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One of the key functions of intelligent traffic management system is the accurate positioning 

of license plate in the video stream. However, the traditional license plate positioning 

algorithms are greatly affected by environmental factors, such as license plate covers, cloudy 

weather and varied colors. To overcome this defect, this paper designs a three-level 

concatenated convolutional neural network (CCNN) with multi-task learning ability. The first 

level detects the vehicles in the video, using the target detection algorithm You Look Only 

Once, Version 3 (YOLO v3). Based on the images detected on level 1, the second level 

performs rough detection of the license plate. On this basis, the third level accurately positions 

the key points on the license plate. The experimental results show that the CCNN achieved a 

mean accuracy of 95.8 % and a positioning speed of 63f/s in license plate detection, much 

better than the traditional license plate positioning algorithms. The proposed method can 

pinpoint the license plates in video in real time at a high accuracy. 
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1. INTRODUCTION

Intelligent video surveillance is a cutting-edge video 

technology that extracts and screens the abnormal behaviors 

within the video in real time, and issues early warnings without 

any delay. Compared with conventional surveillance 

technologies, intelligent video surveillance not only supports 

passive monitoring, but also achieves active control of 

abnormalities. To realize deep mining and quick search of 

video contents, the technical enterprises in China are 

competing to develop core technologies (e.g. digital signal 

processing and video analysis algorithms), especially the 

automatic identification of the attributes of specific items in 

video.  

License plate recognition is an important application of 

video surveillance. The existing license plate positioning 

methods are generally based on the color recognition 

algorithm, the edge recognition algorithm, or mathematical 

morphology. Specifically, the color-based positioning method 

needs to go through grayscale operations before acquiring the 

features of the image on license plate, and is affected by 

natural light intensity and license plate covers. Thus, the 

features extracted by this method is rather unstable. Edge-

based positioning mainly collects the order of gradient and 

computes the local gradient changes of the license plate image, 

failing to handle images with complex backgrounds. The 

morphology-based positioning method, with a certain 

morphological structure, supports erosion, dilation, opening 

and closing operations of binary images. This method usually 

needs to be combined with the other license plate recognition 

algorithms [1]. 

The license plate recognition is essentially to detect a target 

in the image. During the recognition, the first step is to judge 

whether the target exists in the video. If the target presence is 

confirmed, the target should be differentiated from non-region 

of interests, and be positioned accurately. In recent years, deep 

learning has become a hotspot in the field of image recognition, 

thanks to the in-depth research into human neural network. A 

typical deep learning algorithm is the convolutional neural 

network (CNN) [2]. With a deep network structure, the CNN 

contains a series of operations, ranging from convolution to 

pooling. The emergence of regional CNN (R-CNN) [3] and 

Over Feat [4] in 2013 marked the dawn of deep learning-based 

image target detection. The relevant algorithms include Fast 

R-CNN [5], Faster R-CNN [6], Single Shot Multi Box

Detector (SSD) [7], You Look Only Once (YOLO) series

[8~10], and the latest method Pelee. In less than five years,

deep learning-based image target detection has evolved from

two stage to one stage, from bottom-up only to top-down, from

single scale network to feature pyramid network, and from the

PC-end to the mobile-end. All these algorithms boast excellent

detection performance on open target detection datasets.

Based on K. Zhang’s concatenated neural network [11, 12], 

this paper designs a three-level concatenated CNN (CCNN) 

with multi-task learning ability. The innovation lies in the 

three-level structure of the CCNN. The first level selects the 

candidate window of the vehicle in the video, using the 

network model You Look Only Once, Version 3 (YOLO v3) 

[13]. The second level extracts the license plate with three 

CNN models. The third level accurately positions the four key 

points of the license plate with six CNN models, and then 

outputs the license plate.  

2. MODEL CONSTRUCTION

The network architecture is a three-level CCNN, with 

several CNN models on each level. On the first level, the 

YOLO v3 target detection algorithm is introduced to detect 

and classify the vehicle features in each frame of the video. 
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The classification results are inputted to the next level. On the 

second level, the license plate is roughly detected by three 

CNN models, outputting the key points of the license plate. On 

the third level, six CNN models make accurate detection of the 

license plate based on the key points. The structure of the 

CCNN model is illustrated in Figure 1. 
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Figure 1. The structure of the CCNN model 

 

2.1 Principle of the YOLO v3 

 

The YOLO algorithm has a simple structure and makes 

prediction based on the global information of the image. The 

core idea is to take the entire image as the network output, and 

directly regress the position and class of the bounding box on 

the output layer. 

2.1.1 Feature extraction network 

In the YOLO v3, the Darknet-53 feature extraction network 

uses a 53-layer CNN, which is superposed by multiple residual 

blocks [14]. This network outperforms ResNet-101, ResNet-

152and Darknet-19. 
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Figure 2. The structure of Darknet-53  

 

The structure of Darknet-53 is shown in Figure 2, where 

DBL (conv+BN+Leaky ReLu) is the basic unit of YOLO v3. 

For YOLO v3, Bayesian network (BN) and Leaky Rectified 

Linear Unit (ReLU) are indispensable from the convolutional 

layer (conv), except that in the last layer. The three elements 

form the smallest component of the YOLO v3. The “resn” 

indicates the number (“n”) of residual units (res_units) in the 

residual block (res_block), a large component of YOLO v3. 

Drawing on the residual structure of ResNet, YOLO v3 enjoys 

a deeper network structure than YOLO v2 (darknet-53 vs. 

darknet-19), which does not have the residual structure. 

 

2.1.2 Input-output mapping 

Each input image is mapped by YOLO v3 to output tensors 

of three different scales. The existence of the target differs 

with the positions in the image. As shown in Figure 3, for the 

416*416 input image, three a priori boxes are set in each grid 

of the feature map on each scale. Thus, there are a total of 

10,647 forecasts (13*13*3 + 26*26*3 + 52*52*3 = 10,647). 

Each forecast is an 85-dimensional vector ((4+1+80)=85), 

which covers the border coordinates (4 values), the border 

confidence (1 value) and the probability of target class. 

Mimicking the structure of residual network, the YOLO v3 

is a deep network capable of multi-scale detection. The 

network boasts an exceptionally high mean average precision 

(mAP), especially on small objects. Judging by COCO mAP-

50, the YOLO v3 can complete the detection 3 or 4 times faster 

than the other models (Table 1). Figure 4 is the vehicle 

detection results of the YOLO v3 model on our dataset. 
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Figure 3. Input and outputs of YOLO v3 

 

Table 1. Performance comparison between YOLO v3 and 

other networks 

 
Method mAP-50 time/ms 

SSD321  45.4 61 

DSSD321 46.1 85 

R-FCN 51.9 85 

SSD511 50.4 125 

DSSD513 53.3 156 

FPN FRCN 59.1 172 

RetinaNet-50-500 50.9 73 

RetinaNet-101-500 53.1 90 

RetinaNet-50-800 57.5 198 

YOLO v3-320 51.5 22 

YOLO v3-416 55.3 29 

YOLO v3-608 57.9 51 

 

 
 

Figure 4. The vehicle detection results of the YOLO v3 

model on our dataset 

 

2.2 Rough detection of license plate on level 2 

 

The detection on level 2 is realized through 3 CNN models: 

Deep CNN F1, Deep CNN LB1 and Deep CNN RB1 in Figure 

1. Deep CNN F1 detects four key points; Deep CNN LB1 

detects two key points in the upper left and the lower left; Deep 

CNN RB1 detects the two key points in the upper right and the 

lower right. The red points in Figure 1 are the key points 

roughly detected by these CNN models. Finally, the forecast 

values of each key point are averaged. 
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Figure 5. Network structure of Deep CNN F1  
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In Deep CNN F1, the key points are positioned by four 

convolutional layers (conv1, conv2, conv3, conv4) and two 

fully-connected layers (fc1, fc2). Each convolutional layer is 

followed by a ReLu operation and a max pooling layer (pool). 

The kernel sizes of the four convolutional layers are 4*4, 3*3, 

3*3 and 2*2, respectively, and the kernel size is 2*2 for all 

max pooling layers. 

As shown in Figure 3, I(140,180) stands for the size of the 

input image (140*180); Conv(4, 20, 137, 177) means the 

kernel size (4*4) of the first convolutional layer, the number 

of feature images (20), and the size of the output image 

(137*177); P(2, 20, 69, 89) indicates that the max pooling, 

with the stride of 2, outputs twenty 69*89 compressed features. 

The final outputs of the fully-connected layers are the 4 feature 

points to be forecasted.  

Deep CNN LB1 and Deep CNN RB1 have basically the 

same structure of Deep CNN F1. The only difference lies in 

the size of the input image. Deep CNN LB1 needs to predict 

the two feature points on the left of the license plate. Thus, the 

network is designed with 4 output layer neurons, and only the 

left half of the image (containing the two left feature points) is 

inputted. Similarly, Deep CNN RB1 needs to predict the two 

feature points on the right of the license plate. Thus, the 

network is designed with 4 output layer neurons, and only the 

right half of the image (containing the two left feature points) 

is inputted. 

 

2.3 Accurate positioning of license plate on level 3 

 

As shown in Figure 3, the forecast results after the training 

of level 2 (the red points in level 3) were not as accurate as the 

manually marked blue points. To solve the problem, the 

forecast position of each key point was inputted to the CNN 

models of level 3 to further reduce the detection scope of the 

key points. 
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Figure 6. Network structure of Deep CNN LU2_1  

 

Six simplified CNN models were designed for level 3, based 

on the rough detection of the key points in the license plate 

image. As shown in Figure 6, each model has two fewer 

convolutional layers and one fewer max pooling layer than that 

on level 2. In addition, the two datasets of each key point are 

trained separately by two CNN models. Thus, there are a total 

of 8 CNN models on level 3. Then, the forecast values of each 

key point are averaged, completing the accurate positioning of 

the four feature points in the image. The black points in Figure 

1 are the key points estimated by level 3, which basically 

coincide with the manually marked blue points. 

 

 

3. EXPERIMENTAL VERIFICATION 

 

3.1 Data acquisition 

 

The experimental data were collected from two sources: a 

library of the images extracted by OpenCV from surveillance 

video, and the open-source license plate database (3,000 

images). The images with limited changes were eliminated, 

leaving 8,000 images. These images were divided into a 

training set (6,000 images) and a test set (2,000 images). Due 

to the resolution difference between video clips, the acquired 

images were of two sizes: 1,080c×720 and 1,920×1,080. 

 

3.1.1 Data enhancement 

The image data are often enhanced before image 

classification, because deep learning has a strict requirement 

on the size of dataset. If the original dataset is too small, the 

network model cannot be trained sufficiently, thus affecting 

the model performance. In this paper, the original dataset is 

expanded by rotating, scaling, cropping and translating the 

image files. 

 

3.1.2 Data tagging 

The LabelImg was employed to tag the data of all sample 

images of license plate (including the training set and the test 

set). The tagged text is shown in Figure 7, where the five red 

boxes are the coordinate tags of the plate frame, the upper left 

key point, the lower left key point, the upper right key point 

and the lower right key point, respectively.  

 

 
 

Figure 7. The tagged text 

 

3.2 Results analysis 

 

Considering the network structure of level 2 (rough 

detection of key points on license plate), 6,000 images were 

allocated into the training set and 2,000 into the test set. The 

network training was carried out in batches, each of which 

contains 32 images (140*180). In each batch of training, the 

weights were optimized, and the Euclidean distance between 

the forecast and actual key points, i.e. the loss, was computed. 

The initial learning rate was set to 0.01. After every 1,000 

iterations, one test was conducted using the test dataset.  

The training losses of level 2 and level 3 are displayed in 

Figures 8 and 9, respectively. It can be seen that both levels 

witnessed a decline in the loss with the increase in the number 

of iterations. For level 2, the mean loss of the four key points 

fell between 0.8 and 0.9, after 10,000 iterations of the training 

dataset. For level 3, the loss gradually approached the interval 

of 0.4~0.5 after 10,000 iterations. The mean loss of level 2 was 

greater than the loss of level 3. This means the CCNN can 

enhance the positioning accuracy of key points on license plate, 
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through the combination of rough detection and accurate 

positioning. 

 

 
 

Figure 8. Loss trend on level 2 

 

 
 

Figure 9. Loss trend on level 3 

 

On level 2, the positions of the four key points were 

forecasted by the trained model, and the errors between the 

forecast positions and manually marked positions were 

calculated. Next, the errors on level 2 were compared with 

those on 3 (Figure 10). The comparison shows that the error of 

each key point on level 2 was greater than that on level 3. This 

further confirms the CCNN’s ability to accurately position the 

key points. 

 
 

Figure 10. Comparison between the errors of key points on 

level 2 and level 3 

Table 2. Key point positioning accuracies of different 

algorithms 

 

Algorithm 

Number 

of 

samples 

Correct 

positioning 

Incorrect 

positioning 

Hit 

rate 

(%) 

Pixel 

difference 

edge 

detection 

algorithm 

2,000 1,652 348 82.6 

Texture 

feature 

detection 

algorithm 

2,000 1,786 214 89.3 

Single CNN 

algorithm 
2,000 1,831 207 89.6 

The CCNN 2,000 1,916 84 95.8 

 

 

         

 

           

 

           
 

Figure 11. Positioning effects on level 2 and level 3 

 

Furthermore, the classic edge-based license plate 

positioning algorithm (pixel difference edge detection 

algorithm) and texture-based license plate positioning 

algorithm (texture feature detection algorithm) were tested on 

the 2,000 images in our test dataset. The results show that our 

CCNN algorithm outperformed the pixel difference edge 
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detection algorithm [15], the texture feature detection 

algorithm [16] and the single CNN algorithm [17] in 

positioning accuracy. The relatively poor effects of the 

traditional algorithms are attributed to their sensitivity to the 

environmental factors, as there is no limit on the scenes in the 

test images. By contrast, the CCNN model, trained by deep 

learning, can stay immune to the complex background and 

light intensity in the images. 

 

 

4. CONCLUSIONS 

 

This paper designs the CCNN, an accurate positioning 

method for license plate. Firstly, the vehicles in the video 

stream were detected by the YOLO v3 network. Then, two 

CNN layers were designed to roughly detect and accurately 

position the license plate, respectively. The CCNN was proved 

to be highly robust and accurate, despite natural light intensity, 

license plate covers, or noises outside the license plate. The 

research findings lay a solid basis for character segmentation 

and recognition on the license plate. 
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