
 

 
 
 

 
 

 
1. INTRODUCTION  

Fluid flow and heat transfer in porous media have a 
considerable impact in the practical applications in various 
fields such as thermal insulation, geothermal engineering, 
petroleum manufactures, solid matrix heat exchangers, 
petroleum manufactures, energy maintenance, grain storage 
devices, groundwater hydrology, ceramic processes, 
petroleum reservoirs, coal combustors, chemical catalytic 
reactors, groundwater hydrology, cooling of electronic 
systems and numerous others. Also, the study of boundary 
layer flow and heat transfer over stretching surfaces in porous 
media is particularly relevant due to increasing applications 
in industries, namely electronic chips, fiber, paper production, 
liquid films in intensification processes and sketching of 
plastic films. A reliable studies to this fascinating topic along 
with the theoretical patterns or experimental data is well 
authenticated in the literature [1-4]. 

The analysis of nanofluids have received a prominent 
attention because of their tremendous spectrum of 
applications including sterilization of of medical suspensions, 
nano-material processing, automotive coolants, microbial 
fuel cell technology, polymer coating, intelligent building 
design, microfluid delivery devices and aerospace tribology 
[5]. The term nanofluid, first coined by Choi [6], refers to a 
liquid containing a dispersion of submicron solid particles 
(nanoparticles) having higher thermal conductivity in a base 
fluid. It is noticeable that these nanoparticles are taken 
ultrarefine (i.e. length of order 1-50nm), thus nanofluids 
seem to conduct more like a single-phase fluid than a solid-
liquid suspension. The nanoparticles utilized in nanofluids 
are usually made of chemically stable metals, oxides, 

carbides, nitrides, or non-metals, and the base fluid is 
generally a conductive fluid, such as water, oil (and other 
lubricants), ethylene glycol (or other coolants), bio-fluids, 
polymer solutions and other common fluids. Because of the 
enhanced heat transfer characteristics and useful applications, 
numerous investigations has been made on nanofluid under 
various physical circumstances. The investigation of 
supplemental heat transfer mechanisms in the convective heat 
transfer applications was further found in [7-11]. A reliable 
studies to this fascinating topic along with the theoretical 
patterns or experimental data is well authenticated in the 
literature [12-29]. 

Motivated by the above referenced works, the intent of the 
current investigation is to examine the impact of anisotropic 
slip on unsteady three-dimensional flow of nanofluid along a 
stretching surface in a porous medium under convective 
boundary condition. The governing equations are solved 
computationally using finite-difference method [30], and the 
impacts of slip factors, Biot and Darcy numbers on flow and 
convective heat transfer are discussed with corresponding 
figures. 

 
 

2. MATHEMATICAL FORMULATION   
 
Consider the unsteady, laminar, three-dimensional flow of 

nanofluid over a semi-infinite inclined surface embedded in a 
porous medium and subject to anisotropic slip and convective 
boundary condition impacts. The surface is considered to be 
linearly stretched in the x-orientation with a velocity bx and 
the y-orientation is inclined at an angle Ý to the horizontal 
line, whilst the z-orientation is perpendicular to the plate 
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Keywords: Anisotropic Slip, Unsteady Free Convection, Porous Medium, Nanofluids, Convective 
Boundary Condition. 



 

surface. In addition, it is assumed that the plate surface is 
maintained by convective heat transfer at a certain value Tf, 
while the temperature of the ambient nanofluid is TÐ such 
that Tf > TÐ. The flow model and physical coordinate system 
are displayed in Fig. 1. The thermophysical properties of a 
nanofluid are presented in Table 1.  

 
Table 1. Thermophysical properties of water and Cu 

nanoparticles at 25o [11]. 
 

Property Pure water Copper (Cu) 

r (kg m-3) 997.1    8933 

Cp (Jkg-1 K-1) 4179     385 

k (W m-1 K-1) 0.613  401 

b (K-1) 21 × 10-5  1.67 × 10-5 

 
The nanofluid properties is constant except the density in 

the buoyancy terms of the balance of momentum equations in 
x- and y-orientations. Under the above assumptions, the 
boundary layer equations governing the convective flow and 
heat transfer of the present investigation are [31] 
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Figure 1. Flow model and physical co-ordinate system 
 

The appropriate boundary conditions for this problem are 
defined as follows, 
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where x, y, and z are the Cartesian coordinates. u, v, w, P and 
T are the fluid velocity components in the x-, y-, and z- 
orientations, pressure and nanofluid temperature, respectively. 

g*, b, t, and W are the gravitational acceleration, constant 
having units of inverse time, dimensional time, ambient 
concentration, and the inclination angle, respectively. N1 and 
N2 are the velocity slip coefficients in the x and y orientations, 

respectively. hf is the heat transfer coefficient. bnf is the 
thermal expansion coefficient of the nanofluid; ɟnf is the is 
the effective density of the nanofluid, ɛnf is the effective 
dynamic viscosity of the nanofluid and Ŭnf is the thermal 
diffusivity of the nanofluid, (ɟCp)nf is the heat capacitance of 
nanofluid, (ɟɓ)nf is the thermal expansion coefficient of the 
nanofluid which are given by [11]; 
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Here, f is the solid volume fraction parameter, mf is the 
dynamic viscosity of the basic fluid, ɓf  and ɓs are the thermal 
expansion coefficients of the base fluid and nanoparticle, 
respectively, ɟf  and ɟs are the densities of the basic fluid and 
nanoparticle, respectively, knf is the effective thermal 
conductivity of nanofluid which is given as; 
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where, ks is the thermal conductivity of the nanoparticles and 
kf  is the thermal conductivity of base fluid.  

Introducing the following non-dimensional quantities;  
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In view of the Eqn. (9), the basic field of Eqns. (1)-(6) with 

Eqns (7)-(8) can be expressed in dimensionless form as; 
 

2 1

1 0
2

f
f f ff f f

Da

h
t t

t

¡G µå õ
¡¡¡ ¡¡ ¡¡ ¡ ¡G + + - - - =æ ö

µç ÷
,              (10)  

 



 

1

1 2 0
2

g
g g fg f g g

Da

h
t q t

t

G µå õ
¡¡ ¡ ¡ ¡G + + - - +G - =æ ö

µç ÷
,        (11) 

 

1

1 2 0
2

h
h h fh h

Da

h
t q t

t

G µå õ
¡¡ ¡ ¡G + + - +G - =æ ö

µç ÷
,                   (12) 

 

1

3 1

1
( ) 0

2 2

f
G f f f ff f

Da

h
f t t

t

G µå õ
¡ ¡¡ ¡ ¡G +G + - + - - =æ ö

µç ÷
  (13) 

 

4 0
Pr 2

nf

f

k
f

k

h q
q q t q t

t

å õG µ
¡¡ ¡ ¡+ + - =æ ö

µç ÷
,                               (14) 

 
where Eq. (1) is identically satisfied. In Eqs. (10)-(14), a 

prime denotes partial differentiation with respect to h, and 

the parameters G1, G2, G3 and G4 are given by;  
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The transformed boundary conditions become 
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In the above equation parameters; Da, d1, d2, d, Bi, Pr are 
respectively the Darcy number, slip factors, slip ratio , Biot 
number, Prandtl number and dimensionless time.  

The quantities of the physical interest are the local skin 
friction coefficients in the x- and y-orientations and local 
Nusselt number which are an important parameters 
commonly used in fluid mechanics. The non-dimensional 
forms of these quantities are defined as [31]; 
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where * 3 2( ) /x f f fGr g T T xb u¤= - and 2Re /x fbx u= are 

the local Grashof and Reynolds number, respectively. 
It is noteworthy to mention that by substituting 

,Da Bi ­¤ , f=0 and d1=d2=0 in Eqs. (10)-(15), the 

problem is reduced to the transient flow of regular fluid and 
heat transfer over an inclined stretching sheet which is 
discussed previously in [31]. 

 
 

3. SOLUTION MET HODOLOGY  

 
The system of non-linear equations (10)-(14) with the 

pertinent boundary conditions Eqs. (17) has been solved 
numerically using the implicit finite-difference method 
identical to that reported by Blottner [30]. This numerical 
scheme has several coveted features that make it convenient 
for solution of parabolic partial differential equations. These 
features contain a second order accuracy with arbitrary Ű and 
ɖ spacing, letting very quick Ű variation and easy 
programming of the solution for large number of coupled 
equations. Due to the nonlinearities of the governing 
equations, an iterative solution technique is desired to solve 
the resulting system of nonlinear algebraic equations, in this 
work Thomas algorithm (see Blottner [30]) is employed. The 
convergence criterion used is based on the difference 
between the new and the old iterations. When this difference 
approached 10-6 the solution is supposed converged and the 
iteration process is terminated. A grid independence study 
was carried out to examine to impact of the step size ȹɖ and 
ȹŰ and the limit of the boundary layer ɖÐ and the maximum 
of the dimensionless time Ű on the solution in order to 
optimize them. Based on the optimization study the 
computational domain is divided into 501 and 196 nodes in 

the Ű and h orientations and the initial step sizes employed 

were Dh1=0.001 and DŰ1= 0.01 and the growth factors were 

Kh= 1.0375 and KŰ= 1.0 such that Dhn = Kh Dhn-1 and DŰ m= 

KŰ DŰ m-1. This gave the maximum value of h (h¤) which 
represented the ambient conditions was assumed to be 35 and 
the desired value of Ű (ŰÐ) in this case was equal 5.0. The step 
sizes employed were arrived at after performing numerical 
experimentations to assess grid independence and ensure 
accuracy of the results. In order to verify the accuracy of 
present method, the current results are compared with the 
results obtained by Chamkha [31] in Fig. 2 for various values 

of Pr at f=0,
 

,Da Bi ­¤, d1=0 and d2=0.  
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Figure 2. Comparison between present results and 
Chamkha [31]. 



 

As we can see form this Fig., the results are found in a 
good agreement with these results. 

 
 

4. RESULTS AND DISCUSSION 
 
In order to gain a clear physical insight of this 

investigation, the impact of the Darcy number Da, solid 

volume fraction parameter f, slip factors ŭ1 and ŭ2, and Biot 
number Bi on the profiles of nanofluid velocity components, 
pressure and temperature as well as the local skin-friction 
coefficients in the x and y orientations Cfx and Cfy, and the 
local Nusselt number Nux are presented in Figs. 3-8. The 
current numerical investigation is carried out for copper-
water nanofluid as working fluid and the value of Prandtl 
number Pr of  base fluid (water) is kept constant at 6.2.  

Figs. 3(a)-3(e) visualize the impact of the Darcy number 
on the profiles of nanofluid velocity components in x-

orientation ( , )f t h¡ and ( , )g t h, velocity component in y-

orientation ( , )ht h, pressure ( , )G t h, and temperature 

( , )q t h, respectively. It is noteworthy to mention from the 

definition of Da, that the value of Darcy number measures 
the extent of the permeability of porous medium, that is the 
existence of a porous medium in the flow provides resistance 
to flow, thus, this resistive force leads to a considerable 
decelerate the motion of the nanofluid along the stretched 
surface. This is appeared in Figs. 3(a)-3(e) by increasing the 
Darcy number Da from 0.001, 0.01,1 (very high permeability) 
to 10 (weak permeability) clearly induces a pronounced 

enhancement in the x-velocity components (f ¡and g) and y-
velocity component h, i.e., accelerates the flow. In addition, 
the variations in velocities are maximized some distance 
from the wall, towards the free stream. As such the nanofluid 
acceleration towards the edge of the boundary layer is less 
impeded by wall effects here. Also, evolution in Da implies 
to damp the Darcian drag force, due to the inverse 
relationship in Eqs. (10)-(13); porous drag force is therefore 
progressively lowered with an evolution in permeability, i.e., 
Darcy number, which serves to promote the flow velocities in 
the regime. Subsequently, these promotes in the flow have a 
tendency to a robust dwindling in both of temperature and 
pressure profiles. In addition, it is interesting to note that an 
increment in the values of Da are followed by corresponding 
rise in all hydrodynamics boundary layers and slight 
diminution in thermal boundary layers thickness.  
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Figure 3. Impact of Darcy Number Da on (a) fluid 

velocity of x-orientation (f ¡), (b) fluid velocity of x-
orientation (g), (c) fluid velocity of y-orientation (h), (d) 

pressure profiles (G), (e) fluid temperature (q). 
 

 
 
 



 

Figs 4(a)-4(d) demonstrate the impact of Darcy number Da 
upon variation in skin-friction coefficients in the x- and y- 
orientations Cfx and Cfy and local Nusselt number Nux, 

respectively, against the dimensionless time t. As seen from 
the definitions of Cfx, Cfy and Nux, they are directly 

proportional to ( ,0)f t¡¡ , ( ,0)g t¡ , ( ,0)h t¡ and ( ,0)q t¡- , 

respectively. it is manifested from these Figs. that there are 
two opposite behaviors for the local skin-friction coefficients 
and local Nusselt number. These behaviors are clarified by 
the reduction in the skin-friction coefficient in the x-

orientation ( ,0)f t¡¡ and a huge enhancement in either the 

skin-friction coefficients in the x- and y-

orientations ( ,0)g t¡ , ( ,0)h t¡ and the Nusselt 

number ( ,0)q t¡-  as a result of rising the Darcy number Da. 
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Figure 4. Impact of Darcy Number Da on (a) the skin-

friction coefficient in the x-orientation ( ,0)f t¡¡ , (b) skin-

friction coefficient in the x-orientation ( ,0)g t¡ , (c) skin-

friction coefficient in the y-orientation ( ,0)h t¡ , (d) wall heat 

transfer ( ,0)q t¡- . 

 
This is due to the fact that the increment in the flow 

velocity components close to the wall with decreasing the 
nanofluid temperature as Da enlarges, causing the wall slope 
of the fluid linear velocity and the negative wall slope of the 
temperature profiles to grow. On other hand, both the local 
skin-friction coefficients and Nusselt number become lower 

at the dimensionless time t=0 and they are larger with high 

values of t. 
Figs. 5(a)-5(e) depict the influences of slip factors ŭ1 and 
ŭ2 on dimensionless nanofluid velocity components, pressure 
and temperature profiles, respectively. It is apparent from 
these Figs. and based on the definition of slip ratio that an 
elevation in the slip factors ŭ1 and ŭ2 results in a considerable 

reduction in both the x-velocity component f ¡and pressure 
profiles G, while a reverse trend occurred with the profiles of 
velocity of x-orientation (g), fluid velocity of y-orientation 

(h), and nanofluid temperature q. This is due to the fact that a 
rising the values of the velocity slip parameters have a 
tendency to accelerate the flow along the y-orientation which 
is inclined to the horizontal line, whereas a reverse trend 
occurred along the stretched surface in the x-orientation. This, 
in turn, produces a sufficient depress in x-velocity component 
and a strong promotes occurs in the fluid velocity profiles in 
y-orientation and temperature. There will be a corresponding 
increase in the hydrodynamics and thermal boundary layer 
thickness. These behaviors are clearly shown in Figures 5(a)-
5(e).  
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Figure 5. Impact of slip factor ŭ1 on (a) fluid velocity of x-

orientation (f ¡), (b) fluid velocity of x-orientation (g), (c) 
fluid velocity of y-orientation (h), (d) pressure profiles (G), (e) 

fluid temperature (q). 
 

The variations of the skin-friction coefficients and local 
Nusselt number with different values of slip factors ŭ1 and ŭ2 
are respectively, shown in Figs 6(a)-6(d). It is noteworthy to 
mention that an augmentation in the slip factors ŭ1 and ŭ2 

implies a noticeable reduction in all the local skin-friction 
coefficient and Nusselt number. This result was predicted 
because the increment in the velocity slips elucidate a 
considerable acceleration in the flow along the y-orientation 
with maximization in the hydrodynamics and thermal 
boundary layers thickness, as depicted in Figures 5(a)-5(e). 
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Figure 6. Impact of slip factor ŭ1 on (a) the skin-friction 

coefficient in the x-orientation ( ,0)f t¡¡ , (b) skin-friction 

coefficient in the x-orientation ( ,0)g t¡ , (c) skin-friction 

coefficient in the y-orientation ( ,0)h t¡ , (d) wall heat 

transfer ( ,0)q t¡- . 



 

Figs. 7(a)-7(e) elucidate the influences of solid volume 

fraction parameter f and Biot number Bi on the nanofluid 
velocity components, pressure and temperature profiles, 
respectively. it is noteworthy to mention that a raise in the 

solid volume fraction parameter f results in a considerable 
decrease in all the velocity components and pressure profiles. 
Moreover, the nanofluid temperature reduces near the 
stretched surface with the enhancement in the solid volume 

fraction parameter f, whereas the opposite behavior occurs 
with temperature after finite distance in the free stream. This 
consistency with the physical behavior that increasing the 
volume of nanoparticles implies a high thermal conductivity 
of nanofluid (see Table 1), consequently the thermal 
boundary layer thickness increases. The cause for this 
outcome is that an increment in the volume fraction produces 
a high-energy transport through the flow associated with the 
irregular motion of the ultrafine particles. On other side, the 
enhancement in the Biot number Bi causes a huge increase in 
either the fluid velocity of x-orientation (g), the fluid velocity 
of y-orientation (h) or temperature profiles. The cause for this 
behavior is that, a large value in Biot number yields a great 
surface convective which in turn provides more heat to the 
stretching surface and as a consequence of the temperature 
difference between the surface and the nanofluid will 
increase. As an outcome, the velocity as well as the wall 
temperature and thermal boundary layer thickness magnifies 
due to the enlargement in the values of Bi. Moreover, it is 
noteworthy to mention that the changes in Bi cause no effects 

on the behaviors in both the x-velocity components f ¡and 
pressure profiles G due to the governing equations (11), (14) 
and (15) which are uncoupled from the other equations. 
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Figure 7. Impact of solid volume fraction parameter f on 

(a) the fluid velocity of x-orientation ( ), (b) fluid velocity 
of x-orientation (g), (c) fluid velocity of y-orientation (h), (d) 

pressure profiles (G), (e) fluid temperature (q). 
 
Finally, Figs. 8(a)-8(d) exhibit the impact of the solid 

volume fraction f and Biot number Bi on the local skin-
friction coefficients and Nusselt number. It is manifested that 
an increment in the solid volume fraction tends to damp the 
skin-friction coefficients and the Nusselt number, whilst the 
reverse behavior happens with the increase of Biot number Bi. 
This phenomenon is true even in the increase of solid volume 

fraction f, which, results in a increase in the thermal 
boundary layer thickness, associated with considerable 
decrease in the wall shear stress adjacent to the stretching 
surface with a decrease in the wall temperature gradient, and 
hence produces a sufficient reduction in the local Nusselt 
number. Furthermore, It is manifested that an increasing in 
the value of Biot number Bi has a tendency to increase both 
the local skin friction coefficients and local Nusselt number. 
The reason for this behavior is that as Bi increases, the cold 
nanofluid on stretched surface is convectively heated and 
thus, the flow velocity rises, which in turn enhances in the 
gradients of velocity components and temperature. 


