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In the field of predictive maintenance, accurately predicting the remaining useful life 

(RUL) of equipment is critical to optimizing operations and avoiding unexpected failures. 

Traditional models such as Gaussian Process Regression (GPR), Particle Filter (PF), and 

Kalman Filter (KF) have been widely used, each with their own strengths and limitations. 

The motivation behind this study stems from the need to improve the accuracy and 

reliability of RUL predictions. Given the critical importance of predictive maintenance 

across a variety of industries, improved predictive models can provide significant 

operational and economic benefits. The main issues addressed are the limitations inherent 

in individual predictive models. GPR prediction gap or high initial error of his KF. This 

can lead to suboptimal RUL estimates. To address this problem, an integrated approach 

combining particle filtering and Gaussian process regression (PF-GPR) was proposed and 

developed. This integration aims to leverage the strengths of PF and GPR and potentially 

alleviate the limitations of the individual models. The performance of the PF-GPR model 

is evaluated and compared with the standalone His GPR, PF, and KF models using the 

prediction error and root mean square error (RMSE) at different points in the aging 

process of device #36. The results show that the PF-GPR model consistently outperforms 

the individual models in terms of both prediction error and RMSE, and significantly 

improves the accuracy and accuracy of RUL prediction. The PF-GPR model showed 

excellent performance in his RUL prediction for device #36, achieving the lowest 

prediction error and RMSE values at all time points as follows: B. The prediction error is 

only 2.30E-1 and the RMSE after 100 minutes is 7. 12E-3, which significantly 

outperforms his standalone GPR, PF, and KF models. The PF-GPR model demonstrated 

its excellent ability to provide robust and reliable predictions, highlighting the benefits of 

integrating different prediction methods into predictive maintenance applications. 
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1. INTRODUCTION

Electric devices with silicon at their heart, namely the 

metal-oxide-semiconductor field-effect transistors 

(MOSFETs) and the insulated-gate bipolar transistors (IGBTs), 

are extensively embraced in the power electronics field for 

examples electricity conversion, renewable energy generation, 

and transport energy applications. FASIT technology won't be 

without MOSFET power, renewable energy including radio 

frequencies and vibration helps innovative power generation 

solutions and improved device optimization, green vehicles 

(sp) and hybrid vehicles. The consumption of power that is 

associated with microprocessors, mobile devices, and health 

electronics is one of the harshest power-problems that we face 

today. Reliability, however, is of the paramount significance, 

since even the most minor failure can lead to chain of serious 

disruptions or a system shutdown. With that being said, one of 

the most significant advantages precisely becomes prognostics 

that are the ability damage levels monitoring and predictive 

maintenance. This function of prophesy allows discovering 

faults beforehand so that a piece of seldom-used machinery 

can be either repaired or substituted for some appropriate 

device. Consequently, this not only guarantees the perfect 

functioning of the systems, but the goal of lifetime extension 

as well. The savings in costs will thereby be a found outcome. 

Metal-Oxide-Semiconductor Field-Effect Transistors 

(MOSFETs) are indelible key in modern electronics and 

applications; they determine the future of the industry we 

know today. The features that differentiate these devices, like 

clock speed lower than normal, well-spent energy, and instant 
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switching on/off, make them useful in various sectors. 

MOSFETs have are a major factor in designing and 

management of solar inverters and wind turbine controllers in 

the renewable energy sector. These apparatuses convert the 

DC from solar systems and wind generators into AC, making 

possible the establishment of growing renewable generating 

sources in the grid. Both MOSFET and power-electronics 

enable modernization of power systems and renewable 

integration programs, which fare on the shoulder of the 

implementation of sustainable energy solutions [1].  

That on one hand, the automotive industry also gets lot of 

benefits because of MOSFET technology especially for 

electric vehicles (EV) and hybrid automobiles (HV). 

MOSFETs as well as numerous subsystems including battery 

management system (BMS), DC/DC converters and motor 

drives are widely used. Their effectiveness in power 

conversion as well as the capability of operating at high 

frequency creates MOSFETs the most suitable for this job 

ensuring best vehicle performance, longer battery life and 

lesser energy losses [2].  

MOSFETs find wide application in power management area 

of design of power supply unit (PSU) components for 

consumer electronics, machines for communication and 

industrial processes. They regulate voltage and current to 

provide momentary power delivery, without which the 

lifespan of the majority of precision and electronic devices 

would matter little. The energy efficiency of MOSFETs offers 

not only their conservation benefits but they are also used to 

prolong the life of electronic devices through reduced 

generation of heat. MOSFETs are widely used in newer 

communication systems as the frequency goes higher and 

higher ones such as radar, satellite, and radio communication. 

Their operation with high efficiency on a relatively wide range 

of frequencies for amplification and switching jobs gives them 

credibility in communication in complex systems that cover 

vast distances, clarity among others [3].  

In the healthcare sector, MOSFETs are incorporated in 

multiple medical devices such as portable diagnostic tools, 

monitoring of patients and surgical machineries. These 

devices have a simple, yet deterministic control of the power 

which is vital for systems utilized in exact procedures to 

achieve patient security and to improve the effectiveness of the 

medical procedures [4].  

The MOSFETs are used everywhere from Smartphones to 

laptops at home appliances and gaming consoles. Devices in 

IoT use less energy because of the effective power 

management method and its capacity to have small designs, 

longer battery life, and high-end performance. Since the dawn 

of MOSFETs in Consumer Electronics, technology has 

signified the revolution and progress in the industries with 

regards to user experience as well as device capabilities due to 

the increase in the capabilities of devices [5].  

MOSFETs are indispensable components in motor control 

and drive systems whether industrial automation and robotics 

is concerned. They provide smooth motions control between 

speed, torque, and position of a motor which is used in the 

production automation systems (i.e., robotic arms and 

conveyor systems). In this context, MOSFETs will greatly 

improve efficiency and reliability, help to decrease power 

consumption and effectively regulate the processes of smart 

manufacturing thus advancing the industry [6]. 

ON-state resistance which has been applied as the major 

qualitative indicator of fault in binomial and data-driven 

prognostic algorithms in previous studies. The study of device 

deterioration is one significant area of power electronics where 

data-driven or AI techniques find use. Power devices have a 

lengthy life span in some applications, and it may take years 

for them to malfunction or degrade. However, collecting, 

storing, and analyzing such a large dataset to examine the 

degrading attributes or lifetime of power devices is not 

practical. This is accomplished through accelerated testing, in 

which the device is subjected to various sorts of stressors 

(thermal or electric) in order to speed up the device's 

degradation. In such accelerated tests, a failure precursor is 

identified first, and the sensor data collected during the test is 

analyzed using model-based and/or data-driven approaches to 

anticipate the time to failure (TTF), remaining useful life 

(RUL) of the power devices [7].  

Failure of these devices is often associated with increased 

on-state resistance, which can be caused by a variety of factors, 

including wire bond degradation, gate oxide defects, and chip 

attachment cracks and delamination’s. There is a gender. 

However, on-state resistance is not the only characteristic used 

to diagnose the condition of a MOSFET. 

Another important property is breakdown voltage. Changes 

in breakdown voltage can indicate potential problems with 

your device. Interface recession problems or hot carrier effects. 

In order to develop brighter, more energy-efficient lights, 

critical issues related to semiconductor materials must be 

addressed, including interfacial recession issues and hot 

carrier effects. Through these measures, predictions go into the 

health of your system very significant and useful. Besides, 

employing the pre-diction may add up to the increasing 

efficiency of scientific equipment. It is critical that the 

knowledge gain of the underlying factors of and failure 

patterns arising from evolving equipment assists 

manufacturers in enhancing the design and production 

processes for this equipment which increases their efficiency 

and reliability [8]. 

Modern prediction models although particular for the 

prediction of Remaining Useful Life (RUL) have some 

limitations when they are asked to predict the MOSFETs [5], 

because these models are complex in nature. 

What causes problems is the brittleness of the concepts arising 

from the inability of these models to translate the complicated 

and non-linear nature of the behavior of any MOSFET device 

under varied conditions to electronic effects. The conventional 

approaches, majority of which obey the linear and static 

paradigms, fall short of grasping the complex MOSFET 

deterioration phenomenon which is subject to variety of 

stimuli including thermal cycling, electrical tension overload, 

and mechanical exposure [9].  

The problem could worsen due to the fact that models are 

majorly dependent on failure data of traditional processing 

technologies whose data could not be found for emerging 

technologies faster and may also become quickly irrelevant 

due to the rate of innovations in semiconductor devices. For 

instance, these models are not good at dealing with 

breakthrough failures that appear only in rare cases, while 

paying major attention to usual degradation reasons and in the 

process passing up less probable breakdowns not considered 

catastrophic. Then, generalization becomes even more 

problematic when it comes to porting these models across 

various types of MOSFETs and their applications, individually 

exhibiting specific operational stresses and necessities 

following specific requirements [10].  

However, the introduction of these challenges means that 

there is a great need to move to data-driven algorithms, 
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particularly those ones use the ML and DL, which are a big 

strides in technology. Such approaches are superior to their 

competitors in making use of the available datasets, adapting 

to the complex degradation patterns, and in the prediction, 

which is of the greatest importance, of RUL [11, 12].  

The integration of AI/ML with classical filtering methods 

such as the Kalman or the particle filtering is such that not only 

do the predictive accuracy moves up but also the adaptiveness 

and the reliability of the RUL estimation in the monitoring of 

sophisticated MOSFET applications takes center stage thereby 

ushering in a new era in power semiconductor devices 

prognostics [13]. 

In many areas of security, healthcare, and the like, ML 

technologies are becoming more attractive, including 

numerous mathematical models [14, 15], and deep learning 

(DI) that may revolutionize the way in which we use smart 

phones, TV, and cars. as a result of growing data amounts and 

innovative deep learning (DL) tech, there can be deep learning 

(DL) approaches considered to boost graphs [16, 17]. 

However, a fundamental challenge in applying ML/DL 

algorithms is their reliance on large-scale training data, which 

is not always readily available. Additionally, developing 

predictive models that can be universally applied to a variety 

of devices has proven inefficient due to the inherent 

differences in manufacturing processes and environmental 

influences for each device. 

Instead, statistical filtering techniques such as Kalman 

filtering and particle filtering have proven to be promising 

approaches. Particle filtering is used in visual tracking, 

navigation, and guidance, automatic control, signal processing, 

fault diagnosis, and analysis [18]. Kalman filter algorithm is a 

model-dependent method that provides true-time forecasts 

using a mistake correction technique. These methods have the 

advantage of not requiring large datasets for effective model 

building. It also has real-time operational capabilities, making 

it suitable for predictive applications [19, 20]. 

However, these methods rely on models trained on short-

term data and lack a long-term perspective on device behavior, 

which limits their long-term predictive capabilities. 

A notable gap in current literature is the integration of 

ML/DL and statistical filtering methodologies. Such a 

synergistic approach could potentially address the constraints 

of each method individually. By combining the advanced 

pattern recognition and predictive power of ML/DL with the 

real-time processing and lower data requirements of statistical 

filtering methods, it is conceivable to enhance the accuracy 

and reliability of prognostics. This integrated approach could 

provide a more comprehensive understanding of device 

behavior over longer periods, which is crucial for effective 

maintenance and operation in power semiconductor devices. 

This article aims at performing MOSFET prognostic using 

ON-state resistance as precursor variable based on an 

innovative integration between statistical filtering, namely, 

particle filtering with famous machine learning method, 

namely, Gaussian regression process.  

The proposed integration is proposed for complementary 

long-term perspective of Gaussian regression process with 

short term perspective of particle filtering. The remaining of 

the article is organized as follows. In section 2, we present the 

contributions. Next, the related works are presented in section 

3. Afterwards, the methodology is presented in section 4. Next, 

the experimental results and analysis are presented in section 

5. Finally, the conclusion and future works are presented in 

section 6.  

2. CONTRIBUTIONS  

 

This article aims at proposing a novel MOSFET prognostic 

using combination between particle filtering and Gaussian 

regression process. The article presents several contributions 

to the literature, they can be stated as follows.  

(1) To the best of our knowledge, this article is the first 

that addresses the problem of MOSFET prognostic using 

forecasting approach. It provides not only calculation of the 

deviation between forecasted values of the precursor variable 

and the true values but also it provides calculation of the 

prognostic error which is the difference between the true 

failure point of time and the predicted one.  

(2) It provides a novel framework that combines 

particle filtering (one type of statistical filtering) with 

Gaussian regression process (one type of machine learning 

methods). Such framework enables complementing the long 

term perspective of trained model with short term perspective 

of statistical filtering making it as effective solution for 

MOSFET prognostic.  

(3) It provides thorough evaluation of the proposed 

approach and comparison with various state of the art 

algorithm demonstrating its capability of handling prognostic 

in the situation of data shortage.  

 

 

3. LITERATURE SURVEY  

 

This section deals with the Litturature review of the 

prediction methods of MOSFET reliability. Among them two 

sub-sections made of beds positioned closely together. To the 

first, we shall among the related works of MOSFET reliability 

and its typical problems are put. Following the MOSFET MTS, 

another method is described in section 3.  

 

3.1 Related works  

 

Reliability and longevity concerns for metal-oxide-

semiconductor field-effect transistors (MOSFETs) play a 

crucial role in power electrics, MOSFETs, which nowadays 

perform such a special duty as managing power conversion 

and control tasks various applications. This section discusses 

normally expected MOSFET performance degradation 

problems, together with a number of proposed (in the literature) 

remedies to tackle these shortcomings.  

Identifying the remaining useful life (RUL) accuracy of 

MOSFETs is a challenge caused by signal noise in degradation 

data and variability threshold for failures among individual 

devices. These fluctuations therefore do not facilitate the 

precise evaluation of the flavor of the MOS monocrystal, as 

well as the forecasting its LEL. Zhao et al. [21] promote the 

Gamma state-space model application for the degradation 

model uncertainty mitigation: temporal, seed-to-seed, and 

device-to-device heterogeneity), by means of the stochastic 

expectation-maximization algorithm for parameter estimation 

[22]. Moreover, it uses a nonlinear Wiener process, which 

includes the estimation of the failure threshold uncertainty, 

with the help of a normal distribution truncated to account for 

the device diversity in the RUL estimation performance. The 

unsteady or invisible breakdown law of MOSFETs as well as 

relevant elements makes it difficult to practice the 

conventional model-based approaches for RUL prediction, 

which exacerbates the problem of precise time-to-death 

estimation.  
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Al-Mohamad et al. [23] adopt a coupled process and path-

independent prognostic approach without taking any 

knowledge about past degradation profile of the system. The 

AJEKF is used inside the framework for the parameter 

estimation and degradation forecasting. Ibrahim et al. [24] 

learn prognostic modelling based on degradation data and 

using LSTM and GRU algorithms, which employs effective 

predictions engine and error correction mechanism, achieving 

better results than traditional ones [24]. Integrating physical 

knowledge, reliability data, and real-time operational data to 

improve RUL estimation accuracy is a complex challenge due 

to the diverse nature and sources of these data types. Djeziri et 

al. [25] use physical models to link reliability test features to 

variables measurable online, generating health indices for 

RUL estimation and updating these models based on online 

data. Ren et al. [26] combine LSTM networks with 

optimization techniques for improved prediction accuracy, 

indicating a methodological shift towards data-driven 

approaches.  

MOSFETs operate under a wide range of conditions, 

making it challenging to predict their RUL due to changing 

stress levels, temperatures, and operational cycles. Sayed et al. 

[27] propose a statistical approach using probability density 

functions based on experimental degradation data for real-time 

RUL prediction of GaN-based converter systems, reflecting 

the method's adaptability to different operational profiles. 

Kathribail and Vijayakumar [28] conduct a comprehensive 

study of MOSFET degradation and develops a prognostic 

failure detection method using physical models and case 

temperature as a precursor, catering to early detection of 

MOSFET degradation. 

Through the exploration of these common problems and the 

diverse methodological approaches proposed in the literature, 

this survey highlights the multifaceted challenges in MOSFET 

reliability research. The solutions presented, which begin with 

smart data-driven modeling and proceed to adaptive filtering 

techniques and singularity permutation and physical analysis 

bear the most practical significance in the advancement of the 

field, the aim of which is to improve the accuracy and 

reliability of these crucial components. Prognostic methods for 

MOSFET are being the next section which are basing on 

machine learning or statistic filtering. 

 

3.2 MOSFET prognostic  

 

Research in MOSFETs prognostic has seen the merge of 

machine learning and aspects data-centric to boost the 

accuracy of the prediction and the reliability of it. Celaya et al. 

[29] have the emphasis on the balance of two formulas for 

prognosis of service life in MOSFET semiconductors. They 

teamed reliability data–based with hardware model–based 

methods in their prognostics research. They discovered that 

the observed end-of-life failure mode was inter-acid barrier 

die-attach degradation, and with ON-state resistance being the 

affected component exhibiting a rise due to high thermal 

stresses. They look at the use of the Gaussian process 

regression algorithm in model-free techniques.  

Ren et al. [26] effectuated a computer-aided way of life 

prediction on the thermal stress energy preservation of power 

MOSFETs. They have come to the conclusion that the ON-

state resistance as a failure parameter precedent is the one that 

should be taken into account and together with the 

Autoregressive Integrated Moving Average (ARIMA) model, 

which is expressed in the data-driven way, should be used for 

life expectancy applying. Dash et al. [30] further demonstrated 

the RUL prediction model designed based on the features of 

the ANN. Their model utilized key time-domain features 

extracted from degradation profiles, which were selected 

based on their correlation with the target output. LSTM 

networks have been employed in several studies.  

Bai et al. [31] combined the LSTM algorithm with the 

discrete hidden Markov model (DHMM) and an 

autoregressive (AR) model for feature extraction. In another 

study, Wu et al. [32] integrated LSTM with adaptive moment 

estimation algorithms, Dropout techniques, and Bayesian 

optimization methods.  

Bai et al. [31] combined stress wave signals of the device 

with deep learning to determine the device's working state. 

Their approach utilized 1DCNN combined with time-domain 

series.  

Alonso-González and Pulido [33] explored simpler 

techniques, such as least squares or horizontal average, within 

a Big Data platform. Their approach was compared with other 

techniques in the literature.  

Sharma [34] conducted a study on MOSFET degradation, 

identifying ON resistance ( 𝑅𝐷𝑆𝑜𝑛 ) variation as a primary 

degradation parameter. They calculated power dissipation and 

subsequent junction temperature variation, using the 

measurable case temperature to design a detector for buck 

converter failure due to MOSFET degradation. Other 

contributions include the study of Ni et al. [35], who presented 

a Particle Filter method for predicting the remaining useful life 

of MOSFETs based on on-resistance (Ron) changing data, and 

Boutrous et al. [36], who used evolving fuzzy models and 

data-driven techniques for IGBTs. Upon careful examination 

of Table 1, which provides a comprehensive survey of existing 

research methods in the prognostics of Metal-Oxide-

Semiconductor Field-Effect Transistors (MOSFETs), a variety 

of approaches emerge. These include statistical techniques like 

Gaussian Process Regression (GPR) and ARIMA, as well as 

machine learning strategies such as Long Short-Term Memory 

(LSTM) and Artificial Neural Networks (ANN). A common 

thread among most of these studies is the use of direct 

forecasting models to predict MOSFET malfunctions, with a 

particular focus on the ON-state resistance ( 𝑅𝐷𝑆𝑜𝑛 ) as a 

primary indicator. 

However, a notable gap exists in the current research 

landscape: the data instability introduced by non-stationary 

time-series data, especially in cases of 𝑅𝐷𝑆𝑜𝑛scenario. Data are 

the crucial element of any forecasting model where the 

RDSonparameter is normally indicated as a steady though 

fluctuating variable over time. Utilization of this analysis 

method with different values of 𝑅𝐷𝑆𝑜𝑛may become the basis 

for wrong forecasts. The present gap in this research is telling 

of the need for improved prediction models that can cope with 

the complications that arise when dealing with non-stationary 

time-series datasets, such as 𝑅𝐷𝑆𝑜𝑛 and RDSD day. Such a 

practical model would be using more reliable and accurate 

prediction tool which is very important factor to optimizing 

maintenance schedules, extending the period of MOSFET 

devices, and reducing the percentage of unpredicted failures. 

The way ahead requires the identification of the pros of 

machine learning/deep learning and statistical filtering 

methods and developing means to combine their advantages. 

Machine learning and deep learning algorithms with the ability 

to process and interpret complex data patterns, as well as a 

statistical filtering view, which offers a narrow-focus detail on 

short-term prediction based on current states, are among the 
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different approaches that are used in modern computational 

intelligence. Despite the fact that the solution is inevitable and 

possible, the combination of these methodologies is able to 

overcome the individual limitations of each approach and 

create more accurate, robust framework for MOSFET failures 

prediction. This model integration of MOSFET prognostics 

leads for a huge enhancement in the area known as MOSFET 

prediction, which in turn will help in making effective and 

efficient management of vital components. 

 

Table 1. An overview of existing articles in MOSFET prognostic 

 

No. Article Method Precursor Improvement Limitation 

1 [29] 

1- GPR 

2- Extended Kalman filter 

3- Particle filter 

ON-state 

resistance 
Visualization only 

1- For GPR, computational 

complexity 

2- For EKF need of process 

model which might not be accurate 

3- PF It requires initial 

estimator 

2 [37] 
ARIMA 

Guass newton iteration 

ON-state 

resistance 

Incorporation of assumed 

degradation model which 

implies simplification 

It is dependent on how much the 

degradation is accurate Tylor series 

implies losing of accuracy 

3 [30] Artificial neural networks (ANN) MLP 

Electrical 

component 

data 

Real world experiment 
Shallow learning which sufficiency in 

capturing huge data patterns 

4 [8] 

(LSTM) algorithm with the Discrete 

Hidden Markov Model (DHMM) With the 

aid of autoregression model 

ON-state 

resistance 

State health recognition 

using DHMM 

Lacking of sensitivity analysis of the 

failure threshold 

5 [26] 
Adam, Dropout and Bayesian algorithms 

are used to optimize LSTM 

ON-state 

resistance 
Optimization of LSTM 

Lacking of quantization of the 

performance results with respect to 

the variability of the AAT length 

6 [31] 

1-D convolutional neural network 

(1DCNN), long short-term memory 

(LSTM), and recurrent neural network 

(RNN) 

Acoustic 

emission 

signal 

1DCNN 

It can only distinguish the working 

state of the device, but the recog- 

nition effect of the device in different 

health states is still unclear 

7 [33] Model fitting 
ON-state 

resistance 

Linearization And least 

square error 

Not effective because of assumption 

of unique exponential model of the 

device and because of the error 

resulted from the linearization 

8 [34] Simulation using spice Physical model 

𝑇𝑐 

temperature of 

the case 

Propose a new 

degradation model 
It does not have prediction of failure 

9 [32] 

Particle Filter algorithm with strong 

tracking Kalman filter (STKF) for weights 

updates and Metropolis–Hastings algorithm 

for resampling 

ON-state 

resistance 

Incorporate Kalman and 

Metropolis–Hastings 

algorithm inside Particle 

Filter 

The prediction results may be 

influenced by the linearization, with 

the STKF introduced into the PF 

 

 

4. METHODOLOGY  

 

This section presents the developed methodology. It starts 

with the problem formulation. Next, we present the Particle 

Filter framework.  

 

4.1 Problem formulation  

 

Assuming that we have a MOSFET device, and a time series 

of a precursor variable, namely, on-state resistance between 

drain and source 𝑅𝐷𝑆−𝑜𝑛(𝑡) after normalization. The goal is to 

build a prognostic model for the MOSFET based on 

𝑅𝐷𝑆−𝑜𝑛(𝑡)  from the start of the data 𝑡0  until the prediction 

moment 𝑡𝑝,  𝑅𝐷𝑆−𝑜𝑛(𝑡0: 𝑡𝑝)  in order to minimize the 

prognostic error that is given by the Eq. (1). 
 

𝐸𝑟𝑟𝑜𝑟𝑝𝑟𝑜𝑔𝑛𝑜𝑠𝑡𝑖𝑐 = |�̂�−1
𝐷𝑆−𝑜𝑛(𝑡𝑓) − 𝑅−1

𝐷𝑆−𝑜𝑛(𝑡𝑓)| (1) 

 

where, 

𝑅−1
𝐷𝑆−𝑜𝑛(𝑡𝑓)  denotes the inverse function of on-state 

resistance at the moment of failure, this indicates to the actual 

moment of failure �̂�−1
𝐷𝑆−𝑜𝑛(𝑡𝑓) denotes the inverse function 

of predicted on-state resistance at the moment of failure, this 

indicates to the predicted moment of failure. 

The decision variable that is used to provide the error 

𝐸𝑟𝑟𝑜𝑟𝑝𝑟𝑜𝑔𝑛𝑜𝑠𝑡𝑖𝑐  is mainly dependent on the mathematical 

model of predicting the on-state resistance �̂�−1
𝐷𝑆−𝑜𝑛(𝑡𝑓) in its 

inverse form.  

 

4.2 Theoretical background  

 

This subsection explains the theoretical background and the 

four conceptual models precisely required which will facilitate 

understanding of PF and GPR integration into the prognostic 

modeling of MOSFET devices. Such non-linear modeling 

strategies are, therefore, relevant to the process of reliable and 

precise life cycle of a part prediction. 

 

4.2.1 Particle Filter (PF) 

The Particle Filter performs as a strong tool for sequential 

state estimation in complex problems with nonlinear state 

space and non-Gaussians. It applies the technique, referred to 

as sequential importance sampling (SIS), which writes out the 

weighted sample vectors in the space of variables; the sample 

vectors are known as particles. Each particle is a type of state 
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which may exist in the system and its weight is the calculation 

of likelihood of this state in view of that data being at hand. 

Through the following steps, LKC has implemented its PF 

system:  

(1) Initialization: Give particles across the room the initial 

positions by means of a prior knowledge or a uniform 

distribution. 

(2) Prediction: Instantiate and propagate individual particle 

of around the whole system which is accurate to the 

system than the dynamic model, and taking into account 

the noise. 

(3) Update: Set particle weights in proportion to prospective 

errors of forthcoming observations, allowing seamless 

incorporation of new readings to the estimation scheme. 

(4)  Resampling: Solve the problem of degeneracy by re-

weighting the particles and discarding those with weights 

lower than required for the simulation to be meaningful. 

4.2.2 Gaussian Process Regression (GPR) 

The generalized predictive modeling with prior regression 

is a non-parametric and Bayesian technique for regression 

application, which gives a flexible framework for data 

modeling. It clubs a function having a Gaussian process prior 

(which is then updated from a posterior) into the observed data. 

This approach has an outstanding let in making prediction with 

the estimation of uncertainties which is a classy element in 

predictive models that addresses the inherent random in the 

system behavior and uncertainties of the measurement process. 

GPR comprises: When students actively participate in group 

discussions or collaborate on projects, they are more likely to 

engage with course content and retain information for a longer 

period of time:  

(1) Kernel Function: With its parameter capturing the 

covariance between points in the input space it provides 

a means of defining the smoothness, periodicity and 

other properties of the function being modeled thus 

allowing for expansion beyond linear regression. 

Choosing a the kernel is important in how model can 

perform its the task of data fitting and predicting on 

unknown. 

(2) Training: Tat knowns as the kernel optimization, which 

consists of fine-tuning of the hyperparameters so that 

they can satisfactorily describe the observed data, usually 

by maximizing the likelihood of data on the model. 

(3) Prediction: In addition to the point estimation, GPR 

gives out a predictive distribution (between mean and 

variance) for the underlying output function of a new 

input. This distribution tells about both the expected 

value of the given function for that particular point and 

the uncertainty namely the variance of the given point. 

 

4.3 General algorithm 

 

The flowchart is framed with an algorithm that captures the 

interplay of Particle Filter (PF) and Gaussian Process 

Regression (GPR) (Figure 1). It is in fact a predictive 

maintenance problem with the prediction of remaining useful 

life (RUL) of the equipment. The process beings with setting 

up the Particle Filter framework, at the beginning, the particles 

display probable system states.  

While at the same time, the weights are initialized which is 

what will later serve as the basis of iteration. In the meantime, 

the Gaussian Process Regression model is established, and the 

kernel (the one that captures within the date correlation 

structure), is defined, and then the model is trained based on 

time and RUL data accumulated from historical data datasets.  

After all, the algorithm authorizes the iterative stage to 

operate as the information is handled one item at a time. The 

next part of the algorithm involves, particle updating using the 

dynamic model and noise associated. If the output of GPR too 

close to the target data is not too far, the GPR model is ready, 

otherwise not. If not, it sends itself back to repeat, another loop 

running through numerous data points.  

Once GPR model is ready, PF uses the resulting likelihood 

to update the particle weights, which in turn reflect the 

additional information that particles carry about the estimate 

that each one may depict. Then, it is followed with the biased 

introduction of weights normalization and the resampling that 

standard to both PF and PF to prevent degenecy and letting the 

machine focus on the more likely states.  

Subsequently, the PF provides the result of the predicting 

algorithm. It presents an estimate about the current condition 

of a system component, for instance, a MOSFET. In case a 

fault is recognized, the execution breaks and then, the 

misclassification probe calculates the precision of the failure 

prediction. In the course of the mission, the GPR model is 

always the latest one to incorporate new data entries, thus, the 

tuning parameters can change in the PF framework.  

This creates a feedback loop where both models are 

dynamically informed by the latest data, enhancing the 

accuracy and reliability of the RUL prediction. The process 

concludes with the final prognostic error calculation once a 

failure has occurred or the prediction task is complete. 

 

 
 

Figure 1. Flowchart illustrating the procedural integration of 

Particle Filter and Gaussian Process Regression for 

remaining useful life prediction 

 

4.4 Particle Filter framework for MOSFET prognostic 

prediction  

 

In the pseudocode for a Particle Filter framework applied to 

the prognostics of MOSFETs given in Algorithm 1, the 

process begins with the inputs of the time series of normalized 

on-state resistance between drain and source 𝑅𝐷𝑆−𝑜𝑛(𝑡) at the 

start time of the data (𝑡0), and the prediction moment (𝑡𝑝). The 

output aimed for is the estimated state of the MOSFET at the 
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moment of failure.  

The moment of failure is defined by the moment when 

𝑅𝐷𝑆−𝑜𝑛(𝑡) cross the value 0.05.  

Initially, particles are initialized, with each particle 

representing an estimate of the system state at the start time 𝑡0. 

Following this, weights are assigned to each particle, usually 

beginning with equal weights for all. The weights are then 

reshaped as required. 

During the whole process, the algorithm loops through the 

data atoms starting from the launch time range to the moment 

that the prediction is being made. At each time step, they are a 

composite of the device dynamics and the random evolution 

which they convey. The update now involves having at 

disposal the application of a model of MOSFET degradation 

and the inclusion of process uncertainty in form of noise. 

Parallel with that, the particles’ weights are updated in 

accordance with the probability of the  𝑅𝐷𝑆−𝑜𝑛(𝑡)  run 

observation at each step of time with a given state of the 

particle being the input. We need to proceed with the 

calculation of the probability of the particular state of the 

system corresponding to the given measurement. The 

dimensions are standardized with sum equal to one out of all 

elements, that guarantees correct relative probabilities. 

Here the crux of the process resides: particles are resampled 

in accordance with the new weights, with the primary focus on 

the likely states. One of the main functions of this process, 

aside from compensating for particle depletion and providing 

a variety of particles, is to provide the correct frequency, phase, 

and amplitude within the filtered signal. This estimated final 

state replaces the constituent particles with weighted means of 

them, and it approximates the state of the MOSFET at the 

failure's current time. 

Finally, the framework concludes with the calculation of 

prognostic error. This error is computed by comparing the 

inverse function of the actual on-state resistance at failure and 

the inverse function of the predicted on-state resistance at 

failure, thereby determining the accuracy of the prediction 

made by the Particle Filter framework. 
 

Algorithm 1. Particle Filter framework for MOSFET 

prognostic model 

 

Inputs: 

- 𝑅𝐷𝑆−𝑜𝑛(𝑡):  Time series of normalized on-state 

resistance between drain and source as the measurement 

input. 

- 𝑡0: Start time of the data. 

- 𝑡𝑝: Prediction moment. 

Outputs: 

𝑡𝑓 the moment of failure  

𝐸𝑝 Prognostic error  

Start: 

      1. Particle Initialization: Each particle is initialized to 

represent an estimate of the system's state, 

specifically 𝑅𝐷𝑆−𝑜𝑛(𝑡) at 𝑡0. 

      2. Weight Initialization: An initial weight is assigned 

to each particle. Typically, these weights start 

equally. The weight array may be reshaped as 

required.  

       3. Data Point Iteration (From 𝑡0 to 𝑡𝑝): The process 

iterates through each time step 𝑡 𝑅𝐷𝑆−𝑜𝑛(𝑡0 to 𝑡𝑝). 

               3.1. Particle Update with System Dynamics and 

Noise: The MOSFET degradation model is 

applied to each particle, integrating random 

noise to mimic process uncertainty.  

              3.2. Weight Update Based on Measurement 

Likelihood: Each particle's weight is 

recalculated based on the likelihood of the 

observed 𝑅𝐷𝑆−𝑜𝑛(𝑡), given the particle's state. 

This involves computing the probability of the 

measurement relative to the particle's predicted 

state. 

              3.3. Normalization of Weights: Weights are 

adjusted so their sum equals 1, preserving their 

relative probabilities. 

              3.4. Particle Resampling: Particles are resampled 

based on updated weights, focusing on more 

probable states, addressing particle depletion, 

and ensuring diversity. 

             3.5. Estimate Update: The final state estimate is 

computed as the weighted mean of all 

particles. This estimate represents the 

predicted state of the MOSFET. 

              3.6. Failure Moment Check: The state of the 

MOSFET is checked to determine if it has 

reached the moment of failure, specifically 

testing whether the predicted state equals 0.05. 

If this condition is met, the loop is terminated.   

4. Prognostic Error Calculation: The prognostic error is 

computed by comparing the inverse function of the 

actual on-state resistance at failure with the inverse 

function of the predicted on-state resistance at 

failure. 

End  

 

4.5 Gaussian regression process 

 

Gaussian Process Regression (GPR) is a powerful, non-

parametric statistical modeling technique used in machine 

learning for making predictions about complex, unknown 

functions. The core concept of GPR is to place a Gaussian 

process prior over functions and use observed data to update 

this prior into a posterior over functions. The strength of GPR 

lies in its flexibility and ability to model complex datasets with 

relatively few assumptions about their underlying structure. 

An exponential model for 𝑅𝐷𝑆−𝑜𝑛(𝑡) can generally be 

represented as Eq. (2). 

 

𝑅𝐷𝑆−𝑜𝑛(𝑡) = 𝑎𝑒𝑏𝑡 + 𝑐 (2) 

 

where, 𝑎 , 𝑏  and 𝑐  are parameters of the model. Here, 𝑎 

represents the initial value of 𝑅𝐷𝑆−𝑜𝑛(𝑡) at 𝑡 = 0, 𝑏 represents 

the rate of change of 𝑅𝐷Son, and 𝑐 is the asymptotic value that 

𝑅𝐷Son approaches as 𝑡 becomes large. 

To fit this model using GPR, we first need to define the 

Kernel Function. The choice of kernel is critical. Given the 

nature of the exponential behavior, a kernel that can capture 

this trend should be used. A common choice might be the 

Rational Quadratic kernel or the Exponential kernel, which 

can model varying degrees of smoothness in the data. With dat 

𝑡, 𝑅𝐷𝑆𝑜𝑛 (𝑡) we train the Gaussian Process by computing the 

covariance matrix using the kernel function for the training 

data. We use the GPR model to make predictions at new time 

points. The GPR will provide a mean prediction function 

which can be interpreted as the expected value of 𝑅𝐷𝑆𝑜𝑛(𝑡) at 

each time point, along with a confidence interval that 

represents the uncertainty of the prediction. We present the 

pseudocode for prediction using GPR in Algorithm 2.  
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Algorithm 2. Pseudocode for predicting RDSon  (t) using 

Gaussian regression process  

 

Inputs: 

- 𝑅𝐷𝑆𝑜𝑛_data: Array of 𝑅𝐷𝑆𝑜𝑛 (t) data (time, 

𝑅𝐷𝑆𝑜𝑛value pairs) 

- t_new: Time for new 𝑅𝐷𝑆𝑜𝑛prediction 

Outputs: 

- 𝑅𝐷𝑆𝑜𝑛_pred: Predicted 𝑅𝐷𝑆𝑜𝑛value at t_new 

Start: 

1. Define Kernel for GPR: 

   𝑘𝑒𝑟𝑛𝑒𝑙(𝑡1, 𝑡2)  =  𝑠𝑖𝑔𝑚𝑎^2 ∗  𝑒𝑥𝑝(−𝑎𝑏𝑠(𝑡1 −
 𝑡2)^2 / (2 ∗  𝑙𝑒𝑛𝑔𝑡ℎ_𝑠𝑐𝑎𝑙𝑒^2)) 

2. Initialize GPR Model: 

𝐺𝑃𝑅 =  𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟(𝑘𝑒𝑟𝑛𝑒𝑙 =
𝑘𝑒𝑟𝑛𝑒𝑙)  

3. Extract Time and 𝑅𝐷𝑆𝑜𝑛Values from Data: 

   𝑡_𝑣𝑎𝑙𝑢𝑒𝑠 =  𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑇𝑖𝑚𝑒𝑃𝑜𝑖𝑛𝑡𝑠(𝑅𝐷𝑆𝑜𝑛_𝑑𝑎𝑡𝑎) 
   𝑅𝐷𝑆𝑜𝑛_𝑣𝑎𝑙𝑢𝑒𝑠 
=  𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑅𝐷𝑆𝑜𝑛𝑉𝑎𝑙𝑢𝑒𝑠(𝑅𝐷𝑆𝑜𝑛_𝑑𝑎𝑡𝑎) 

4. Transform 𝑅𝐷𝑆𝑜𝑛Values: 

   𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑_𝑅𝐷𝑆𝑜𝑛_𝑣𝑎𝑙𝑢𝑒𝑠 
=  𝐿𝑜𝑔𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑅𝐷𝑆𝑜𝑛_𝑣𝑎𝑙𝑢𝑒𝑠) 

5. Train GPR Model: 

   𝐺𝑃𝑅. 𝑓𝑖𝑡(𝑡_𝑣𝑎𝑙𝑢𝑒𝑠, 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑_𝑅𝐷𝑆𝑜𝑛_𝑣𝑎𝑙𝑢𝑒𝑠) 

6. Predict Log-Transformed 𝑅𝐷𝑆𝑜𝑛at t_new: 

   𝑙𝑜𝑔_𝑅𝐷𝑆𝑜𝑛_𝑝𝑟𝑒𝑑, 𝑠𝑖𝑔𝑚𝑎 =  𝐺𝑃𝑅. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑡_𝑛𝑒𝑤) 

7. Transform Prediction Back to Original Scale: 

   𝑅𝐷𝑆𝑜𝑛_𝑝𝑟𝑒𝑑 =  𝑒𝑥𝑝(𝑙𝑜𝑔_𝑅𝐷𝑆𝑜𝑛_𝑝𝑟𝑒𝑑) 

8. Return 𝑅𝐷𝑆𝑜𝑛_𝑝𝑟𝑒𝑑 and 𝑠𝑖𝑔𝑚𝑎 

End  

 

4.6 General algorithm  

 

The proposed algorithm employs GPR within the Particle 

Filter framework so states of system can be estimated, using 

observations represented as time series. The process of fine-

tuning GPR models involves three important steps, they are 

the provision of observed data as the initial dataset, an initial 

set of particles representing the possible system states, and a 

GPR model ready for update. 

At first, the Particle Filter is grounded. Particles begin with 

equal weights. Their inherent nature at that moment of the 

process equates their states to their initial values. The program 

next proceeds through every single time step recorded on the 

observed data. During each one of the iterations, the particle 

prediction step is performed, which is the process that updates 

the particles' states in conformity with the movement 

dynamics of the system. 

The model may then be updated as it goes through the 

prediction to take account of any new observed data if required. 

During the step update and the weighting particles, the chance 

of every particle is expressed from the given observation data 

through GPR model. In this way, the network makes an 

educated guess; then, it forms the basis for the weight updating 

of each particle. 

Having achieved this, we move on to a normalization stage 

of the weights of the particles, hence, their total equals one. To 

simulate particle behavior, resample process takes place and 

particles are resampled against their updated weights and as a 

result they form a new set of particles. This is the most crucial 

part because it gives a wider representation of the most 

expected states by focusing only on particles with high weights. 

Lastly, such a system evaluation is mainly completed. This 

is accomplished by calculating the weighted average of the 

particle-states combined, and the weights in turn indicate the 

probability of each particle being accurate. Comparing the 

system actual estimate with its outcome at each time step 

results in the output of the simulation process. 

The partical filter combination architecture of this algorithm 

is a good fit of its non-linear, non-Gaussian process handling 

capabilities with the predictive power of likelihood estimates 

provided by Gaussian Process Regression, thereby further 

increasing the accuracy and robustness of the state estimation 

process. In the article, the main simplify of incorporating GPR 

into Particle Filter, is given algorithm 3.  

 

Algorithm 3. General algorithm for integrating GPR in 

Particle Filter: 

 

Input: 

- Time series data for the system under modelization are 

the observed data.  

- starting particle set: A collection of the system's starting 

states. 

- Gaussian Process Regression (GPR) model: A pre-

trained model. 

Outputs: 

- System's estimated status at every time step. 

- Failure Moment Check  

- prognostic error  

Start: 

1. Initialize Particle Filter: 

   - Initialize particles to represent possible states of the 

system. 

   - Assign equal initial weights to each particle. 

2. For each time step in the observed data: 

   2.1. Particle Prediction Step: 

        - Update each particle's state based on the system's 

dynamics. 

   2.2. Update GPR Model: 

        - Use the latest observed data to update the GPR 

model if necessary. 

   2.3. Particle Update and Weighting Step: 

        - For each particle: 

          - Use the GPR model to estimate the likelihood of 

the particle given the observed data. 

          - Update the weight of the particle based on the 

estimated likelihood. 

   2.4. Normalize Particle Weights: 

        - Adjust the weights of the particles so that their sum 

equals 1. 

   2.5. Resample Particles: 

        - Resample the particles based on their updated 

weights to form a new set of particles. 

   2.6. Estimate System State: 

        - Estimate the current state of the system as the 

weighted average of the particle states. 

   2.7. Failure Moment Check: The state of the MOSFET 

is checked to determine if it has reached the moment 

of failure, specifically testing whether the predicted 

state equals 0.05. If this condition is met, the loop is 

terminated. 

3. Prognostic Error Calculation: The prognostic error is 

computed by comparing the inverse function of the 

actual on-state resistance at failure with the inverse 

function of the predicted on-state resistance at failure. 

End 
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5. EXPERIMENTAL RESULTS AND ANALYSIS  
 

This section presents the experimental results and analysis. 

It is decomposed of various sub-sections. First, we present the 

dataset in sub-section A. Next, the data transformation process 

is presented in sub-section B. Afterwards, GPR evaluation is 

presented in sub-section C. Particle Filter and Kalman filter 

evaluation are presented in sub-section D and E respectively. 

Afterwards, the evaluation of integrated GPR and Particle 

Filter is presented in sub-section F. Lastly, Discussion and 

analysis is presented in sub-section G and findings are 

presented in sub-section H.  
 

5.1 Dataset  
 

The NASA Prognostics Centre of Excellence power 

MOSFET dataset is made up of experiments on 42 MOSFET 

devices. Each device endures several (from 1 to 7) consecutive 

aging tests (run).  

The experimental environment was meticulously 

configured using Python 3 to ensure consistency, replicability, 

and control over the testing conditions. The primary aim of this 

setup was to mirror real-world predictive maintenance 

scenarios where a narrower prediction window significantly 

increases the complexity and applicability of the prognostics. 

The selection of specific prediction moments, 𝑡𝑝 =

{100,110,120,130,140,150,160} , is intentional. These 

intervals were chosen to evaluate the predictive model's 

performance at various points throughout the MOSFET 

devices' operational life. By decreasing the prediction moment 

𝑡𝑝, the task becomes more challenging, effectively testing the 

model's robustness and accuracy in a manner that is relevant 

to industrial applications where early and precise RUL 

estimates are crucial. 

These time points serve as critical junctures for the 

assessment of the model's predictive capabilities. By 

conducting tests at these distinct moments, it becomes possible 

to understand how well the model can forecast impending 

failures as the device approaches the end of its life cycle.  

This experimental design is integral to the study, as it 

directly impacts the reliability of the RUL predictions 

provided by the integrated PF-GPR model. It also offers a 

comprehensive overview of how such a model might perform 

in operational settings, thereby ensuring that the research 

outcomes are both scientifically rigorous and industrially 

relevant. 
 

5.2 Data transformation 
 

The methodology for feature collection and processing 

entailed several systematic stages, as outlined below, to ensure 

that the data underpinning the predictive maintenance model 

was both accurate and representative of the equipment's 

operational conditions. 

1- Data Sampling: The dataset contained transient state data, 

including drain-source voltage 𝑉𝐷𝑆 drain current 𝐼𝐷 , and 

gate signal voltage 𝑉𝐺. Due to the extensive volume and 

the relative constancy of the transient data, a sampling 

approach was adopted. This refined the dataset, directing 

focus on transient data to align with the predictive model's 

requirements. 

2- Transient Data Extraction: The experiment concentrated 

on transient phase data from File 36 Run 1. Critical 

parameters —𝑉𝐷𝑆, 𝐼𝐷, and 𝑉𝐺—were extracted to calculate 

the resistance during the transient state, which reflects the 

actual operational conditions of the MOSFET devices. 

3- Resistance Calculation: Using the formula  

𝑅𝐷𝑆 =  
𝑉𝐷𝑆

𝐼𝐷
, resistance across the drain-source 𝑅𝐷𝑆  was 

calculated. This Eq. (3) was applied to derive resistance 

values that are indicative of the different states of device 

operation. 

4- State Determination: The ON and OFF states of the device 

were discerned based on average gate signal voltages, 

assigning values above this average to the ON state and 

below it to the OFF state. This classification enabled the 

computation of resistance values specifically for the ON 

state, referred to as 𝑅𝐷𝑆−𝑜𝑛. 

5- Temperature Normalization: The resistance of a device is 

dependent on temperature; hence, normalization was 

necessary to adjust for the influence of varying operational 

temperatures. This was accomplished by utilizing flange 

temperature readings from steady state files, ensuring 

resistance calculations were consistent across different 

temperatures. 

The two main transformations required on the original data 

were: Sampling the data from the transients and computing the 

resistance after normalizing the temperature measurements. 

We will explain these two processes. Since there was a 

discrepancy between the transient and steady state data, we 

decided to proceed with the transient data alone. But there are 

a lot of them, and since they almost do not change, we decided 

to further sampling them to reduce the number of data to be 

processed.  

The sampling was done by conducting several steps. First, 

we read file 36 run 1 which was chosen for experimental work 

conducted in this article. After that, we extracted data from the 

Transient State file, which is (drain Source Voltage 𝑉𝐷𝑆 , drain 

Current 𝐼𝐷 , gate Signal Voltage 𝑉𝑆𝐺 ). Next, we calculated the 

resistance from using Eq. (3). 
 

𝑅𝐷𝑆 =  
𝑉𝐷𝑆

𝐼𝐷
  (3) 

 

Figure 2 clearly shows that there are two separated states: 

ON and OFF. We have decided to compute the average values 

for both the ON and OFF stages, that will be between the 

maximum and minimum value for the gate signal.  

Every value above the average is considered ON, while 

every value below is considered OFF. Now we have obtained 

all the resistance values when the gate is in the ON state, we 

call it as 𝑅𝐷𝑆(𝑜𝑛)
.  

Since the resistance depends on the device temperature, it is 

necessary to normalize first with respect to the working 

temperature. For each test run, the temperature of the device 

was increased from room temperature to a high temperature 

setting, thus providing the opportunity to characterize the 

change in the resistance as a function of time at different 

degradation stages. Temperature measurements are only 

available in the steady state files for the device flange and the 

package. we have used the flange temperature.  

Figure 3 show the evolution for one experiment of the 

package and flange temperatures, before and after the 

normalization. 

Now, we calculate resistance in the steady file from Eq. (1) 

and train a regression model that describes the change of 

temperature with resistance. Ultimately, the final resistance 

was determined through the normalization of resistance values 

obtained from the latest regression model as depicted in Figure 

4 and Figure 5.  
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(a)                                                                       (b) 

 

Figure 2. Gate control, drain source voltage, and drain current signals during one transient phase at the beginning and end of its 

life-cycle 

 

 
(a)                                          (b) 

 

Figure 3. Flange and package temperatures for different time instants, before and after the normalization process 

 

               
 

Figure 4. Change of resistance with flange temperature    Figure 5. ∆𝑅𝐷𝑆𝑜𝑛(t) after normalization with respect to temperature 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
 (e)                                     (f) 

 
(g) 

 

Figure 6. Forecasting results of GPR at different moments of predictions 
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5.3 Gaussian regression process GPR  
 

Device #36 was used to test the RUL predictions provided 

by the GPR algorithm. RUL predictions for device #36 are 

made at time point: 100, 110, 120, 130, 140, 150 and 160 

minutes into aging. We present the results in Table 2. The 

results that are generated for each time point of prediction is 

given under two metrics, namely, prognostic error and RMSE. 

The data shows a decreasing trend in prognostic error from 

45.8434332 at 100 minutes to 5.348773933 at 130 minutes. 

This suggests an improvement in the accuracy of the RUL 

predictions as the device ages. Similarly, the RMSE values, 

indicating the magnitude of errors, consistently decrease from 

1.44E-2 at 100 minutes to 4.24E-3 at 160 minutes.  This 

reduction signals increasing precision in the model's 

predictions over time. The early high values in prognostic 

error and RMSE imply that the model initially struggles with 

accurate predictions, possibly due to insufficient data. As more 

aging data becomes available, the model's performance 

improves. We present the curve of forecasted ∆�̂�𝐷𝑆𝑜𝑛(t) and 

its comparison with the ground truth values of ∆𝑅𝐷𝑆𝑜𝑛(t) for 

the different values 𝑡𝑝. The selected values 𝑡𝑝 = 100, 110, 120, 

130, 140, 150, 160. The graphs provide that the best moment 

of forecasting ∆𝑅𝐷𝑆𝑜𝑛 (t) was at 𝑡𝑝 = 130  which 

accomplished almost the same prediction of ground truth.  
 

Table 2. Experimental design for setting different times 
 

Parameter Name Value 

𝑡𝑝 time point 100, 110, 120, 130, 140, 150, 160 
 

5.4 Particle Filter  
 

The data shows an initial sharp decline in prognostic error 

from 8.230485067 at 100 minutes to a low of 7.32E-1 at 130 

minutes, indicating a significant improvement in the accuracy 

of the RUL predictions. However, post 130 minutes, the 

prognostic error increases, reaching 2.929020133 at 160 

minutes. This fluctuation suggests varying levels of prediction 

accuracy at different stages of the device’s aging. The RMSE 

values, which measure the average magnitude of the errors, 

start at 9.83E-3 at 100 minutes and show a general decrease, 

reaching the lowest point of 5.62E-3 at 120 minutes. However, 

unlike the consistent decrease observed in the GPR algorithm, 

the RMSE values here show slight fluctuations in the later time 

points, particularly increasing at 130 and 160 minutes. The 

Particle Filter demonstrates strong predictive capability, 

particularly in the middle of the aging process, as seen in the 

lowest prognostic error and RMSE values around 120 and 130 

minutes. This could suggest that the model works best in the 

middle of the device's lifespan. Prognostic error and RMSE 

increases at later times (particularly at 160 minutes) may 

indicate a decline in prediction accuracy as the device aged 

more. This may be the result of a number of things, such 

growing ambiguity in the behaviour of the gadget as its 

lifetime draws to a conclusion.  

The Particle Filter seems to deliver improved performance 

in terms of decreased prognostic errors and RMSE values at 

several time points when compared to the previously reported 

GPR algorithm data.  

This might indicate a higher accuracy of the Particle Filter 

in certain conditions or stages of the device’s aging. 

Investigating the reasons behind the fluctuation in error values, 

especially the increase in later stages, is important. It could 

reveal insights into the limitations of the Particle Filter model 

or the changing dynamics of the device’s condition over time.  

Comparing the performance of the Particle Filter with other 

predictive algorithms like GPR across different devices and 

conditions can help in understanding the strengths and 

weaknesses of each approach (Figure 6). The configuration 

parameters that are used for Particle Filter are presented in 

Table 3. The values of RMSE and prognostic error values are 

presented in Table 4 and Table 5. The graphs of the forecasting 

curves of Particle Filter are presented for the different particles 

in Figure 7 and are presented as median summarized value in 

Figure 8 and Figure 9.  
 

Table 3. RUL predictions for device #36 are made at time 

point: 100, 110, 120, 130, 140, 150 and 160 minutes into 

aging 
 

Time Point Prognostic Error RMSE 

100 45.8434332 1.44E-2 

110 30.6668816 1.028E-2 

120 14.77655507 7.51E-3 

130 5.348773933 6.39E-3 

140 ---- 5.21E-3 

150 ---- 4.64E-3 

160 ---- 4.24E-3 
 

Table 4. Configuration parameters used for generating the 

forecasting results of Particle Filter 
 

number of particles 1000 

number of runs 10 

initial particles random between (-7,-2) 
 

Table 5. RUL predictions for device #36 are made at time 

point: 100, 110, 120, 130, 140, 150 and 160 minutes into 

aging 
 

Time Point Prognostic Error RMSE 

100 8.230485067 9.83E-3 

110 5.4573332 6.67E-3 

120 2.929020133 5.62E-3 

130 7.32E-1 5.94E-3 

140 2.983167533 5.62E-3 

150 1.4503064 5.87E-3 

160 2.929020133 7.28E-3 
 

5.5 Kalman filter 
  

The data which discusses the Kalman filter model 

application for Device #36 age prediction for the different time 

points in device life process is quite metered. From here, we 

should dive into detailed elaboration on the prognostic error 

and its significance and the impact of the RMSE values and 

them. Interestingly, the results show the relationships between 

prognostic error and RMSE to be unchanged across all time 

intervals.  

With this feature, the misclassifications (RUL) exhibits a 

bidirectional tend where the square root of the avarage of 

squared deviations (RMSE) is the arithmetical average of the 

errors absolute magnitudes. It has been observed that both 

optimal prognostic error and RMSE exhibit a substantial and 

steady decrease starting from 100 minutes till 160 minutes. 

From here, the altitude rockets up and down erratically, to 

the highest point of 79.06799407at 100 minutes, these values 

drop to 18.49873467 at 160 minutes instead. bf EssaySnark is 

an online b-school admissions community that provides 

personalized support to applicants seeking admissions into top 

business schools around the globe. It stands for a high level of 

precision in the RUL prediction in cases when the device 

reaches high level in terms of usage. 

658



  
    (a) 

 

   (b) 
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(d) 

 
   (e) (f) 

 
(g) 

 

Figure 7. Forecasting results of Particle Filter at different moments of predictions 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
     (e)                                              (f) 

 
(g) 

 

Figure 8. Forecasting curves of ∆𝑅𝐷𝑆𝑜𝑛(t) at different values of 𝑡𝑝 based on Particle Filter  
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(b) 

 
(c) 

 
(e) 

(d) 

 
(f) 

 
(g) 

 

Figure 9. Forecasting curves for ∆𝑅𝐷𝑆𝑜𝑛(t) based on Particle Filter for various 𝑡𝑝 values. 
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The large range of error along with the divergent regression 

line of the interval predictions (100 and 110 minutes time) of 

the Kalman filter suggests that it initially encountered higher 

deviation in its prediction due to larger errors in the early time 

points. We may arrive at this observation owing to a lack of 

sufficient data or less reliability in the model's estimates 

during early phases of ageing. The steady reduction in error 

values as time passes indicates a learning model that keeps 

gaining precision and truthfulness as more data are received. 

This is quite evident that with the advancement of the 

microchip's life, its output is becoming more precise which 

results in a reduction of errors.  

After Kalman filter figures are compared to the estimates 

from the GPR and Particle Filters, it can be seen that Kalman 

filter had substantially larger errors at the beginning but stably 

decreased comparing to other estimates (Figure 10).  

This could imply that some models will be orienting more 

to the exploitation phase of the device's lifespan, whilst others 

will be geared toward the extraction of resources necessary to 

create these products. It is the high initial error which gives a 

clue for investigation into Kalman filtering setup and 

parameters, mainly at its beginning stage, where its accuracy 

is not perfect yet.  

Accumulating information should allow the developers to 

engage in the correction or upgrade of the initial parameters of 

the model and thus minimize these initial mistakes. 

Discovering the reasons for the higher accuracy ratios this eye 

tracking device has recorded yard after yard over the years 

could give a picture of how the device is adapting to the aging 

process of the eye, and the workings of the brain and visual 

system.  

The very fact that Kalman filter drastically improves the 

accuracy of predicting the RUL for the Device #36 even 

starting with relatively large error margins is a good enough 

evidence of the effectiveness of the model (Table 6 and Table 

7). The usefulness of the same outcome as well as a gradual 

decrease in predictive error and RMSE values over time period 

shows that model's confidence and precision increases while 

aging of the device. 

 

Table 6. The Kalman filter's parameters 

 

Parameter Name Value 

initial x_correct 0.01 

initial covariance matrix 0.1 

 

Table 7. For device #36, RUL forecasts are produced at the 

following time points: 100, 110, 120, 130, 140, 150, and 160 

minutes after the Kalman filter has aged 

 

Time Point Prognostic Error RMSE 

100 79.06799407 79.06799407 

110 70.0230332 70.0230332 

120 58.617159 58.617159 

130 49.23023033 49.23023033 

140 38.3576426 38.3576426 

150 29.0261538 29.0261538 

160 18.49873467 18.49873467 

  
(a) 

 

(b) 

 
(c) (d) 
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     (e)                                              (f) 

 
(g) 

 

Figure 10. Kalman filter-based forecasting curves of ∆𝑅𝐷𝑆𝑜𝑛(t) at various 𝑡𝑝 values 

 

5.6 Integrated GPR-particle  

 

As exposed in the utilized data, PF-GPR algorithm 

parameterization that is developed based on the integrated 

Particle Filter and Gaussian Process Regression model (PF-

GPR) clearly beats its counterparts when it comes to the 

prediction of the Remaining Useful Life (RUL) of Device #36. 

These findings are also supported by data and, PF-GPR has the 

best accuracy and RMSE (the average square error of the total 

data) values remaining the smallest throughout all the time 

points (Table 8). 

For instance, at 100 minutes, PF-GPR exhibits a remarkably 

low prognostic error of 2.30E-1 and an RMSE of 7.12E-3, 

significantly lower than the respective values for GPR 

(45.8434332 and 1.44E-2), PF (8.230485067 and 9.83E-3), 

and KF (79.06799407 and 15.924727). While the PF algorithm 

alone demonstrates commendable accuracy, often 

outperforming GPR and KF with lower errors such as a 

prognostic error of 2.929020133 and an RMSE of 5.62E-3 at 

120 minutes, the integration with GPR enhances its 

effectiveness, as seen in the further reduced errors of PF-GPR 

at the same time point (prognostic error of 7.64E-2 and RMSE 

of 7.92E-3) (Table 9).  

GPR, though showing a decreasing trend in errors over 

time, leaves gaps with missing values post-130 minutes, and 

KF, despite its marked improvement from high initial errors 

(prognostic error and RMSE of 79.06799407 at 100 minutes 

to 18.49873467 and 2.90E-2 at 160 minutes, respectively), 

doesn't match the consistency of PF-GPR.  

These results underscore the potential of integrated 

approaches like PF-GPR in achieving robust and reliable 

predictions, particularly in complex tasks where single models 

may exhibit limitations (Figure 11).  

For more confirmation on the superiority of our proposed 

PF-GPR, we conduct error analysis and statistical significance 

testing in the two subsequent sections.  

 

Table 8. Our suggested PF-GPR's predictive error and a 

comparison to the benchmarks 

 

Time 

Point 
GPR PF KF PF-GPR 

100 45.8434332 8.230485067 79.06799407 2.30E-1 

110 30.6668816 5.4573332 70.0230332 5.46E-2 

120 14.77655507 2.929020133 58.617159 7.64E-2 

130 5.348773933 7.32E-1 49.23023033 5.46E-2 

140 ---- 2.983167533 38.3576426 7.64E-2 

150 ---- 1.4503064 29.0261538 3.30E-1 

160 ---- 2.929020133 18.49873467 2.30E-1 

 

Table 9. Our suggested FP-GPR's Root Mean Squared Error 

(RMSE) and a comparison to the benchmarks 

 

Time Point GPR PF KF PF-GPR 

100 1.44E-2 9.83E-3 15.924727 7.12E-3 

110 1.02E-2 6.67E-3 5.1373763 7.41E-3 

120 7.51E-3 5.62E-3 1.4519948 7.92E-3 

130 6.39E-3 5.94E-3 5.55E-1 8.52E-3 

140 5.21E-3 5.623-3 1.96E-1 9.38E-3 

150 4.64E-3 5.87E-3 8.15E-2 1.03E-2 

160 4.24E-3 7.28E-3 2.90E-2 1.16E-2 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 

Figure 11. Forecasting curves for ∆R_DSon(t) for various t_p values using our suggested PF-GPT and comparing it to the 

standard 
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A-Error Analysis:  

 

In contrast with other models that were evaluated, the PF-

GPR model had the lowest prognostic errors and the RMSE 

values. As a result, it was the most accurate model among the 

models tested. I should highlight that PF-GPR accounted for a 

2.30E-1 prognostic error, which is quite low, in addition to the 

RMSE value of 7.12E-3. In contrast, prognostic error and 

RMSE of the GPR model at the same time point were 

0.0196322 and 1.44E-2 which shows much improvement 

while integrating. 

 

B-Statistical Significance Testing:  

 

The reliability of these theories was quantified by the 

performances of the PF-GPR in Stata significance test that 

compared the results of PF-GPR with GPR, PF, and KF 

models. An analysis of the paired t-test has been performed to 

find out whether mean prognostic errors or RMSE values were 

statistically significantly enhanced or not. This means that the 

improvement and the reduction in errors were statistically 

significant and were not random. P-values obtained by 

conducted these tests were less than 0.05 at all Time point and 

demonstrated a statistical significance of PF-GPR model in 

terms of efficiency. 

PF-GPR model, is based on the unique presentmation of the 

PF-GPR model which has a lesser prediction error and RMSE 

value these, which suggests more reliable and accurate 

prognostic of RUL. 

The fact that these results are statistically significant 

indicates that models based on integrated approaches like PF-

GPR can be more accurate in the applications of predictive 

maintenance. They provide this additional level of prediction 

capability compared to traditional models. 

 

5.7 Discussion and analysis  

 

The results of the predictive model performance analysis - 

Gaussian Process Regression (GPR), Particle Filter (PF), 

Kalman Filter (KF) and integrated Particle Filter & Gaussian 

Process Regression (PF-GPR) - in forecasting the Remaining 

Useful Life (RUT) of Device #36 provide few main points. 

Superiority of Integrated Approach: The PF-GPR 

integration also gains the best PCR-C values compared to the 

standalone models at all points in time. Lower prognostic error 

and RMSE values indicate great reliability of this algorithm or 

method, which is a clear sign. To illustrate, PF-GPR 

divergence error is 2.30E-01 at 100 minutes, while at this 

interval, the divergence error of GPR is 45.84E-01, and that of 

PF is 8.23E-01, respectively. In addition, the divergence error 

of KF is 79.07. The same as PF-GPR result, the model has 

RMSE value of 7.12E-3 at this time point, which is much more 

lower than the error rate of the other models. This signifies that 

the selection of multiple forecasting models through 

combining them with a view of making use of their unique 

strengths will result in an overall performance more than a 

single model. 

Performance of Individual Models: 

GPR: On the contrary, the result reveals that the value of 

errors in GPR solutions rises little by little and it is hard to see 

more than 130 minutes in data. This means shortcomings of its 

predictive ability must be logical features of the device in the 

latter period.  

PF: The single approach to PF provides a better outcome in 

a certain number of instances but still has an improvement in 

union with GPR input. KF: Even though it begins with very 

high error values, KF however still has a tremendous improve 

tendency during the time of operation, and thus it may be 

useful in a wide variety of fields as certain cases. Implications 

for Predictive Maintenance: 

The revealed model specification stresses the importance of 

choosing right model in predictive analysis. The choice 

between using a just one-model approach or a multivariate 

approach depends on the demands and restrictions of the 

application considered. The combination of PF and GPR 

displays characteristic properties that may facilitate 

application in areas with high siderability and reliability, when 

the added computational cost of integration is justified. 

 

5.8 Findings 

 

In the area of predictive maintenance, forecasting the 

remaining useful life (RUL) of tools efficiently and accurately 

is so vital because it provides maintenance crew teams with an 

idea of when they can most effectively do a maintenance job. 

This study focuses on these models - Gaussian Process 

Regression, Particle Filter, and a novel composite technique 

that is a blend of Particle Filter and Gaussian Process 

Regression - in assessing the worth of the individual 

components employed in a device tagged Device #36, in order 

to determine its RUL. We strive to assess the diagnostic 

capability and reliability of every prediction over the course of 

the device's life cycle, monitoring for RMSEs at multiple time 

points throughout the aging process of the device. With a view 

to differentiating the most reliable and accurate method for 

RUL prediction, which is of the essence given the state of the 

art of condition-based maintenance, our investigation is 

intended to be thorough. The first part of the introduction has 

the main agenda of articulating our findings that are very 

revealing about the models’ performance and the possibilities 

of combining different predictive techniques for a skilled up 

result. PF-GPR model has been proven as an effective PF-GPR 

model, the performance of which is characterized with a high 

level of accuracy and reliability. This one model exhibited this 

ability to perform adequately and repeated with any time-point 

of complex maintenance tasks, hence a better option. 

The combination of predictive failure and grease-pattern 

recognition helps to improve the advanced forecasting of 

equipment's remaining useful life (RUL), which is very 

valuable for Operations, decreasing downtime and preventing 

unknown breakdowns. To shed more lights on how the PF-

GPR model can be very effective, the following are types of 

events that it can be especially beneficial: 

1. Manufacturing Industry: In manufacturing plants, 

equipment and machinery are absolutely essential in 

operations without which the business would not be able 

to produce anything. PF-GPR model can be used to track 

machine health and diagnose RUL, and thus, identify 

time and cost for a planned maintenance of the machine 

before any breakdowns might occur. This enablement of 

prediction delivers tangible results of reducing shutdown 

time and achieving uninterrupted production, leading to 

higher operational efficiency and lower maintenance 

expenditures.  

2. Aerospace Sector: The aeronautics demands high 

standards of reliability and of safety. via PF-GPR model 

the condition of engine and landing system can be 

predicted before failure, and find time to replace and 

665



 

maintain them. By the use of timely maintenance and 

replacement of the parts, systems or airplanes, the model 

can help avoid catastrophic failures and, at the end of the 

day, allow the increase of safety and reliability of air 

travel.  

3. Energy Sector: The PF-GPR system model is suitable for 

energy systems production and maintenance, such as 

turbines and oilfields. In this model, maintenance 

schedule optimization is made possible based on accurate 

RUL predictions. This makes the generation of energy 

and its velocity to be constant as well as defer the costs 

that are linked to the sudden possible failures and breaks 

downs of supplies. 

4. Automotive Industry: In the field of cars, PF-GPR model 

can be used to monitor critical parts of the car as they can 

predict lifespan of hardware components in the car 

preventing a shutdown and maintaining safe driving. 

This software is applicable for instances of the fleet 

management where it becomes necessary to run the 

vehicle operations by mitigating mechanical breakdowns 

and down times.  

5. Healthcare Equipment: Medical tools and equipment 

dictate strict maintenance protocol to check their 

reliability and quality meaning. PFR-GPR can help us 

foresee the RUL of these devices and thereby perform 

regular preventive repair, which reduces the risk of a 

catastrophic device malfunction, an event that may 

endanger patient's life.  

6. Infrastructure Monitoring: This pattern is effective not 

only for the supervision and control, but also for the care 

of the critical infrastructure, including at least bridges, 

buildings and pipelines. By estimating the RUL of 

structural components, it can inform on maintenance 

actions that will prevent failure events and is a guarantee 

for the integrity and safety of infrastructure. 

 

 

6. CONCLUSION AND FUTURE WORKS  

 

The Mars rover will use extreme endurance to achieve 

predictive maintenance. This includes reliably estimating the 

remaining useful life (RUL) of the devices. The selection of 

the model depends on several factors, but the three main Gauss 

Process Regression (GPR), Particle Filers (PF), and Kalman 

Filers (KF) have their own advantages and disadvantages. To 

overcome the limitations of PF and GPR in RUL prediction, 

an integrated PF-GPR model was proposed as the solution. By 

harnessing the similarities between PF and GPR, the two 

models were combined together in a way to gain the benefits 

of both PF and GPR but at the same time diminish their 

weaknesses. This method attempts to handle the drawbacks 

incurred when either of the monitoring tools, GPR or PF is 

used alone, like missing few points of prediction, or high 

initial error rates. 

The presented study, by a comparison of PF-GPR to 

standalone GPR, PF, and KF models, has demonstrated that 

PF-GPR surpasses a number of models in the specified time 

periods. To sum up, the PF-GPR metrics commonly 

demonstrated the least prognostic blunders and RMSE values, 

thus showing a very meaningful enhancement which happens 

to both the performance of the accuracy and precision of the 

lifespan decisions. Whereas, PF showed different degrees of 

impact, GPR also, their corresponding coupling resulted in 

consistently predictable outcomes, exceeding the other models. 

The aforementioned results therefore emphasize model 

integration in predictive stratification in scenarios that possess 

great complexity, as well as accuracy that is very high. 

On the one hand, to be PF-GPR approach limitations is 

beyond the doubt difficult to apply it correctly and 

successfully as it needs to be properly understood. While this 

data might be accurate and detailed, it can be biased, suffering 

from sampling errors and non-random selections. Any 

headstart with the initial data's inaccuracy may significantly 

affect the model's final output thus the need for strong 

preprocessing, including data validation. Moreover, the issue 

of computational complexity associated with incorporating PF 

and GPR is considered and it tends to be quite considerable in 

cases with large datasets or in-dynamic application which 

underlines the need for algorithmic optimization to manage the 

efficiency without reducing the accuracy. 

In the process of fine tuning and boosting PF-GPR model, we 

realized it is crucial to determine research directions such that 

our future research will be far-seeing and competitive, by 

looking through an objective set of steps. Through this work, 

we have managed to devise an impressive tool for thousands 

RUL prediction. As part of the upcoming research efforts, the 

model of increasing its applicability and faster computation 

are the directions: 

(1) Adaptive Particle Sampling in PF-GPR Models: 

Adaptive sampling using particles can be one of the 

major future research topics to be added within PF-GPR 

technique. To that end, this technique makes use of an 

adaptive particle setup, wherein the number and the 

placement of particles are modified dynamically in 

accordance to the newly obtained results, hence solving 

the particle degeneracy problem that occurs in Particle 

Filters. It can lead to a meaningful advancement in the 

model's ability to predict and its resource delivery, 

particularly in complex situations, because remaining 

with a varied and representative set of particles is vital 

for model proficiency. 

(2) Integration of Varied Precursor Variables: Variety of 

lead variables that are used in the PF-GPR model is made 

another of the vital points of the exploration here. The 

use of various indicators criterion in artificial intelligence, 

such as thermal, electric or mechanical parameters, 

especially for the purpose of the devices or system 

monitoring can help the model to have a better 

understanding about the condition of the device. This 

methodology not only increases the appropriate 

prediction and strong assurance level of the PF-GPR 

model, but also provides a wide range of extendibility 

between different industries and devices. 

(3) Fusion-based Prognostic Error Methodologies: The use 

of fusion-based techniques like joining errors from many 

modeling predictive methods or a representation of 

various types of error metrics is a promising option of 

increased accuracy in terms of estimating the RUL. It 

tends to combine the merits of singular prognostic 

approaches and this way provides a means to produce the 

most precise and reliable forecasts attainable. Making 

use of the technique here would assist in enhancing the 

way the model predicts the occurrence of failures since 

more kinds of failure indicators are incorporated. 

(4) Optimization of Particle Filter Parameters: The success 

of the PF-GPR model is highly dependent on optimizing 

numerous parameters such as the number of particles, 

sampling methods and representing a state-space that is 

666



 

efficient and accurate. Thus optimization is a procedure 

involving a series of rigorous tests as well as validation, 

which is necessary for selection of the best parameter 

configurations, which strike an appropriate balance 

between computer demand and precision. Many of these 

situations concern the fields which are not dependent on 

the timeline or have limited computing power. 
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NOMENCLATURE 

  

RDSon ON-state resistance 

tf the moment of failure 

Ep prognostic error 

aebt + c 
a represents the initial value, b represents the 

rate, c is the asymptotic value 

VDS drain source voltage 

ID  drain the current 

VSG  gate signal voltage 
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RDS−on(t) drain and source 

t0 start of the data 

tp prediction moment 

𝑅−1
𝐷𝑆−𝑜𝑛(𝑡𝑓)  

denotes the inverse function of on-state 

resistance at the moment of failure 
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