 3. Relationship curves between step size and error of 

the improved LMS algorithm 

 

Figure 3 presents the relationship curves between step size 

and error of the improved LMS algorithm at different shape 

factors and range factors. In the initial phase of convergence, 

the absolute value of the error was large, the step size was long 

and the algorithm converged rapidly. Once the algorithm 

reached the steady state, both the absolute value of the error 

and the step size were minimized. 

It can be seen from Figure 3 that, when the initial error 

remained the same, the algorithm converged successfully with 

β< 1/λmax, and the convergence speed increased with the shape 

factor. Similarly, the convergence speed also increased with 

the range factor when the shape factor was constant. When the 

two factors were too large, however, the step size was very 

long at the convergence, despite the increase in convergence 

speed, resulting in a huge steady-state error. 

Therefore, the shape factor and range factor should be 

selected to maximize the step size corresponding to the 

absolute value of the initial error, provided that the algorithm 

can still converge. In actual practice, the two factors should be 

optimized through experiments. 

 

 

4. DISCUSSION 

 

4.1 Advantages of step size setting 

 

In our algorithm, the step size is no longer determined by 

the error in the current time, but by the correlation between the 

current error and the error in a previous moment e(n-D). This 

new method for step size setting has many advantages. For 

example, the autocorrelation error is usually close to the 

optimal value, making the adjusted step size suitable for 

application. Besides, the step size update will not be affected 

by irrelevant noise sequence. Due to the large initial adaptive 

error, the step size is long at the beginning. As the 

autocorrelation error approaches the optimal value (zero), the 

step size will stabilize at a small level. In the initial phase, the 

algorithm converges rapidly with the large step size; in the 

later phase, the tacking error can be minimized by the small 

step size. The step size becomes more accurate after 

considering the previous step sizes. Therefore, our algorithm 

can prevent the noise impacts more effectively than the 

traditional LMS algorithm [19-20].  

 

4.2 Application in adaptive noise cancellation (ANC) 

system 

 

In EPD systems, the received signals often contain many 

noises, which pushes up the bit error ratio. These signals 

should be denoised adaptively with the optimal filter. The 

optimal filter can be fixed or adaptive. A fixed filter needs to 

know the statistical properties of signals and noises, while the 

adaptive one requires no or little such knowledge. 

The ANC system is responsible for enhancing the SNR 

through noise suppression or attenuation. The basic principle 

is to remove the noises from the noisy signals, in contrast to 

the desired output. The noise removal is known as noise 

cancellation, which relies on the correlation between the noisy 

signals and desired output. But the noises cannot be eliminated 

if the noisy signals are unrelated or weakly correlated. The 

residual noises will interfere with the filter and affect the 

adaptive algorithm. 

Our algorithm provides a desirable way to solve this 

problem. The algorithm can distinguish between strong 

correlation noise and unrelated and weakly correlated noise. 

Here, the former is called additive noise signal n0 and the latter, 

the noise signal v.  

 

 
 

Figure 4. The ANC mechanism of our algorithm 

 

The ANC mechanism of our algorithm is illustrated in 

Figure 4, where n1 is the reference input. The main input 

contains the useful signal s to be extracted, the additive noise 

signal n0 and the noise signal v. The useful signal is not 

correlated with the noise signal, the additive noise signal or the 

reference input; the additive noise signal is related to the 

reference input, but not to the noise signal. The useful signal, 

the noise signal, the additive noise signal and the reference 

input are all zero mean signals. Hence, the output of the ANC 

system can be expressed as: 

 

)()()( 0 nyvnnsne −++=                         (6) 
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Since useful signal is not correlated with the noise signal, 

the additive noise signal or the reference input, the 

mathematical expectation can be obtained by squaring both 

sides of equation (6): 

 

])[(])[()( 2

0

22 ynEvsEeE −++=                  (7) 

 

The term E[( s+v)2] is not affected by the adjustment of filter 

parameters to minimize the E(e2). Thus, the minimum output 

energy can be described as: 

 

])[(])[()( 2

0min

22

min ynEvsEeE −++=             (8) 

 

The filter output y is the best estimate of the additive noise 

signal, for E[( s+v)2] is minimized at the minimal E(e2). As 

mentioned before, the error equals the difference between the 

output and desired output: e(n)=d(n)-y(n). In ideal conditions, 

the output equals the additive noise signal, and the error equals 

the useful signals. Hence, the error will infinitely approximate 

the useful signal.  

If the application environment contains heavy noises, the 

noise signal v will have a great impact on the performance of 

the LMS algorithm. In this case, the traditional LMS algorithm 

cannot reach the optimal solution but oscillate about it. In our 

algorithm, the step size is adjusted by the correlation between 

the current error and the error of a previous moment e(n-D). In 

this way, our algorithm is no longer sensitive to noise while 

retaining the advantages of the traditional algorithm. 

 

 

5. SIMULATION AND RESULTS ANALYSIS 

 

To verify its noise cancellation effect, our algorithm was 

applied to a simulation with an eight-stage finite impulse 

response (FIR) filter. The reference input to the adaptive filter 

was represented by a random number n1=randn(N,1), and the 

useful signal was set to s=sin(2*PI*10*t). Thus, the desired 

output d(n) is the sum of the useful signal and the reference 

input. The number of samples were set to 1,000 and the initial 

weight was set to zero.  

 

 
 

Figure 5. Input and output of the filer 

 

The simulation results are shown in Figures 5~6. The output 

was compared with the noisy signal and the useful signal, 

revealing that our algorithm completely removed the noises 

and restored the useful signal. Then, the discrete signals above 

were subjected to fast Fourier transform, producing their 

curves in the frequency domain (Figure 7). Obviously, our 

algorithm retained the useful signal and suppressed the 

frequency spectrum of the noises. In addition, our algorithm 

converged after fewer than 100 iterations, and controlled the 

steady-state error well. The simulation results show that our 

algorithm can converge rapidly with a good stability, and 

eliminate the noises in received signals. 

 

 
 

Figure 6. Filtering effect in time domain 

 

 
 

Figure 7. Filtering effect in frequency domain 

 

 

6. CONCLUSIONS 

 

This paper improves the traditional LMS algorithm with 

variable step size for adaptive filtering. Through the 

improvement, the step size is no longer adjusted by the square 

of the error (e2(n)), but by the correlation between the current 

error and the error of a previous moment e(n-D). In this way, 

the algorithm becomes less sensitive to the noise with weak 

autocorrelation, which is conducive to the adaptive filtering of 

noises. Our algorithm was verified through an ANC simulation. 

The results demonstrate the excellent steady-state 

performance and noise suppression effect of our algorithm. 
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Our algorithm solves the inherent contradiction of the LMS 

algorithm with fixed step size: the inability to achieve fast 

convergence, high tracking accuracy and small steady-state 

error at the same time. More importantly, our algorithm 

converges faster than the existing LMS algorithms with 

variable step size. The excellent performance is achieved with 

a simple structure and easy implementation steps. Therefore, 

our algorithm can be applied to many other fields of adaptive 

filtering, such as adaptive system identification and adaptive 

signal separation. 
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