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The optimal control inputs obtained by the traditional robot motion optimization methods are 
nonzero at the start and end of robot motion, making it difficult to control the attitude motion 
of the robot directly with the motor. To solve the problem, this paper combines the particle 
swarm optimization (PSO) with spline approximation into a new method, which can replace 
the Fourier approximation in traditional algorithm. Firstly, the author set up the dynamic model 
of the system, and transformed the motion planning problem with nonholonomic constraints 
into the optimal control problem, under the conservation of angular momentum. Next, the 
spline approximation and the PSO were employed to optimize the trajectory of the attitude 
motion of the system, and control the inputs to zero at the start and end of robot motion, such 
that the robot could move from the initial position to the desired destination in a motion cycle. 
The proposed algorithm was proved through numerical experiment as capable of effectively 
controlling the attitude motion of nonholonomic hopping robot.  
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1. INTRODUCTION

With the continuous development of robotics, the working
environment of robots has become increasingly diverse and 
complex. The traditional fixed-point operations in simple 
environment are gradually being replaced by autonomous 
operations in non-structured environments, such as space 
exploration, archaeological exploration and geological 
exploration.  

The motions of mobile robots [1] mainly include: wheeled 
or tracklaying motion, bionic crawling or walking, and 
hopping. Among them, hopping is the most suitable motion in 
complex or unknown working environments. A hopping robot 
can get across large obstacles several times its height, making 
it an ideal substitute for human. In addition, the hopping robot 
enjoys unique advantages in specific environments like 
microgravity space. Hopping can expand the radius and range 
of motion, and save more energy than other motions. 
Therefore, hopping robot boasts better adaptivity to various 
environments than other kinds of robots [2]. 

When moving in the air, a hopping robot obeys the 
conservation of angular momentum and thus faces several 
nonholonomic constraints, which may also arise if the contact 
between rigid bodies is not sliding or rolling [3]. In this case, 
the attitude control of the robot becomes a typical 
nonholonomic motion problem [4]. The nonholonomic 
features of the robot system are resulted from the non-integral 
angular velocity. Specifically, the dimension number of the 
generalized coordinates of the system is more than that of the 
control input, and the nonholonomic constraints cannot be 
expressed as the constraint form of configuration space by 
integration.  

The nonholonomic system is a special nonlinear system. 
The motion control of such a system is more difficult than that 
in general systems, and has become a research hotspot in 
recent years [5-7]. Some scholars have attempted to optimize 
the trajectory and control law of robot motion with 
optimization methods like Fourier approximation, Ritz 
approximation and variable structure control. For example, 
Yang (2013) [8] designed numerical algorithms for attitude 
motion control based on several optimization strategies (i.e. 
particle swarm optimization (PSO), genetic algorithm (GA) 
and quasi newton algorithm), and obtained the optimal 
trajectory and control law of the robot system. However, the 
optimal control inputs obtained by the above methods are 
nonzero at the start and end of robot motion. Thus, it is difficult 
to control the attitude motion of the robot directly with the 
motor.  

To solve the problem, this paper combines the PSO with 
spline approximation into a new method, which can replace 
the Fourier approximation in traditional algorithm. Firstly, the 
author set up the dynamic model of the system, and 
transformed the motion planning problem with nonholonomic 
constraints into the optimal control problem, under the 
conservation of angular momentum. Next, the spline 
approximation and the PSO were employed to optimize the 
trajectory of the attitude motion of the system, and control the 
inputs to zero at the start and end of robot motion, such that 
the robot could move from the initial position to the desired 
destination in a motion cycle. The proposed algorithm was 
proved through numerical experiment as capable of effectively 
controlling the attitude motion of nonholonomic hopping 
robot.
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2. MODELLING OF ONE-LEGGED HOPPING ROBOT 
 

 
 

Figure 1. Model of one-legged hopping robot 
 
Our hopping robot system consists of a body and a leg that 

can rotate and flex freely. Without considering the flexible 
deformation, the author attempted to build a rigid model for 
the robot system. As shown in Figure 1, the robot has 2 
degrees-of-freedom (DOFs), i.e. capable of moving in the 
plane. According to the theory of dynamics of multi-body 
system, the mobile robot obeys the conservation of angular 
momentum in the absence of external force or moment. The 
angular momentum of the robot can be expressed as [2]: 
 

2Iθ + m(l + d) (θ + ψ) 

                  (1) 
 
where I is the inertial matrix of the body; m is the mass of the 
leg (assumed to concentrate on the foot); d is the upper leg 
length; 𝜓𝜓 is the rotation angle of the leg relative to the body; l 
is the flex quanity of the leg; θ is the rotation angle of the body. 
𝜓𝜓 , l and θ are collectively known as the configuration 
parameters of the robot, 𝑞𝑞 = (𝜓𝜓, 𝑙𝑙,𝜃𝜃). 

Since the initial angular momentum of the robot is zero, the 
following can be derived from formula (1): 
 

2Iθ + m(l + d) (θ + ψ) = 0 

         (2) 
 

Formula (2) can be considered as Pfaffian constraints 
expressed by the three generalized velocities of the system, 𝜓̇𝜓, 
𝑙𝑙 ̇and 𝜃̇𝜃. As the basis of the constrained 2D zero space, two 
vector fields 𝜓̇𝜓 = 𝑢𝑢1 and 𝑙𝑙 ̇ = 𝑢𝑢2 corresponding to the 𝜓𝜓 and 𝑙𝑙 
of the leg can be taken as the control inputs of the system. In 
this way, the change law of the three configuration parameters 
are controlled by two control inputs when the robot moves in 
the plane. Substituting 𝜓̇𝜓 = 𝑢𝑢1  and 𝑙𝑙 ̇ = 𝑢𝑢2  into formula (2), 
we have: 
 

q = B(q)u                            (3) 
 

where 
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Derived from the system’s conservation of angular 

momentum, formula (3) exists in the integrable form. In other 
words, the one-legged hopping robot system is constrained by 
an integrable angular velocity, a typical nonholonomic 
constraint [9]. The motion state q in the motion-time horizon 
can be obtained by formula (3), which is integrated with the 

adaptive fourth-order-Runge-Kutta method. 
 
 
3. OPTIMAL CONTROL OF ROBOT ATTITUDE 
MOTION 
 

Formula (3) provides a function of q relative to u and t. In 
fact, this formula specifies the attitude motion of a one-legged 
hopping robot (three configuration parameters) under two 
control inputs. Under nonholonomic constraint, the common 
goal of motion planning is to find the control input u such that 
the system moves from a given initial position 𝒒𝒒0 =
(𝜓𝜓0, 𝑙𝑙0,𝜃𝜃0)𝑇𝑇 ∈ 𝑹𝑹3  to the desired destination 𝒒𝒒𝑓𝑓 =
(𝜓𝜓𝑓𝑓 , 𝑙𝑙𝑓𝑓 ,𝜃𝜃𝑓𝑓)𝑇𝑇 ∈ 𝑹𝑹3 over a specific period of time T, consuming 
the minimal energy [10]. The optimal law of control input 
𝒖𝒖(𝑡𝑡) ∈ 𝑹𝑹2, 𝑡𝑡 ∈ [0,𝑇𝑇]  can be obtained by optimizing the 
objective function.  

The attitude motion of the robot is an energy-consuming 
process. The smoother the change of attitude motion, the less 
the energy consumption [11]. Considering the above, the 
minimal energy consumption can be selected as the objective 
of the optimization: 
 

( ) ∫
T

0
= < > dtJ u u, u                            (4) 

 
where, 𝒖𝒖(𝑡𝑡) ∈ 𝐿𝐿2([0,  𝑇𝑇])  is the set of square integrable 
functions in [0,𝑇𝑇]. The value of 𝒖𝒖(𝑡𝑡) = [𝑢𝑢1(𝑡𝑡),⋯ ,𝑢𝑢𝑛𝑛(𝑡𝑡)]𝑇𝑇 is 
traditionally determined by Fourier base functions. The results 
are measurable vector functions in Hilbert Spaces. Here, the 
value is obtained by spline approximation instead. To be 
specific, the author employed the cubic spline interpolation, 
which is the most popular way of piecewise-polynomial 
approximation [12]. This method is continuously 
differentiable on the interval and has a continuous second 
derivative.  

For a set of nodes 0 = 𝑡𝑡0 < 𝑡𝑡1 < ⋯ < 𝑡𝑡𝑁𝑁 = 𝑇𝑇, the cubic 
spline function 𝑠𝑠(𝑡𝑡𝑖𝑖) on each sub-interval can be established. 
Then, we have 𝑠𝑠(𝑡𝑡𝑖𝑖) = 𝑢𝑢𝑖𝑖(𝑖𝑖 = 1,2,⋯ ,𝑁𝑁 − 1) at the interval 
nodes, with 𝑢𝑢𝑖𝑖  being the components corresponding to the 
control input at the interval nodes. Under the boundary 
conditions 𝑠𝑠″(0) = 0  and 𝑠𝑠″(𝑇𝑇) = 0 , the following can be 
obtained by natural cubic spline interpolation:  
 

( )= ( , )t s tλu , [0, ]t T∈                              (5) 
 
where 𝜆𝜆 = [𝑢𝑢0,𝑢𝑢1,⋯ ,𝑢𝑢𝑁𝑁]𝑇𝑇  are the control input vectors in 
[0,𝑇𝑇]. Substituting formula (5) into formula (4), the objective 
function of the robot system can be obtained. Then, the control 
input vector 𝜆𝜆 can be regarded as a new control variable. 

Considering the accuracy constraints on the system motion 
to the destination, formula (4) can be rewritten as follows with 
the introduction of a penalty function: 
 

22

0
( , ) [ ( , )] d ( )

T

fs t tµ µλ = λ + λ −∫J f q           (6) 

 
where 𝜇𝜇 > 0 is the penalty factor; 𝑓𝑓(𝜆𝜆) is the final position of 
the robot determined by formula (3) after a set of control inputs 
u(t) is inputted into that formula. Therefore, the search for the 
u that minimizes the value of formula (4) can be converted into 
the search for the 𝜆𝜆 that minimizes the value of formula (6). 
Through the above analysis, the attitude motion planning 
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problem of the hopping robot under nonholonomic constraints 
was transformed into the problem of minimizing formula (6). 
 
 
4. PSO OF ATTITUDE MOTION PLANNING 
 

In this chapter, the PSO is applied to the attitude motion 
planning of the robot system. As an evolutionary computing 
technique, the PSO is a population-based algorithm mimicking 
the social behaviors of animals, such as fish schooling and bird 
flocking. By this method, the objective function does not have 
to be differentiable, and the global optimum of nonlinear 
optimization problems can be obtained rapidly. 

During the implementation of the PSO, each alternative 
solution is considered as a particle. A number of particles 
constitute a population that looks for the optimal solution in 
the search space. The position of each particle should be 
optimized to track the optimal position of the current 
population. Meanwhile, each particle has a velocity that 
determines the direction and distance of its flight. In practical 
applications, the initial position and velocity of each particle 
are randomly generated, and the optimal solution of the whole 
population is searched in the solution space iteratively.  

Let D be the number of dimensions of each particle, 𝑋𝑋𝑖𝑖 =
(𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2,. . . , 𝑥𝑥𝑖𝑖𝑖𝑖) be the position vector of particle i, and 𝑉𝑉𝑖𝑖 =
(𝑣𝑣𝑖𝑖1, 𝑣𝑣𝑖𝑖2,. . . , 𝑣𝑣𝑖𝑖𝑖𝑖) be the velocity vector of particle i. In each 
iteration, each particle updates itself by tracking the local best-
known value 𝑃𝑃𝑖𝑖  and the global best-known value 𝑃𝑃𝑔𝑔 . The 
position and velocity of each particle can be updated by [13]: 
 

1 1

2

( 1) ( ) [ ( ) ( )]
[ ( ) ( )]

id id id id

2 gd id

t w t c r P t t
c r P t t

+ = ⋅ + ⋅ ⋅ − +
⋅ ⋅ −

V v x
x

     (7) 

 
( ) ( ) ( )id id idt + 1 = t + t + 1X x v                     (8) 

 
where w is inertial value; c1 and c2 are acceleration factors; r1 
and r2 are two random numbers uniformly distributed in the 
interval [0, 1]. The position and velocity of a particle in the 
dimension 𝑑𝑑(1 ≤ 𝑑𝑑 ≤ 𝐷𝐷) have fixed value ranges. If either 
parameter exceeds its corresponding range, the boundary 
value should be taken. 

The PSO algorithm is implemented through the following 
steps: 

(1) Initialization 
Under the given parameters w, c1, c2, r1 and r2, the position 

𝑋𝑋𝑖𝑖  and velocity 𝑉𝑉𝑖𝑖  of each particle are initialized. The local 
best-known value 𝑃𝑃𝑖𝑖  and the global best-known value 𝑃𝑃𝑔𝑔  are 
calculated and recorded. The objective function value of each 
particle is calculated according to formula (6). 

(2) Iteration 
The position and velocity of each particle are iterated and 

updated by formulas (7) and (8), respectively. 
(3) Judgment 
If better than that before the update, the new objective 

function value of a particle should be adopted. If better than 
those before the update, the new 𝑃𝑃𝑖𝑖  and 𝑃𝑃𝑔𝑔 should be adopted. 

(4) Testing 
The program should be terminated and the optimal solution 

should be recorded, if the maximum number of iterations is 
reached; otherwise, return to Step (2) and start the next 
iteration. 

 
 

5. SIMULATION EXPERIMENT 
 
The PSO algorithm for one-legged hopping robot motion 

planning was verified through the simulation of a planar 
moving robot. The mass and geometric parameters of the robot 
were set as: 𝐼𝐼 = 16.66kg ⋅ 𝑚𝑚2, 𝑚𝑚 = 10kg, 𝑙𝑙 = 0.5𝑚𝑚 and𝑑𝑑 =
0.5𝑚𝑚.  

The parameters of the PSO [14] were initialized as: particle 
number 𝑛𝑛 = 15, acceleration factor 𝑐𝑐1 = 𝑐𝑐2 = 1.494, inertial 
value w=0.9~0.4, and the number of iterations=500. The 
particle number was set to 15, because the simulation result 
will remain the same if there are more than 15 particles.  

The motion parameters were defined as follows. The motion 
time T=5s  was divided into five equal parts. The control 
inputs at the start and end of motion were both set to zero. The 
number of parameters for each control input was set to 4. The 
dimension of 𝜆𝜆corresponding to two control inputs was set to 
8, that is, the dimension of the particle is 𝐷𝐷 = 8 when the PSO 
is applied. 

The simulation experiment was carried out on Matlab 
software. The initial and final coordinates of the robot were 
assumed to be [0 0 0]𝑇𝑇  and [−𝜋𝜋/4 0.25 𝜋𝜋/12]𝑇𝑇 , 
respectively. The simulation results are displayed in Figures 2 
and 3. 
 

 
(a) 

 
(b) 

 
(c) 

 
Figure 2. Motion trajectories of robot configuration 
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(a) (b) 

 
Figure 3. Optimal control input law of robot motion 

 
The above figures show that the trajectory of the robot, as 

well as the angular velocity and expansion linear velocity of 
the leg, were all smooth and continuous. Besides, the initial 
and final velocities were both zero. 

 
 
6. CONCLUSIONS 
 

In engineering, the motor control of robot attitude motion 
requires the initial and final control inputs to be zero. However, 
the common optimization methods like Fourier approximation 
cannot guarantee the control inputs are zero at the start and end 
of the robot motion. To solve the problem, this paper combines 
spline approximation and the PSO into a novel algorithm, and 
uses it to solve the optimal control problem of attitude motion 
planning for a hopping robot system under nonholonomic 
constraints. The proposed algorithm can optimize the motion 
trajectory of the robot, eliminating the nonzero initial and final 
values of the control inputs. The algorithm inherits the 
advantages of the PSO, such as simple structure, limited 
number of parameters, ease of programming and fast 
convergence. The research findings shed new light on solving 
motion control problems of nonholonomic systems. 
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