
1. INTRODUCTION

Variable thermal conductivity heat transfer occurs in many 
engineering applications. Examples of combined conduction 
and radiation problems in which the change of temperature 
and hence the variation of thermal conductivity are large, 
includes heat transfer in furnaces, boilers, porous burners or 
even volumetric solar receivers [1]. In all those heat transfer 
problems, temperature varies over a wide range. Thus the 
assumption of constant thermal conductivity provides less 
accurate results [2, 3]. 

The Lattice Boltzmann Method (LBM) has achieved 
considerable success in simulating various transport 
phenomena in last two decades [4]. It’s a mesoscopic 
approach based on the kinetic theory and the integro-
differential Boltzmann equation [5]. Its main asset is its 
simple algebraic manipulation, its easy solution procedure 
and implementation of boundary conditions, together with its 
ability of dealing with complex fluids [6], phase change 
phenomenon [7] and nanofluids [8], etc. In order to benefit 
from some known LBM advantages and to correctly deal with 
variable thermal conductivity problems, some refinements has 
to be done. Knowing that when solving such problems, the 
relaxation time is important, one have to be careful in 
implementing the correct expression of the relaxation time 
expression. 

Talukdar and Mishra [9] investigated the effect of variable 
thermal conductivity on transient conduction and radiation 
heat transfer in a planar medium with the lattice Boltzmann 
method for solution of the energy equation and with the 
discrete transfer method (DTM) for the radiative information. 

To account for the variation in thermal conductivity with 
temperature, the authors used a time linearization technique 
based on updated values of temperature calculated with data 
available from a previous iteration.  

Mishra et al. [10] solved combined conduction-radiation 
heat transfer problems by means of the lattice Boltzmann 
method and investigated the variation effect of thermal 
conductivity as well as refractive index on temperature 
distribution at steady state. To deal with variation in thermal 
conductivity a modified relaxation time expression was used. 

Hazi and Markus [11] proposed in their work to use the 
lattice Boltzmann method to simulate classical heat transfer 
problems of supercritical fluids. They considered a 
supercritical fluid layer between two plates and investigated 
the piston effect by simulating heat transfer in a supercritical 
fluid layer near the critical point. To account for the variable 
part of the thermal conductivity, they considered a different 
expression of the equilibrium distribution function by adding 
an extra term to this function.  

In this paper, we apply the idea proposed by [11] to 
correctly treat variation in thermal conductivity by a modified 
expression of the equilibrium distribution function used in 
collision step of the lattice Boltzmann method. First 
benchmark problems involving radiation and/or conduction 
with constant thermal conductivity are simulated. Then we 
consider the case of variable thermal conductivity with 
temperature in solving coupled conduction-radiation 2D heat 
transfer problem and natural convection in 2D differentially 
heated enclosure. 

The paper is organized as follows. In section 2, we present 
the different cases of benchmark problems solved by means 
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of the modified thermal lattice Boltzmann method. The 
formulation of solving radiative transfer equation by lattice 
Boltzmann method is presented next. In section 3, the 
benchmark problems are presented with detailed boundary 
conditions. Simulation results are also presented in this 
section. Section 4 concludes the paper. 

2. MATHEMATICAL FORMULATION

We consider the following cases of benchmark problems: 
-Case 1: In this case, the boundaries of the 2-D rectangular

medium (Figure 1a) are the known radiation source and 
temperature of the absorbing, emitting and scattering medium 
is unknown. Further, heat fluxes along the enclosure 
boundaries are also unknown. Enclosure boundaries can be at 
arbitrary temperatures. This case belongs to a benchmark 
radiative equilibrium problem in which, in comparison to 
radiation, conduction and convection modes are insignificant.  

-Case 2: Initially at t = 0, the 2-D rectangular system is at

temperature T0 and for time t  0, the south boundary is raised 
and maintained at a higher temperature Ts = 2 T0 (Figure 1b). 
Uniform volumetric heat generation source may be present in 
the enclosure. In this case, along with radiation, effect of 
conduction is also important. This is a benchmark 2-D 
conduction-radiation problem that has been investigated by 
many researchers. All four boundaries are diffusing and gray. 

-Case 3: For this case, we adopt a variable thermal

conductivity,  which is a linear function of temperature 

 '

0 ref
T T    

(1)

where 0 is the thermal conductivity at reference temperature 

Tref, ' is the coefficient of thermal conductivity variation. The 
heat transfer problems under consideration for the variation 
of thermal conductivity with temperature, includes transient 
conduction-radiation in square enclosure and heat transfer by 
natural convection with heat generation rate. 

It is to be noted that to ensure that the flow is fully in the 
incompressible regime, Ma should satisfy incompressible 
limit. Given that, the characteristic velocity in thermal 
convective flows which is defined as  

Pr

Ra
U g TL
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(2)

The Mach number based on U should be small in order to 
comply with incompressible approximation of the flow and 
also the stability criterion on the viscosity ν [12]. 

Suppose that U cs Ma for some critical Mach number Ma 

(usually Ma0.3), and cs is the speed of sound, then the 

viscosity  has the following upper bound given by  

3 PrRa MaL     (3) 

where the length L is measured in the lattice unit Δx=1 

2.1 LBM for variable thermal conductivity 

For computation of temperature field, the governing lattice 
Boltzmann equation is given by [13] 
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where fi is the particle distribution function, 
i

e is the 

microscopic velocity, 
t
  is the relaxation time and eq

i
f is the 

equilibrium distribution function. 
For the D2Q9 lattice (Figure 1b) used in the present work, 

the relaxation time 
t
  is computed from [13] 
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For the case where the conductivity is a function of 
temperature, the equilibrium distribution function needs to be 
modified as below [11] 
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where D is the variable part of the thermal diffusivity, which 
can be set as a function of the position, time temperature and 
any of the dependent flow parameter. 

Figure 1. (a) Geometry and the coordinates of the problem 
under consideration, (b) physical problem with Dirichlet 

boundary conditions, (c) physical model for natural 
convection (d) D2Q9 lattice structure (e) coordinate used in 

solving radiative transfer equation 

2.2 LBM for density and velocity field 

For computation of density and velocity field, the 
governing lattice Boltzmann equation is given by [13] 
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where gi is the particle distribution function, ie is the 

microscopic velocity,  is the relaxation time, eq

ig is the 

equilibrium distribution function, and F is the external force 
term. 

For the D2Q9 lattice (Figure 1d) used in the present work, 

the relaxation time  is computed from [13] 
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with Prandtl number Pr and Rayleigh number Ra known, 
the kinetic viscosity v appearing in Equation (8) is computed 
from simultaneously solving the following two equations: 

Pr =


 (9) 
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where   is the thermal diffusivity, 
t

  is the coefficient of 

thermal expansion, g is the acceleration due to the gravity, Th 
is the hot wall temperature, Tc is the cold wall temperature, 
and H is the height and width of the cavity. 

The equilibrium function for the density distribution 
function is given as 

    29 3
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ie the lattice speed for the D2Q9 model are given by 
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For the D2Q9 model the weights are given by 
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2.3 LBM for thermal field 

In the presence of volumetric radiation, for a 2-D 
rectangular enclosure containing a radiating-conducting 
medium, the governing energy equation, reads 

.p R

T T T
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where   and pC are the density and the specific heat, 

respectively. The last term in energy equation stand for the 
radiative source term, which is the divergence of radiative 
heat flux 

4

. 4R

T
q k Ga





  

  
   
           (14)

where ka, T and G, are the absorption coefficient, the 
temperature and the volumetric incident radiation, 
respectively. The expression of the volumetric radiation G is 
given in the next section. 

Substituting for   from Equation (1) into Equation (13), 

we get 
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For generality, we use dimensionless parameters, viz. 

distance r 
, time  , temperature  , conduction-radiation 

parameter N, incident radiation G+, radiative heat flux 
R , 

heat generation g   and variable part of thermal conductivity 

  defined as: 
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In dimensionless form, Equation (14) becomes 

 
2 2

2 2 2

22

2

1
1 1

1
. R

x y

g
x y N

  
 

 

  




 



 

  
   

  

 
    

 

 
    

 

   
    
      (17)

where 

  4
. 1
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In the LBM, the equivalent form of the energy equation 
(Equation (13)) is given by [14-16] 
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Once the values of if over all directions are known, in a 

conduction-radiation problem, temperature T is calculated 
from the following 
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In dimensionless form, Equation (19) becomes 
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The dimensionless relaxation time t


is given by 
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where 
r






 , is the dimensionless velocity. 

The new temperature field is obtained with summing the 
non-dimensional distributions function as follow 
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2.4 LBM for radiative transfer equation 

The LBM formulation for the radiative transfer equation is 
given as follows [17] 
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With the assumption of isotropic scattering,  'p Ω,Ω = 1 , 

Equation (24) can be written as 
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The transient equation for the discrete direction is 
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4

D I Gi i e I i Mi
Dt




  
 
 
  (26)

M is the total number of discrete lattice direction. For the 
D2Q8, D2Q16 and D2Q32, lattices shown in (Figure 2) M=8, 
16 and 32 respectively. Equation (26), in lattice Boltzmann 
form is as below [17] 
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Assuming a relaxation time 
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 , Equation (27) is 

written as follows 
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The equilibrium distribution function in Equation (28) is 
given by [17] 

1

Nv

i

eq

i I wi giI



(29)

The weights wgi in Equation (29) are given by [18] and 
[17] and are depicted in Figure 2
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The radiative heat flux in x- and y-direction, are given by 
[18] 
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Figure 2. Schematic of the lattices D2Q8: 1–8, D2Q16: 1–
16 and D2Q32: 1–32 directions used for calculation of 

radiative information [18] 

The corresponding weights in Equation (31) are given by 
[18] 
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3. RESULTS

3.1 Radiative equilibrium 

When dealing with the first case (radiative equilibrium), 
the grid mesh used is (101  101) [17]. For this case we 
assume that the south boundary is raised at a temperature Ts 
and the other three boundaries are cold and black. We define 
the dimensionless heat flux and emissive power, respectively 
as: 

4
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R

s
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4

4

s

T
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(33)

Dimensionless centerline emissive power   distribution 

for two values of the extinction coefficient, 3.0   and 

5.0   have been compared in Figure 3(a)-(b), respectively. 

Results of the LBM and FVM [19] are in very good 
agreements. 

Figure 3. Comparison of the centerline 0.5,
x

y

X


 
 
 

emissive power   for (a) 3.0  , (b) 5.0   

In Figure 4, results of the dimensionless heat flux 
R



obtained from the LBM, is compared with that of the FVM 
[19]. In this figure, comparison has been made for, 3.0   

and 5.0  . It is seen that for all the cases, the LBM and the 

FVM results are in good agreements. In Figure 5, the 
distribution of the dimensionless temperature in the square 
enclosure for 3.0   is highlighted.  

Figure 4. Comparison of radiative heat flux 
R

 along the 

bottom (hot) wall for different values of the extinction 
coefficient   

Figure 5. Distribution of the dimensionless temperature in 
the square enclosure for 3.0   

3.2 Combined conduction-radiation 

Table 1. Comparison of steady-state centerline temperature at 

three locations in a black square enclosure 1.0  , 0.0   

N Centerline 



at y Y 

Ref. 

[13] 

Ref. 

[20] 

Ref. 

[21] 

LBM-
LBM 

(Present) 

1.0 0.3 0.733 0.737 0.737 0.737 
0.5 0.630 0.630 0.630 0.630 

0.7 0.560 0.560 0.564 0.564 

0.1 0.3 0.760 0.763 0.759 0.759 

0.5 0.663 0.661 0.663 0.662 

0.7 0.590 0.589 0.594 0.596 
0.01 0.3 0.791 0.807 0.789 0.806 

0.5 0.725 0.726 0.725 0.723 
0.7 0.663 0.653 0.666 0.666 

To validate our codes we consider at first, the case of 
constant thermal conductivity 0.0  . We provide steady-

state results for dimensionless temperature  with those 

available in References [13, 20, 21]. With 1.0  and 

0.0  . This validation has been shown for three values of 

the conduction-radiation parameter N. Centerline temperature 

 distribution has been compared at three locations along the

centerline (Table 1). Next in Figure 6(a) and 6(b), the effect
of scattering albedo   and extinction coefficient, on

dimensionless steady-state temperature distribution along the
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centerline 0.5,
x

y
X

 
 

 
 are shown, respectively. After, 

Figure 7(a)-(d) highlights the effect of conduction-radiation N 

and hot wall emissivity 
s . 

Figure 6. Comparison of the steady state centerline 

temperature T T
ref

   for different parameter with those 

obtained by [19] (a) 0.1, 1.0, 1.0N s     and different

values of scattering albedo  , (b) 0.1, 0.0, 1.0N      

and different values of hot wall emissivity s

With fixed values of the extinction coefficient 1.0   and 

conduction-radiation parameter, N=0.1, the increase in   

makes the medium scatter more and tend to the case of the 
conduction phenomenon domination [Figure 6(a)]. In Figure 
6(b), effect of hot wall emissivity is provided. 

When radiation overcomes conduction [Figure 7(b)] (the 

case of  0.01N  the SS is attained fast and the temperature 

profile became nonlinear which is well observed in Figure 

7(a). With increase in values of N , we tend for a medium 

where the effects of radiation and conduction are the same 
 1N   [22]. The extinction coefficient which is the sum of the 

scattering albedo and the absorption coefficient represent the 
amount of attenuation by two different mechanisms: 
absorption and out-scattering. The higher the value of   , the 

more optically participating the medium is. In Figure 8(a), 

non-dimensional   distributions are plotted for the extinction 

coefficient 1.00.01, 0.1and  , respectively. For these 

results 0.0   and 0.1n  , we can observe the effect of 

increasing in value of extinction coefficient in making the 
medium go for domination of radiation over conduction.  

Figure 7. Steady state centerline temperature T T
ref

   for 

different parameter (a) 0.0, 1.0, 1.0
s

     and different 

values of conduction-radiation parameter N, (b)-(d) the 
corresponding isotherms 
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Figure 8. Steady state centerline temperature T T
ref

   for 

different parameter (a) 0.0, 0.1, 1.0N
s

    and

different values of extinction coefficient  , (b)-(d) the 

corresponding isotherms 

We investigate also the effect of heat generation [Figure 
9(a)-(e)]. Heat generation will increase the non-linearity of  

temperature profile. Heat generation in the medium increases 
the effect of radiation. That’s why, when g+ increases, 
nonlinearity in the Steady-State profile will increase. For the 
results plotted in Figure 9(e), since heat generation is very 
intense near the hot boundary, dimensionless temperature is 
found to go beyond the unity value. 
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Figure 9. (a) Steady state centerline temperature T T
ref

 

for different parameter 0.0, 0.1, 1.0N
s

    and

different values of heat generation rate g , (a)-(d) the

corresponding isotherms 

3.3 Variable thermal conductivity 

In this section, the variable Thermal conductivity case is 

adopted. In Figure 10(a)-(c), the effect of '
T N
ref

   on 

temperature profile along the centerline  0.5x L  are 

shown. The results are presented for different values of the 
conduction radiation parameter N and scattering albedo,  . 

The results are in good agreement with those obtained by [23, 
24, 3]. From Figure 10(a)-(c), in radiation domination case, 
the effect of thermal conductivity on temperature profiles is 
found more pronounced. From the obtained results, one can 
conclude that the obtained results developing by a BGK LBM 
home code with the suggested conditions can produce reliable 
results. We furthermore extend the present formulation to 
deal with a convection heat transfer engineering problem with 
heat generation where the conductivity is variable. 

Figure 10. Comparison of Centerline temperature  =T/Tref 

with those available in literature, (a) for N=0.01 and  =0.5 

with [23], (b) for N=0.1 and  =0.0 with [24], (c) for N=1.0 

and  =0.0 with [3] 

3.4. Natural convection with heat generation 

We consider first the case of pure natural convection in a 
square enclosure in absence of heat generation and with 
constant thermal conductivity. The Chapman-Enskog method 
is adopted to provide the flow field under Boussinesq 
approximation. The geometry adopted is as in Figure 1(c). 
The walls at x=0.0 and x=L are kept at hot and cold 
temperature Th and Tc, respectively. The horizontals walls are 
under adiabatic boundary condition. With accordance to the 
grid analysis sensitivity done by [23], the mesh grid adopted 

in this simulation is (61 61). 

Figure 12. Flow field at Pr=0.71 and Ra=1.89 105 (a) 
Isotherms, (b) Temperature profiles in comparison with [23] 

and [24] 

In Figure 12(a)-(b), flow filed at Pr=0.71 and 
Ra=1.89 105, namely isotherms and temperature profile are 
plotted. Good agreements with available results in literature 
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are found. Then, the effect of heat generation and variation in 
thermal conductivity are taken into account. The flow 
assumption, are Pr=0.71 and Gr=20000. Where the Grashof 
number is defined as: 

2 3

2

g TL
Gr

 






(34)

Figure 13. Isotherms for various flow conditions (a) 

25, 0.25g   


(b) 25, 0.1g   
 (c) 25, 0.0g  



(d) 0, 1.5g   
  (e ) 0, 1g   

  and (f) 0, 0g  


In Figure 13(a)-(f), isotherms for different values of g and

  are plotted. In Figure 12(a)-(c), isotherms are plotted for 

25g  and various values of  . The decrease in thermal 

conductivity coefficient induces an accentuation in 
nonlinearity of the thermal fluid flow. From Figure 13(b) it's 
clear that the temperature inside the enclosure is slightly 
increased than the boundary temperature due to the presence 
of internal heat generation. The corresponding streamlines for 
flow conditions of figure 13, are illustrated in Figure 14(a)-(f). 

When both g  and are taken into account, we can observe

the presence of two vortices [Figure 14(a)-(c)]. With decrease 

of g , the smallest vortex near the cold wall, gradually

disappear. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(a) 
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Figure 14. Streamlines for various flow conditions 

25, 0.25g   
 (b) 25, 0.1g   

 (c) 25, 0.0g  


(d) 0, 1.5g   
  (e ) 0, 1g   

  and (f) 0, 0g  


The effect of variation of thermal conductivity on mid-
height x-velocity and y-velocity is depicted in Figure 15(a)-
(b). With decrease in thermal conductivity, velocity decreases 
along the centerline axes 

Figure 15. (a) Mid-height y -velocity profiles and (b) Mid-

height x -velocity profiles for different values of variable 

thermal conductivity parameter   

4. CONCLUSION

In this study, various heat transfer problems involving 
radiation and/or conduction and natural convection have been 
simulated with the lattice Boltzmann method. In addition to 
that, the case of variable thermal conductivity has been 
considered. Modified formulation of thermal lattice 
Boltzmann equation is used to emphasis the effect of variable 
thermal conductivity with temperature, on flow fields, under 
several conditions. This formulation is based on a modified 
equilibrium distribution function able to account for the 
variation of thermal conductivity with temperature. 
Comparisons were made against several reported data in 
literature and good agreements were found. 

(b) 

(c) 

(d) 

(e) 

(f) 
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NOMENCLATURE 

pC specific heat capacity,  /J KgK

sc speed of sound,  m s ,

D

ie
variable part of thermal diffusivity,  2m s

lattice velocity vector in direction i 

 ,if r t particle distribution function in the ith 
direction 

 ,eq

if r t equilibrium distribution function in the ith 
direction 

Gr Grashof number 

 i nI x ,t radiation intensity 

 eq

i nI x ,t equilibrium radiation intensity 

Pr Prandtl number 

N conduction-radiation parameter 

r position vector  , ,x y m  

Ra Rayleigh number 

t time, s  

i
weight factor in the ith direction 

gi lattice constant in the direction ith for 
radiative equation 

,x y axial coordinates 

Greek symbols 

0
constant part of the thermal diffusivity, 

 2m s

 extinction coefficient 

' coefficient of thermal conductivity 

variation, 1 K  

 relaxation time,  

w emissivity of the wall 

 non-dimensional temperature 

 thermal conductivity, /W mK

0 thermal conductivity at reference 

temperature refT , /W mK


density, 3Kg / m

Subscripts 

, , ,W E S N west, east, south and north wall 

ref reference 
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