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 Architectural Knowledge Management (AKM) is concerned with capturing, sharing and 

reusing the architectural knowledge. Design rationale, which constitutes the reasoning 

behind the software architecture, is a key component of architectural knowledge. Existing 

AKM support has been dedicated to capture and reuse of design rationale, however, 

automated and proactive knowledge-sharing has not been addressed well in the community. 

Hence, in this research, we address the issue of architectural knowledge sharing. We 

propose an enterprise-wide recommender system to enable proactive knowledge-sharing by 

extending a traditional guidance model with data mining techniques. The viability is 

demonistrated using synthetic data and Linkdin users of software architects.  In particular, 

we focus on recommending an architect with items such as architects with similar interests, 

similar issues and alternatives. The key benefits of this approach are: improved reuse of 

design rationale in order to avoid several repetitive steps for deciding on architectural issues 

and enhancing knowledge transfer between global projects and departments. We believe 

that a similar recommender system could also be applied to other areas of software 

engineering. 
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1. INTRODUCTION 

 

Architectural Knowledge Management (AKM) is a key 

activity in the design of complex software-intensive systems 

[1, 2]. AKM is mainly concerned with capturing, sharing and 

reusing knowledge about architectural design decisions. The 

knowledge on architectural design decisions has also been 

termed as Design Rationale (DR) [3] in literature. We note that 

a design rationale may also include design decisions that are 

not necessarily architectural e.g., technology platform choices; 

however, in this paper, we use the term Design Rationale as 

synonymous to architectural design decisions. 

Companies often develop similar software systems. 

Examples of similar systems across the domains of energy and 

industrial automation are the software tools for configuring 

control and automation solutions for a process plant (e.g., oil 

& gas, chemicals, or cement industry plants) and for a power 

utility. For making a design decision, an architect of a software 

system could reuse DR information for the similar 

architectural issues of the other systems of a company. Such a 

reuse of information improves the efficiency of architecting 

because architects could avoid performing several repetitive 

steps for deciding on issues that consume significant time. 

Examples of key and time consuming steps of decision-

making are eliciting alternatives, identifying selection criteria 

and risks, and evaluating alternatives [1, 3, 4]. Similarly, there 

are other applications on reusing DR. For example, by 

reviewing the existing DR documentation the architect would 

get insights on architectural decisions and could learn about 

them. Furthermore, DR also enables knowledge transfer to 

other global departments/projects as well as knowledge 

transition to new architects. 

Recent contributions (e.g., [5-6]) highlighted the need for 

sustainable design decisions in order to maintain software 

architecture on a long-term basis. In particular, the 

contributions emphasize that the DR has to be maintained 

continuously like an asset of a company to evaluate the time 

period for which the design decisions remained meaningful 

and unchanged, and the costs associated with the required 

changes to those decisions. A well maintained DR 

management system would not only enable sustainability, but 

also help an architect in avoiding several repetitive and time 

consuming tasks for making an architectural decision. 

In order to reuse DR, architects should be able to find issues 

similar to the architectural issues that they are facing in the 

current software’s context. Traditionally, similar issues are 

identified manually and shared in meetings and email 

communications. However, there is little support to 

automatically and proactively share this architectural 

knowledge. Sharing DR in the context of global projects is 

even more critical nowadays, when lots of software 

development and architecting activities have been happening 

in the emerging economies. In this context, a new/less 

experienced architect in a country would benefit from the 

related DR information that was captured by experienced 

architects located in other countries. 

In order to address the above mentioned challenges, we 

propose a Recommender System for Architectural Knowledge 

Management (RSAKM). We envision RSAKM to have the 

following capabilities: (i.) an enterprise wide social platform-

like environment where architects share and rate issues and 

alternatives, (ii.) a database for modeling, architectural design 

decisions, and (iii.) a recommender system to aid decision 

making and AKM. This proposal is based on the synergies 

between software engineering and e-commerce and social 

computing [7].  
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Research on a recommender system for knowledge-sharing 

was already encouraged [8-9]. For example, the comparative 

review on AKM tools [10] identifies knowledge-sharing and 

support for recommendations as key research issues for the 

future. The literature review from Ding et al. [11] also 

suggested the need for using knowledge-based approaches 

such as a recommender system for AKM. Within the scope of 

this paper, we focus on three different use cases for RSAKM, 

which also highlight the properties of this proposed 

recommender system: 

UC1: Identify and connect architects with similar interests 

(1) An architect adds his profile to a RSAKM 

environment 

(2) The environment recommends architects with similar 

profile so that he/she would be able to connect to the architects 

(3) The environment recommends the architects with top 

rated issues (and other items such as current issues, searches 

for issues etc.) from the connected architects 

(4) From the recommended issues, the architect would be 

able to find a set of related issues for DR reuse 

UC2: Share similar issues 

(1) The architect creates an issue in the environment and 

adds keywords 

(2) The environment recommends a set of similar issues 

by searching in the database 

(3) The architect would review the DR documentation of 

the similar issues and would reuse relevant information 

UC3: Recommend alternatives for a decision 

(1) The architect enters the issue and the alternatives in 

the environment  

(2) The other architects with similar profiles rate the 

alternatives 

(3) The environment recommends alternatives that might 

resolve the issue 

As hinted in the recommendation strategy for each of the 

above use-cases, RSAKM would follow the following general 

principles [12]: 

(1). Recommending architects profiles:  

✓ RSAKM would recommend similar 

architect profiles by matching properties 

from user-profiles of architects in the system 

✓ In the case where recommended profiles are 

accurate but very limited, RSAKM would 

make a trade-off in accuracy to provide 

multiple architect profiles ranked in order 

for decreasing similarity 

(2). Recommending issues 

✓ RSAKM would recommend issues that are 

similar to a user’s issue based on key-word 

matching 

✓ Top-rated issues would get more weight 

✓ Issues that architects with similar profile 

looked at will also get more weight 

✓ Current issues in the system that are based 

on trending key-word searches would also 

get relatively higher weight 

✓ Issues that led other architects to look at a 

particular issue (i.e., user’s issue) and the 

issues that other architects looked at after 

looking at user’s issue would also be 

recommended 

(3). Recommending Alternatives  

✓ RSAKM would recommend alternatives 

that are rated higher in the community for a 

user-posted issue 

✓ The alternatives that are rated higher by 

user’s with similar profiles are ranked 

higher in the recommendation 

✓ There may be many other scenarios which 

would need resolution to recommend a 

meaningful alternative. Here, RSAKM 

could consider multiple options. For 

example, if most of the architects slightly 

preferred alternative 1, but rest of the other 

architects with similar profile to the user had 

rated that alternative very low, RSAKM 

may not recommend alternative 1 as the best 

recommendation 

To support the above described use cases, we propose 

RSAKM by extending a simple guidance model with concepts 

from the similarity measures of the statistical data mining 

community. In particular, the concrete contributions are: (i) A 

meta-model for RSAKM which provides a basis to model 

issues and to compute similarities between them for 

addressing UC1-UC3, (ii) An industrial illustration on how the 

use cases are addressed based on the meta-model and (iii) A 

summary of the initial evaluation. 

The remainder of this paper is organized as follows. Section 

2 presents a short overview of similarity measures while the 

second part introduces decisions and rationale. We describe 

related work in section 3. We propose the meta-model in 

section 4. Later, we apply the meta-model and illustrate the 

recommender system for architectural issues in section 5. 

After that, we present the initial evaluation results in section 6 

and conclude the paper by indicating the limitations and future 

research in section 7.  

 

 

2. BACKGROUND 

 
2.1 Clustering and partitioning around K-Medoids (PAM) 

algorithm 

 

As the data for the considered application is ordinal in 

nature, k medoids clustering [13] is employed to identify the 

similar group of profiles. The K-medoids are one of the 

partition based clustering algorithms and groups ‘n’ objects 

into k-clusters by minimizing the absolute error. Initially the 

algorithm considers random data objects as cluster 

representatives. Latter, the algorithm iteratively improves the 

quality of the clusters by replacing representative objects with 

the other objects. The algorithm terminates when the quality 

of the cluster alignment is not further improved. The quality of 

the cluster alignment is measured as an absolute error function 

of the average dissimilarity between all data objects of the 

clusters to its representative. 

Algorithm:  

(1). Initialize k medoids with any k random objects of the 

data of size n. 

(2). Based on similarity assign each n - k medoids to the 

corresponding closest medoid 

(3). Repeat the following steps until the cost of the cluster 

alignment decreases: 

 Do for each medoid object ‘m’ and for each non-

medoid data point ‘o’ 

a. Swap ‘m’ with ‘o’, and compute the cost 

of the new alignment. 
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b. If the total cost of the alignment 

decreases via swapping, the swap can be 

retained otherwise undo the swap. 

 

2.2 Similarity measures 

 

Finding similarity among the data is a key step in K-

Medoids Partitioning Algorithm.  Similarity measures [13] 

have been used in the data mining community to find 

similar/related data. These measures are behind today’s e-

commerce systems (e.g., Amazon [14]). The 

recommendations are based on similarity of products that the 

customer has bought before, or on similarity of profiles of 

other buyers when compared to the customer’s profile.  

A number of similarity measures have been proposed in the 

data mining literature [13]. For example, Jaccard similarity 

defines similarity based on relative size of intersection 

between two sets of data. Collaborative filtering is a method 

that uses Jaccard similarity to find similar profiles for users of 

a system. We used Jaccard similarity because we can identify 

stakeholders with similar interests by finding intersection 

between their profiles. 

Similarities are generally measured on the basis of distance 

between two sets of data. In this respect, Jaccard similarity is 

represented by a distance measure called Jaccard distance 

(defined as: 1-Jaccard similarity). We use Jaccard Index, 

which measures the similarity between sample sets, and for 

sets A and B, it is defined as follows: 

 

J(A, B) =
|A ∩ B|

|A ∪ B|
 

 

Some of the other distance measures described in literature 

are: Cosine Distance, Edit Distance, Hamming Distance etc. 

Cosine Distance is preferred when vectors have integer 

components, and we are interested in the direction of the 

vector. 

 

cos(A, B) =
A. B

||A|| ∗ ||B||
 

 

Edit Distance is beneficial when strings are compared. The 

distance between two strings is the least number of 

insertions/deletions of single string characters that will 

transform one string into the other. Hamming Distance makes 

sense when two vectors are Boolean. It is based on the number 

of vector components that differ when the Boolean 

components of two vectors are compared based on their 

position in their respective vectors. 

 

2.3 Guidance model 

 

A guidance model [3] is often used to guide stakeholders in 

making a decision. The goal is to guide stakeholders to make 

decisions while DR is captured as a byproduct. Questions 

Options and Criteria (QOC) [15] is a simple guidance model 

with basic DR concepts such as: an issue, or problem to be 

solved, alternatives to address the issue, arguments of 

stakeholders, criteria for selection and a decision, which is the 

outcome.  

In addition, a guidance model also uses concepts such as 

goals, implications, etc. For example, decision representation 

language (DRL) [16] additionally models goals. Furthermore, 

a guidance model uses interdependencies between the 

concepts. For example, an issue can trigger another issue. 

Similarly, a decision can override another decision. A 

comprehensive set of relationships with formal semantics were 

already reported [17]. In this paper, we used QOC in order to 

simplify the description of this paper. However, the concepts 

proposed in this paper could be used with other guidance 

models. 

 

 

3. RELATED WORK 

 

Software Product Lines. The set of systems developed 

based on a reusable asset base is termed as a software product 

line. Variability is used as an abstraction to customize and 

reuse software. Reuse of knowledge across multiple systems 

of SPL is beneficial because of the potential to have similar 

issues across them. Thurimella and Bruegge propose a meta-

model to capture rationale for variability and a pattern-based 

approach to reuse rationale [10]. The empirical study with 

students [6] identified strong empirical evidence on the reuse 

of rationale. However, both the contributions did not report on 

sharing rationale automatically.  There were already attempts 

to model design rationale in the context of SPLs. For example, 

Lee and Kang add contextual information to feature models 

which are used to represent variability [18]. The Rationale has 

been modeled in the context of requirements engineering for 

SPLs [19] as well as design [20-21]. However, all the above 

described contributions, neither focuses on knowledge sharing 

nor on a recommender system.AKM. Design rationale has 

been considered as integral part of software design [1]. The 

industrial survey on the next-generation architectural 

languages elicited the need for supporting DR modeling as 

well as abstractions for design reuse [22]. Both these 

contributions [1, 22] view DR as a key topic for the future of 

software design. The need for knowledge sharing was already 

recognized in the community [1]. In the recent past, 

Zimmermann et al. proposed a reference architecture and 

formal semantics behind them in order to model design 

decisions and integrate them into software design [4]. The 

decision model is process-oriented which was applied for 

enterprise application development and outsourcing [4]. The 

reference architecture encourages the reuse of design rationale. 

Baber et al. [1] emphasized the value for architecture 

knowledge sharing and reuse. However, [1, 4] do not focus on 

a recommender system but encouraged DR sharing and reuse. 

Related papers on sustainability of a software design 

emphasized the need for the sustainability of DR [5, 23]. For 

example, DR has been considered as an asset of a company 

like code which has to be maintained continuously [5]. The 

metrics for the sustainability of the software architecture 

considered multiple artifacts including DR [23]. This research 

on recommender system would aid sustainability by sharing 

DR. 

Rationale has been used in the requirements engineering 

community similar to the related papers already discussed in 

the context of SPLs [24, 10]. Goal-oriented requirements 

engineering (GORE) [22] uses rationale-based techniques to 

elicit requirements. As the rationales are captured early in 

requirements engineering, GORE has positive impact towards 

software design. However, GORE does not directly focus on 

DR and software design. 

Recommender Systems. Recommender systems are 

considered important in the context of software engineering 

[23]. Clustering and text-mining techniques are used to 
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recommend requirements [25]. Similarly, enhancing 

stakeholder profiles supports large-scale requirements 

elicitation [26]. Rating techniques are used for recommending 

product configurations [27]. Borsch et al. [27] use a similarity-

aware graph technique to recommend conflict-resolution 

patterns for code. Similarly, Zang et al. recommend APIs [29]. 

All the above described attempts on recommender systems do 

not focus on AKM. 

The edited book in the area of recommender systems on 

software engineering report on recommending source 

code/APIs, developer profiles, code-fragments for reuse, 

refactoring code and identifying requirements. However, these 

are not focused on DR. Moreover, the contribution encourages 

research on recommender systems in the software engineering 

context. 

Knowledge extraction. Text mining and parsing techniques 

are used for extracting rationale from a document [30]. 

Similarly, text mining and natural language processing are also 

applied for extracting FAQs form emails, documents etc. [31]. 

A statistical learning model was proposed for performance 

prediction [32]. We differ from the papers on knowledge 

extraction [30-32] by focusing on sharing knowledge. 

Knowledge sharing in other areas. Rodrigues et al. [33] 

propose a system to add end-users knowledge and enhance 

recommendations during business process modeling. 

Similarly, a know-how sharing is enabled based on content 

filtering [34]. Both these knowledge-sharing approaches do 

not focus on decision-support. 

Requirements engineering. The book in the area of 

requirements knowledge [14] elicited the need to proactively 

share knowledge in the context of global projects. This finding 

is also important for the software architecture community 

because of the overlaps between design and requirements 

engineering [35]. 

 

 

4. META MODEL  

 

 
 

Figure 1. The meta-model for RSAKM 

 

We represented the core guidance model with classes: Issue, 

Alternative, Criterion, Argument and Decision in Figure 1. We 

modeled many-to-many between an Issue and an Alternative 

because an issue can have multiple alternatives and an 

alternative can be involved in multiple issues. Similarly, we 

modeled the other many-to-many associations of the core 

guidance model. An Alternative can have multiple arguments 

across various Criteria while an instance of Argument can be 

dedicated to only one Alternative. This is the reason for “1 

(default) to many” association between an Alternative and an 

Argument. Using a similar logic, we added multiplicities 

between Argument and Criterion as well between a Decision 

and Alternative. We propose a RSAKM meta-model (see 

Figure 1) by extending the core guidance model with several 

concepts related to a recommender system. The extensions are 

summarized below. 

 

4.1 Architect & profile 

 

An Architect has to add and maintain his/her Profile. The 

reason for introducing Profile is to compute similarities 

between two architects. Profile consists of an Application 

Context and a Domain Context. 

Application Context describes high-level context of the 

application based on type of application e.g., Web/Desktop 

application/Integrated Development Environment (IDE) etc. 

This is the highest level classification for the software. 

Domain Context describes high-level context of the domain 

for which the software application is targeted e.g., Industrial 

Automation, Utilities, Finance, Education etc. 

A Profile would also contain concepts such as experience, 

skills, proficiency levels, organizational information etc. We 

used only contexts for simplicity reasons. 

An architect can add keywords and ratings. This is the 

reason for the many to many association between an Architect 

and Keyword as well as an Architect and Rating. 

 

4.2 Rating 

 

An architect inputs a number between 1 and 5 to rate the 

quality of an item. On this scale, 1 would mean a poor decision, 

whereas 5 would mean good decision. Rating can also be left 

empty; hence, there is no constraint put on stakeholders to rate 

all the decisions in the repository although quality 

recommendations based on cosine distance would be made as 

more and more ratings are provided by more and more 

stakeholders. We propose using ratings for Issue, Alternative 

and Decision because they are the key concepts of the 

guidance model. Keyword. A set of keywords are used to 

contextualize an issue, which is represented by many-to-many 

association between Issue and Keyword. The purpose of 

introducing Keyword is to provide a basis for computing 

Jaccard similarity between issues.  

 

4.3 Traceability 

 

A Design Description is hierarchically structured based on 

objects of Design Element. The traceability between Issue and 

Design Element, and Architect and Issue are modeled based 

on many-to-many associations between the respective classes. 

Based on the traceability, an architect may trace between 

similar issues and corresponding design elements and 

architects in UC2 as well as from an architect profile to the 

issues and design elements in UC1. 

 

4.4 State and interdependencies 

 

The state of an issue is open (to be resolved) or closed (or 

already solved). Issues are also inter related. For example, 

addressing an issue may require other issues. Similarly, an 

4



 

issue may exclude another issue. A network of interrelated 

issues is termed as an issue network. Based on an issue 

network, a stakeholder may trace though issues to find relevant 

information. Similarity computation Issues and the other 

related items based on the meta-model are stored in a 

centralized repository. In our previous contribution, we have 

detailed how to build such a repository [7] and therefore we do 

not repeat this in our paper.  

For computing similar group of profiles to address UC1, we 

compute Jaccard similarity based PAM because the profiles 

are based on sets. In particular, the repository is iterated for all 

profiles and the Jaccard similarity is computed for each profile 

based on Eq. (1.1). Similarly for addressing UC2, we compute 

Jaccard similarity between keywords to find similar issues. 

Cosine similarity based on Eq. (1.2) is used to find similar 

issues and alternatives based on ratings in UC2 and UC3 

respectively. This is because cosine similarity is used for 

integers. 

 

4.5 Similar group identification for query  

 

Figure 2 depicts the proposed methodology for retrieving 

top k similar profiles of the query profile. Initially the possible 

profiles extract from the world wide web. Latter, the extracted 

profiles are subjected to clustering using k-medoids data 

clustering algorithm. The outcome of clustering are the groups 

of profiles with similar characteristics. The characteristics of 

one group of profile are close with each other and are different 

with the profiles of other groups.  As mentioned in section 2.1 

as it is a partition clustering algorithm, K-medoid algorithm, 

partition the data around a center point (medoid / prototype). 

Obtained cluster and the corresponding medoids are stored in 

a (Central) repository. For a query point Q, top k similar 

profiles are retrieved on two phases, at first the group which is 

similar to the Q, is obtained by the similarity computation 

across Q to k medoids in the repository. Once, after the group 

is identified top K similar profiles for the query point are 

retrieved based on the similarity ranking of the profiles within 

that group. The main advantage of this approach for each 

query there is no need to compute similarity with all available 

profiles. 

 

 
 

Figure 2. Flow diagram for proposed methodology 

 

 

5. PROPOSED MODEL 

 

In In this section, we consider an example to illustrate the 

proposed model. For the sake of a simple illustration, the 

example is explained with only essential elements needed to 

describe the recommendation system. These elements from the 

meta-model are also highlighted in the table headings and their 

instances 

The illustration follows: For the last 5 years, Jenna was a 

developer of automotive software applications. Now, in her 

new job at a process automation company, she has been given 

the responsibility to architect the software of a new control 

logic application. Soon, she is surrounded by architectural 

issues that have various alternative solutions. She needs well-

thought and reasoned decisions. Since, Jenna is working in a 

new domain, Jenna is unsure if she has covered all the relevant 

issues, alternatives and criteria.. In such a case, Jenna would 

look for experts and discuss with them to gain from their 

experience and make sound architectural decisions. However, 

the other architects have less time for Jenna and are located in 

other parts of the globe with time difference (e.g. half a day). 

In such a situation, RSAKM would aid her in the following 

way. Jenna wants to have a comprehensive view of 

architectural issues related to her software. 

Jenna enters her profile by selecting Application Context 

and Domain Context (see Figure 1 and Table 1). Based on 

Jenna’s updated profile, the recommender system can already 

provide her with an initial set of issues that may be of Jenna’s 

interest. From the issues presented to Jenna, she could select 

an issue related to automation domain. She may also choose to 

search for issues in the automation domain. Based on her 

search term, the system answers the query with a set of issues. 

As Jenna selects an issue, related issues that other people 

looked into are also presented. In this manner, Jenna is able to 

look at various related issues in the automation domain.  

Jenna may be interested in different kinds of related issues 

such as issues that 

(1). ‘Architects similar to Jenna’s profile looked at’ 

(2). ‘Architects who searched with the same term such as 

the term that Jenna used, looked at’ 

(3). ‘Architects who looked at the issues that Jenna 

looked at, then looked at the following issues’ 

(4). ‘Architects looked at before looking at the issue that 

Jenna just looked at’ 

(5). ‘New issues that may interest Jenna’ 

The following is needed for supporting such 

recommendations: maintain architects’ profiles, calculate 

similarity between profiles based on some distance measure, 

search terms and related ranking algorithm, and maintain data 

about clicks on the issues, out- and in-link data, timestamp of 

clicks and new issues and decisions in the repository. However, 

to first motivate the recommender system, we focus only on 

issues that are based on an architect profile. Moreover, the 

proposed concepts can be extended to the other data items 

using the same techniques. We use the following steps to 

recommend related issues based on Jenna’s profile: (i.) Find a 

set of architects that have a similar profile to that of Jenna’s. 

Let us call this set S. (ii.) Find issues that architects belonging 

to set S looked at. Let us call this set I. (iii.) Provide a subset 

of I as results to Jenna. 

 

5.1 Recommending similar profiles (UC1) 

 

Consider a set of architects Jenna, Molly, Scott, David and 

Nina. Table 1 shows the profiles that are maintained in the 

repository for each of these architects. The simplistic user 

profiles considered for the sake of this use case consist of an 

Application Context, and a Domain Context. Application 
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Context refers to the type of software application being 

developed, such as desktop or web-based application. Domain 

Context defines the domain for which the software is being 

developed e.g., retail, finance, or process industry. 

 

Table 1. Architect profiles 

 

Architect 

Profile 

Application 

Context 
Domain Context 

Jenna Desktop Application Process Automation 

Molly 
Integrated Desktop 

Environment 
Process Automation 

David 

Graphics 

Engineering 

Application 

Power Utility 

Tom 
Web-based 

Application 
Health Care 

Scott Desktop Application Automotive 

Nina 
Web-based 

Application 
Retail Store 

 

Initially the list of profiles that are similar to Jenna are 

calculated by PAM clustering using the Jaccard dissimilarity 

measure. Jaccard distance measures for dissimilarity between 

sample sets and is calculated by subtracting Jaccard index 

from 1. Based on the information provided in Table 1 for 

Molly: Jaccard similarity = 1 (Desktop Application = 

Integrated Desktop Environment) and Jaccard distance = 0. 

The Jaccard coefficient obtained via PAM clustering 

considering k=2 are shown in Table 2 and Table 3. Once after 

the medoids are stored in the repository profiles that are that 

are similar w.r.t. Jenna’s profile is summarized (Cluster 1) in 

Table 3. 

Hence, profiles of Molly, Scott and David are relatively 

closer to Jenna’s when compared with Nina’s profile. So, let 

us say the set of profiles similar to Jenna’s is, S: {Molly, David, 

Scott}. 

 

Table 2. Jaccard Index for various architect profiles 

 

 

Table 3. Jaccard Index for various architect profiles 

 

Architect 
Jaccard Index 

(Similarity) 

Jaccard Distance 

(Dissimilarity) 

Tom 0 1 

Nina 0 1 

 

Table 4. Jaccard Index for various architect profiles 

 

Architect 
Jaccard Index 

(Similarity) 

Jaccard Distance 

(Dissimilarity) 

Molly 2/2 = 1 0 

David ½ ½ 

Scott ½ ½ 

 

The environment would recommend these profiles (i.e., set 

S: {Molly, David, Scott}) to Jenna, who would have 

possibilities to connect and follow these architects in the 

environment. Given the set S of similar profiles to Jenna, 

related issues are identified by looking at the issues visited by 

each of the members of set S. The interesting case are top 10 

most looked at issues and maximum visited issues, which 

would be computed and recommended.     

 

5.2 Recommending similar issues (UC2) 

 

The assumptions for recommending similar issues are (i.) 

key words are to be added (or, selected) for issues in order to 

provide context, and (ii.) architects actively rate issues on the 

five point scale. Jenna creates an issue “Ix: Decide on 

extending the automation framework for the next-generation 

functionalities?” in the environment and adds the keywords 

below.  
Keywords: extensibility, plugins, framework, process 

automation 

The meta-model proposed in figure 1, models an issue with 

its state. This state could be ‘open’ or ‘closed’. In the current 

example, the status of the issue is “Open” because the issue 

has been newly created and not solved. An issue is also 

associated with keywords (Figure 1). So, in order to find 

similar issues, we calculate Jaccard similarity between 

keywords of the other issues in the database with the status 

“Closed”. The computation is similar to the example of Table 

4. (Another extension of the model would be to also include 

keywords from “Open” issues. This could provide opportunity 

for teams working on similar issues to collaborate, or at least, 

share the knowledge (rationale) behind their decisions. 

We recommend a list of similar issues that are close to Ix 

based on the Jaccard distance. In the running example, Ix1 and 

Ix2 (Figure 3) are recommended to Jenna as similar issues. As 

shown in the meta-model (Figure 1), Issues are also associated 

with criterion. Jenna reviews Ix1 and Ix2 and reuses relevant 

content from the DR documentation of similar issues for 

deciding on Ix. For example, Jenna finds criteria of Ix1 helpful 

for deciding on IX 

 

 
 

Figure 3. Dr for related issues for Ix in the running example 

 

Given that the issues are also (individually) rated by various 

architects, once we have identified issues that are close to 

Jenna’s issue (based on Jaccard similarity as described above); 

we could now make use of cosine similarity to recommend 

related issues to that created by Jenna. Continuing from the 

example in the last section, we found that a set of profiles that 

are relevant to Jenna’s profile consists of profiles of Molly, 

David and Scott. Table 5 shows that each of these architects 

has rated Ix1 and Ix2. 

Architect 
Jaccard Index 

(Similarity) 

Jaccard Distance 

(Dissimilarity) 

Molly 2/2 = 1 0 

David ½ ½ 

Scott ½ ½ 
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Table 5. Ratings given by various architects for two issues 

 

Architect 
Issue 

Ix1 Ix2 

Molly 5 0 

David 2 4 

Scott 2 2 

 
Later, we normalize the matrix in Table 4 by subtracting 

from each rating the average rating given by the architect. This 

way (Table 5) we nullify the impact of non-differentiating 

ratings given to various issues (e.g., ratings given by Scott for 

Issue 1 alternatives).  

 

Table 6. Normalized ratings for Issue 1 

 

Architect 
Issue 

Ix1 Ix2 

Molly 5/2 -2.5 

David -1 1 

Scott 0 0 

 
From the normalized matrix in Table 6, now we can make a 

choice of Ix1 as a recommended issue. We can also do more: 

Since, we know that Molly’s profile is relatively closer to 

Jenna’s within the set S itself (see Table 2); we can try to find 

relative closeness of David or Scott to Molly’s decisions. This 

way we could choose to present issues based on ratings that 

are closer to Molly, and transitively, closer to Jenna.  

To illustrate this, let us modify the Table 6 such that Scott’s 

normalized ratings are non-zero, say, 1/2 and -1/2 for issue1 

and issue2 respectively (Table 7). 

 

Table 7. Issues with differentiating ratings from Scott 

 

Architect 
Issue 

Ix1 Ix2 

Molly 5/2 -2.5 

David -1 1 

Scott ½ -0.5 

 

We can now consider the cosine similarities (where ratings 

provided to each of the issues are part of a ratings vector that 

is specific to each architect) between Molly and Scott, as well 

as Molly and David. 

Molly and David: 

 

(
5
2

) ∗ (−1) + (−
5
2

) ∗ (1)

√(
5
2

)
2

+ (−
5
2

)
2

∗ √(1)2 + (−1)2

=  −1 

 
Molly and Scott: 

 

((
5
2

) ∗ (
1
2

) + (−
5
2

) ∗ (−
1
2

))

√(
5
2

)
2

+ (−
5
2

)
2

∗  √(
1
2

)
2

+ (−
1
2

)
2 

= 1 

 

The cosine angle value is greater for Molly and Scott; 

Molly’s preferences of important issues are closer to Scott’s 

then to David’s preferences. In fact, in this example, Molly and 

Scott’s ratings are same because the cosine of angle between 

Molly’s rating vector and Scott’s rating vector is 1 (i.e., angle 

is 0).  

Thus, since, Molly is closer in her profile to Jenna, and 

Molly’s issue preferences are closer to Scott’s than to David’s 

preferences; issues rated by Scott are also made available to 

Jenna.  

Hence, we present three methods (of different granularities) 

to provide recommendations to Jenna when she poses an issue: 

(i.) Recommend Molly’s issues to Jenna based on similarity of 

profiles. (ii.) Recommend issues based on similarity of 

keywords. (iii.) Recommend Scott’s issues to Jenna along with 

the above recommendations. 

 

5.3 Recommending alternatives (UC3) 

 

We propose an approach similar to the above to recommend 

alternatives for decision based on the following steps: 

(1). Find profiles that match with Jenna’s profile (e.g., 

Molly in the above described example). 

(2). Consider the matching profiles that have rated the 

architectural decision alternatives for the issue (e.g. Issue1 and, 

Molly and Scott’s profiles in the above described example). 

(3). For the selected profiles, find the decision ratings that 

are most relevant (e.g., Molly and Scott’s profiles in the above 

described example). 

(4). Recommend a decision based on the most relevant 

ratings. 

Continuing from the example in the last section, we found 

that a set of profiles that are relevant to Jenna’s profile consists 

of profiles of Molly, David and Scott. Table 8 shows that each 

of these architects has rated alternatives for Issue 1 along with 

ratings for the other issue and alternatives 

Similar to the example in Table 6 and 7, alternatives would 

be recommended by normalizing Table 6 based on average 

ratings and computing cosine similarity. 

 

Table 8. Ratings given by various architects for two issues 

 
Architect Issue 

Issue 1 Issue 2 

Alternative 

alt11 alt12 alt21 alt22 alt23 

Molly 5 0       

David 3 1 3 5 2 

Scott 2 2 3 4 0 

 

 

6. INITIAL EVALUATION 

 

As a first step, we evaluated the concept of recommending 

stakeholders with similar interests (UC1) because without 

sufficient stakeholder data the recommender system will not 

be feasible. We implemented the support for UC1 by 

extending an existing DB (database) application containing 

details about project participants. The DB itself has more than 

20K users and also contains keywords, role of the participant 

and contact information. We extend the DB application 

because it provided an initial data to test UC1. After 

implementing the recommender capability, we asked 30 

participants to use the recommender system. All the 

participants had prior software development experience. 

Those participants were obtained based on convenient 

sampling, that is, their participation was voluntary. After that 

we asked the participants to rate the quality of 

recommendations. For the rating we used a 5 point linear scale 

with 1 as the best rating and 5 as the worst rating. Particularly, 
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we stated and communicated the scale explicitly to the 

participants to avoid any confusion during measurements: 5 

(Very high), 4 (High), 3 (Fair), 2 (Low) and 1 (Very low). The 

mean quality obtained was around 3, which implies that the 

quality of recommendations higher than the average quality 

(2.5). Based on this we believe that UC1 works reasonably 

with around 20K stakeholders.  

 

 

7. VALIDATION OF LINKEDIN SOCIAL NETWORK 

PROFILES 

 

We have collected the data of 1000 architects from Linkidin 

profiles.  The data contains the architect names and on which 

application and domain he /she is working. Further, based on 

their area of expertise (domain context) they are categorized 

in to two broad categories of Application context i.e. Web-

based Application and Desktop Applications. As per the space 

limitation here we are illustrating the scenario for 10 profiles 

(See Table 9). Sanjeev was a developer working on Web-

based applications in an automation company and he has 

changed the company and was assigned by the new domain. 

He got several issues in the domain because he is new to this 

domain. So he wants to know that who others working in the 

same or related issues.  Proposed system (See Section 4. & 4.2) 

identifies Cluster 1 of profiles that are similar to Sanjeev using 

k-medoids algorithm with Jaccard similarity (Table 10 & 11) 

 

Table 9. Linkdin architect profiles 

 

Architect 
Application 

Context 

Domain 

Context 

Sanjeev 
Web-based  

application 
Finance 

Rakesh 
Web-based  

application 
Telecom 

Thiru 
Web-based  

application 
Finance 

Sudha 
Web-based  

application 
Healthcare 

Sreekanth 
Desktop 

application 
Healthcare 

Rajneesh 
Web-based  

application 
Finance 

Madhu 
Web-based  

application 
Telecom 

Manju 
Web-based  

application 
Finance 

Gautham 
Web-based  

application 
Telecom 

Niran 
Desktop 

application 
Telecom 

 

Table 10. Jaccard index of architects for cluster 1 

 

Architect 
Jaccard Index 

(similarity) 

Jaccard Distance 

(Dissimilarity) 

Rakesh 1/2 1/2 

Thiru 1 0 

Sudhakar 1/2 1/2 

Rajneesh 1 0 

Madhu 1/2 1/2 

Manuju 1 0 

Gautham 1/2 1/2 

 

From the Table 10, based on the similarity ranking within 

Cluster 1 using Jaccard Index, we can say that Thiru, Rajneesh, 

Manju are most similar to Sanjeev and Rakesh, Sudhakar, 

Madhu, Gautham are a bit similar to Sanjeev. As the profiles 

of Sreekanth, Niran (Table 9) belongs to different cluster as 

their profiles are not similar to Sanjeev.   
 

Table 11. Jaccard index architects for cluster 2 

 

Architect  
Jaccard Index 

(similarity) 

Jaccard Distance 

(Dissimilarity) 

Sreekanth      0        1 

Niranjan       0        1 

 

7.1 Recommending similar issues  

 

Continuing from the example in the last section, we found 

that a set of profiles that are relevant to Sanjeev are of Rakesh, 

Thirumal Bandi and Sudhakar Anivella. Table 12 shows that 

each of these architects has rated Ix1 and Ix2 which are related 

to Sanjeev. normalizing the rating given by the architects are 

listed in the Table 13. 

 

Table 12. Ratings given by various architects for two issues 
 

Architect       ISSUE 

IX1 IX2 

Rakesh  43 10 

Thiru 83 15 

Sudhakar  8 61 

 

By finding the cosine similarity between the Rakesh & 

Thiru and Rakesh & Sudhakar we can mathematically say that 

the Rakesh & Thiru profiles are relatively closer to Sanjeev 

profile. Because the cosine angle between the Rakesh & 

Thirumal Bandi is greater i.e. 1. 

Cosine similarity  

Rakesh & Sudhakar:                    

 
(16.5) ∗ (−26.5) + (−16.5) ∗ (26.5)

√(16.5)2 + (−16.5)2 ∗ √(26.5)2 + (−26.5)2
= − 1 

 

Rakesh & Thiru:  

 
(16.5) ∗ (34) + (−16.5) ∗ (−34)

√(16.5)2 + (−16.5)2 ∗ √(34)2 + (−34)2
=  1 

 

From the normalized ratings table and cosine similarities we 

can say that Rakesh and Thiru are closer to Sanjeev. 

To comment on the feasibility to implement other use cases 

of the system, we need to have an estimate about the number 

of issues that have been created by the stakeholders. Because, 

the mathematical models behind the approach work 

appropriately in case of a large number of issues. We did text 

analysis in the specifications, searched in the existing tools to 

identify the number of architectural issues that were created 

across the projects. We identified that around over 80,000 

architectural issues were identified and documented in a form 

in the last 2 years. Therefore, we believe that sufficient data 

points would be created for using the recommender system. In 

the following, we summarize major limitations of our 

evaluation: (i) In order to evaluate the recommender system, 

the architects need to generate a large number of issues, which 

would take several years. Therefore, we validated a restricted 

system in order to generate an initial feasibility report with 

minimal efforts. A major limitation is that this would not 
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provide a comprehensive evaluation of the system. (ii) 

Furthermore, we only measured quality of recommendations, 

but did not observe how the recommendations are behind used. 

(ii) All the participants are taken with convenience sampling.

Therefore, all our findings would be biased.

Table 13. Normalized ratings for issue1 

Architect ISSUE 

IX1 IX2 

Rakesh   16.5 -16.5

Thiru     34 -34

Sudhakar -26.5 26.5

8. CONCLUSION

In this paper, we identified synergies between AKM and e-

commerce and social computing. We have proposed and 

illustrated an enterprise wide recommender system for sharing 

architectural knowledge called RSAKM. The system 

recommends similar profiles, similar issues and alternatives 

for a decision. Based on the recommendations, architects 

could reuse DR for resolving architectural issues quickly and 

effectively. 

Limitations. In the following, we summarize the major 

limitations (L1-L6) for RSAKM. 

L1 RSAKM requires enthusiastic architects as well as active 

involvement of architects for AKM. For example, architects 

have to add and update their profiles and have to rate issues 

and alternatives. For example, without keywords and ratings 

identifying similar issues would not be possible. 

L2 In general, recommender systems are used in case where 

there is huge data. The proposal would make sense in global 

organizations with large projects so that there is good chance 

of having a large number of issues. 

L3 The approach makes sense for enterprise-wide usage 

because cross-project knowledge sharing would not be 

enabled while using the approach for only one project. 

Therefore, multiple departments of the organization should 

have commitment for using RSAKM. 

L4 The departments/projects using RSAKM should be 

willing to share data with the other departments/projects 

within the company. 

L5 The system is suitable for a company/organization where 

there is a need for transparency and well-thought decisions. 

However, it is not well suited organizations that work based 

on quick and rapidly changing decisions as well as gamble 

with decisions. In some environments, managers that 

encourage well documented decisions are discredited. 

Implementing our guidelines in those environments is difficult 

as well. 

L6 Furthermore, the above described limitation (L5) would 

happen partially, that is, the, stakeholders might not work the 

guidance model for some issues or use it wrongly. In this case, 

the quality of data for those issues would be poor (e.g. low 

quality ratings) which influences the overall recommendation 

items. Those factors were not considered by our model.  

L7 The proposed system does not resolve lack of consensus 

among stakeholders, since, it does not make decisions on an 

issue. It just recommends decision (alternatives)/decision 

rationale based on similar issues/resolution strategies that were 

previously used in the organization. Stakeholders should use 

RSAKM only as an aid to enable themselves in making a 

decision by considering pros and cons of the decisions made 

in the present issue’s context.  

Future work. We suggest the following research items (RI1-

RI5) for extending RSAKM: 

R11 The RSAKM has to be implemented. The first 

alternative is to develop an individual tool. Another alternative 

is to develop a recommender system plugin for an established 

issue tracking tool (e.g. Jira) so that companies do not need to 

introduce a new tool throughout the organization. The 

challenges are migration of legacy issues and decisions as well 

as integration of the tool with the design environment for 

maintaining traceability between design elements and issues 

(see Figure 1).    

R12 RSAKM has to be evaluated in a global software 

development environment of a company. Major 

considerations for the evaluations are the accuracy of 

recommendations, identifying minimum number of issues for 

the recommender system to work, user acceptance for 

RSAKM as well as for the recommended items, studying 

improvements in DR sharing and reuse.  

R13 Identifying knowledge-sharing and reuse patterns so 

that architects and the other stakeholders would be focus on 

the patterns for sharing and reusing as much DR as possible.   

R14 RSAKM could be applicable to the other area decisions 

such as requirements decisions, planning decisions etc. In this 

paper we focused on the design phase only. This has to be 

researched how to extend RSAKM for issues related to the 

complete software lifecycle. The benefits are: (i) large number 

of issues which aids providing quality recommendations and 

(ii) improve knowledge management between various life

cycle areas.

R15 Decision-making is a complex activity with several 

considerations. Recommending alternatives based on ratings 

would not be sufficient. Therefore, the rating based method for 

UC3 has to be enhanced with qualitative and quantitative 

methods. 
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