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 With the widespread application of computer numerical control (CNC) machine tools in 

high-precision manufacturing, their machining accuracy has garnered significant attention. 

Thermal errors generated during machining processes are one of the primary factors 

affecting accuracy. Although thermal error compensation technologies have been 

extensively researched and implemented in practice to improve machine accuracy, existing 

methods still face limitations in the dynamic thermal behavior analysis and adaptability in 

practical applications. This paper delves into the thermal error compensation technologies 

for CNC machine tools, exploring measurement, prediction, and compensation methods. 

Firstly, it enhances the accuracy and efficiency of measurements by optimizing the layout 

of temperature measurement points through a detailed analysis of the mechanisms of 

thermal error generation. Secondly, it introduces a prediction framework based on digital 

twin technology to accurately simulate and predict the thermal behavior of machine tools. 

Lastly, it employs an optimized back propagation neural network (BPNN) for intelligent 

modeling of thermal errors, thereby improving the prediction accuracy and response speed. 

These studies not only aid in improving the design and operation of machine tools but also 

provide theoretical and technical support for high-precision machining.  
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1. INTRODUCTION 

 

With the modern manufacturing industry evolving towards 

high precision and efficiency, CNC machine tools play an 

increasingly important role in the machining of complex parts 

[1-4]. However, thermal deformation, which is inevitable 

during the machining process and caused by temperature 

changes, significantly affects the machining accuracy and 

product quality of machine tools [5-8]. Therefore, researching 

how to accurately measure and compensate for the thermal 

errors of machine tools is crucial for improving the machining 

accuracy and operational efficiency of CNC machine tools. 

Thermal error compensation technology has become one of 

the key technologies to enhance the precision of CNC machine 

tools [9, 10]. Effective thermal error compensation can 

significantly improve the machining accuracy, reduce 

machining errors, and enhance product quality [11-15]. 

Additionally, in-depth research on thermal errors of machine 

tools not only helps optimize machine design but also 

enhances the market competitiveness of machine tools, 

aligning with the requirements for sustainable development. 

However, despite various proposed methods for measuring 

and compensating thermal errors, there are still some 

deficiencies and flaws. Current studies are mostly focused on 

compensating static thermal errors, with insufficient 

exploration of the dynamic thermal behavior demonstrated by 

machine tools during actual machining processes [16-19]. 

Moreover, existing thermal error prediction models and 

compensation algorithms have not yet fully adapted to 

complex machining conditions and environmental changes, 

and their adaptability and accuracy in real application 

scenarios still need to be improved [20, 21]. 

This thesis conducts in-depth research on the thermal error 

compensation technology of CNC machine tools, which 

includes three main parts: Firstly, analyzing the generation 

mechanism of thermal errors in CNC machine tools and 

optimizing the layout of temperature measurement points to 

improve the accuracy and efficiency of thermal error 

measurements; secondly, constructing a prediction 

architecture based on digital twins for CNC machine tools' 

thermal errors, using digital twin technology to accurately 

simulate the thermal behavior of machine tools and predict and 

compensate for thermal errors in advance; lastly, developing a 

thermal error modeling method based on an optimized BPNN, 

which uses intelligent algorithms to improve the accuracy and 

response speed of thermal error predictions. Through these 

studies, this paper aims to provide a more precise and reliable 

thermal error compensation solution to significantly enhance 

the machining accuracy of CNC machine tools. 
 

 

2. THERMAL ERROR ANALYSIS AND 

OPTIMIZATION FOR CNC MACHINES 
 

2.1 Thermal error analysis  
 

In the research on improving the precision of CNC machine 
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tools, a deep understanding and accurate analysis of the 

thermal sources causing temperature changes in the machine 

tools are crucial. Internal thermal sources, such as motor 

operations and bearing friction, as well as external thermal 

sources like factory lighting and direct sunlight, significantly 

affect the temperature of the machine tools. Internal heat 

sources convert mechanical energy into heat energy, and the 

extent of their impact depends on the dynamic conditions of 

the equipment operation, such as bearing speed and friction 

characteristics. By applying thermodynamic principles, it is 

possible to precisely quantify these heat sources' thermal 

effects and the ways heat energy is transferred. Additionally, 

the thermal response of the machine tools is also influenced by 

their material and structural thermal capacity, which 

determines the speed and extent of heat propagation. The 

instability of environmental factors introduced by external 

heat sources, such as temperature fluctuations and the 

efficiency of cooling systems, must also be analyzed through 

thermodynamic methods to optimize the layout of temperature 

measurement points, ensuring the scientific validity and 

effectiveness of thermal error compensation strategies. 

When CNC machine tools are in operation, internal heat 

sources, friction between the tool and the workpiece, and the 

use of coolant together create a complex internal temperature 

field. The uneven distribution of this temperature field causes 

significant spatial temperature variations among machine tool 

components, leading to inconsistent thermal expansion of 

materials and uneven thermal deformation. The extent of 

thermal deformation is not only influenced by the component 

temperatures but also by the material properties of the 

components, such as their thermal expansion coefficients. 

Through thermodynamic analysis, the direct impacts of these 

heat-induced deformations on the tool movement trajectory 

and the geometric accuracy of the machine tools can be 

predicted, subsequently affecting the dimensions of the 

machined parts. Thermal error refers to the discrepancy 

between the workpiece dimensions caused directly by the 

thermal deformation of the machine tools and their ideal 

dimensions. To accurately compensate for these thermal errors, 

it is essential to optimize the layout of temperature 

measurement points. By precisely monitoring the temperature 

changes at critical parts through thermodynamic analysis, 

effective compensation strategies can be developed to achieve 

the desired precision improvement targets. Figure 1 provides 

a schematic diagram of the mechanism of thermal error 

generation in CNC machine tools. 

 

 
 

Figure 1. Schematic diagram of thermal error generation mechanism in CNC machine tools 

 

2.2 Optimization of temperature measurement points 

 

In the research on thermal error compensation for CNC 

machine tools, optimizing the layout of temperature 

measurement points is a key step aimed at accurately capturing 

the critical temperature regions that cause thermal errors, 

thereby enhancing the machining accuracy of the machine 

tools. Through thermodynamic analysis of the internal heat 

conduction mechanisms of CNC machine tools, combined 

with the schematic shown in Figure 2, this paper proposes the 

following methods for optimizing temperature measurement 

points: 

The first method of optimizing temperature measurement 

points is based on the thermal mechanisms of machine tools 

and historical experience. By combining theoretical analysis 

with experimental research, this method identifies the most 

accuracy-impacting thermally sensitive areas within the CNC 

machine tools and installs temperature sensors at these critical 

locations. This strategy deeply applies thermodynamic 

principles, based on the heat transfer characteristics and 

operating conditions of the machine tools, for precise 

placement of temperature sensors, effectively reducing 

experimental costs and time. 

The second method of optimizing temperature measurement 

points utilizes a data-driven strategy. In the initial phase, 

multiple temperature sensors are randomly installed on the 

machine tool based on preliminary assumptions. Then, using 

the temperature data collected during actual operations, 

statistical analysis and thermodynamic models, such as grey 

relational analysis and fuzzy clustering methods, are applied 

to analyze the relationship between the data and the spindle 

thermal errors. This method identifies the measurement points 

most correlated with spindle thermal errors, while ensuring 

that the data from these points have low correlation, 

optimizing the layout of the sensors. This strategy allows for 

dynamic adjustment and validation of the effectiveness of the 

measurement points under actual working conditions, 

enhancing the adaptability and precision of the approach. 

 

 
 

Figure 2. Schematic diagram of heat conduction within cnc 

machine tools 
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The third method of optimizing temperature measurement 

points combines the advantages of the first two methods, 

employing a hybrid strategy. In the initial phase, potential 

thermally sensitive areas are predicted based on 

thermodynamic theory and machine tool design, and sensors 

are installed in these areas. Subsequently, by collecting actual 

temperature measurement data and using thermodynamic 

analysis tools, the effectiveness of these preset points is 

evaluated, and sensor positions are adjusted based on data 

correlation. This method combines the systematic nature of 

theoretical analysis with the empirical nature of experimental 

data, significantly improving the reliability and efficiency of 

the thermal error compensation strategy. 

The first strategy relies on theoretical analysis and extensive 

engineering experience to pre-select temperature-sensitive 

points, effectively reducing the number of temperature sensors 

and interference, thus lowering costs and simplifying the data 

processing workflow. This method is suitable for standard 

machine tool operations that already have a thorough 

understanding of thermal mechanisms and extensive historical 

data. However, this strategy is somewhat subjective, and the 

simplified theoretical models may not fully accurately reflect 

complex real-world conditions. By combining quantitative 

thermodynamic analysis, this strategy can further improve the 

accuracy of temperature measurement point selection, 

reducing errors caused by model simplification. The second 

strategy uses a data-driven approach for real-time optimization 

of temperature points, particularly suitable for the initial 

research stages of new or special material machine tools. 

Although more costly, this method can accurately identify 

temperature measurement points highly correlated with 

thermal errors based on real operational data through dynamic 

analysis of thermodynamic behavior. This strategy effectively 

combines theory and practice by continuously monitoring and 

analyzing data, ensuring the precision and efficiency of 

thermal error compensation. The third strategy combines the 

advantages of the first two, initially determining temperature 

measurement points based on thermodynamic theory and 

experience, then optimizing based on actual data. This method 

reduces subjective bias as well as costs and the number of 

sensors, suitable for high-end CNC machine tools with high 

precision requirements and significant thermal error impacts. 

This strategy uses thermodynamic analysis to predict and 

validate the effectiveness of temperature measurement points, 

achieving an organic integration of theoretical predictions and 

experimental data, greatly enhancing the reliability and 

efficiency of the thermal error compensation plan. Overall, the 

third strategy provides an ideal balance, effectively combining 

theoretical depth with the objectivity of experimental data, 

particularly suitable for application in modern manufacturing 

environments where high precision and cost-effectiveness are 

sought. 

 

2.3 Selection of temperature measurement points 

 

This paper determines the layout of temperature 

measurement points based on the principles of 

thermodynamics, ensuring the selected points can accurately 

capture the thermal state changes of machine tools under 

actual working conditions, thus effectively guiding the thermal 

error compensation strategy. The chosen temperature 

measurement points should be located in areas where heat 

sources are concentrated and thermal impacts are significant, 

while also considering the representativeness of the hot spots 

and the practicality of the measurement data to achieve precise 

control and compensation of thermal errors. 

Firstly, the selection of temperature measurement points 

should be close to the main heat sources. For example, in CNC 

machine tools, the spindle motor, as a primary heat source, 

makes areas near the spindle motor ideal temperature 

measurement points. These locations, being adjacent to the 

heat source, can directly reflect the transmission and 

distribution of heat generated during motor operation, 

providing key data for analyzing the overall temperature field. 

Thermodynamic analysis methods can further evaluate these 

temperature measurement points' data, helping to understand 

the cooling efficiency and thermal impact range of the spindle 

motor, providing a scientific basis for optimizing cooling 

system design and thermal error compensation strategies. 

Secondly, the selected temperature measurement points 

need to comprehensively reflect the temperature field of the 

spindle system. The spindle system is a core component of 

CNC machine tools, and its temperature changes are directly 

related to the machining accuracy of the machine. Therefore, 

the layout of temperature measurement points should not only 

cover the spindle motor but also extend to surrounding key 

components such as spindle bearings. Data collected from 

these temperature measurement points can be used to 

comprehensively assess the temperature distribution and 

thermal stability of the spindle system under different working 

conditions, providing necessary experimental data for 

constructing thermodynamic models and predicting thermal 

errors. 

Lastly, the temperature changes at the selected temperature 

measurement points should directly affect the size and 

direction of the spindle's thermal errors. This means that the 

temperature measurement points must not only be located in 

heat concentration areas but also in thermal error-sensitive 

areas, where temperature changes are directly related to 

machining errors of the machine tools. Through 

thermodynamic correlation analysis, it can be determined 

which temperature measurement points' data have a high 

correlation with machining errors, making the temperature 

monitoring at these points critical for devising effective 

thermal error compensation measures. 

 

 

3. CNC MACHINE TOOL THERMAL ERROR 

PREDICTION ARCHITECTURE BASED ON DIGITAL 

TWINS 

 

In this study, to accurately predict and compensate for the 

thermal errors of CNC machine tools, a thermal error 

prediction architecture based on digital twin technology is 

proposed. This architecture integrates thermodynamic analysis 

with advanced simulation techniques, aimed at enhancing the 

machining precision of CNC machine tools. The architecture 

is divided into four main levels: the physical entity layer, the 

data transmission layer, the function execution layer, and the 

application service layer. The physical entity layer includes the 

actual physical information of the CNC machine tools and 

their environment, providing the necessary baseline data for 

the model; the data transmission layer is responsible for 

transferring the real-time operating data of the machine tools 

to the virtual model, ensuring the timeliness and accuracy of 

the data; the function execution layer uses these data to build 

mathematical and visualization models through 

thermodynamic principles and mechanical engineering 
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techniques, simulating the thermal behavior and error changes 

of the machine tools, providing the core functions for 

prediction and analysis; the application service layer 

transforms the analysis results into specific technical 

applications and software packages for use by engineers and 

technicians to optimize machine performance. Figure 3 shows 

this digital twin-based CNC machine tool thermal error 

prediction architecture. 

(1) Physical entity layer  

As the bridge between actual machine tool operations and 

the virtual simulation model, the physical entity layer contains 

detailed information about the CNC system, linear feed axes, 

sensor testing equipment, and machined parts. This layer 

focuses on collecting data closely related to the machine tool's 

thermal errors. To ensure the comprehensiveness and accuracy 

of the data, this layer needs to precisely gather the motion and 

temperature information of the linear feed axes, which not 

only reflects the physical and geometric characteristics of the 

machine tools but is also crucial for thermal error analysis. By 

systematically collecting these key data, the physical entity 

layer provides real-time and accurate input to the digital twin 

model, ensuring that the thermodynamics-based analysis can 

effectively predict and compensate for the thermal errors that 

may occur in actual operations of CNC machine tools, thereby 

significantly improving machining precision and equipment 

efficiency. 

(2) Data transmission layer  

The data transmission layer plays a crucial role in the digital 

twin architecture, ensuring efficient and real-time 

communication between the physical entity space and the 

digital virtual space. At this level, the machining program is 

input into the CNC system, and a simulation of actual 

operations is performed under no-load conditions to capture 

real-time motion speed and coordinate position information on 

the X, Y, and Z axes. This mechanical information, along with 

temperature data measured by sensors at specific locations 

(such as near ball screws or linear scales), provides 

comprehensive monitoring of the machine tool's thermal state. 

Additionally, this layer is responsible for transferring 

environmental temperature forecasts and real-time measured 

thermal error values between physical and virtual spaces, 

ensuring thermal errors can be predicted and fed back 

promptly and accurately. During the thermal error 

compensation stage, the mechanical information and 

temperature data obtained are used to adjust and optimize the 

operating parameters of the CNC machine tools, compensating 

for errors caused by temperature changes in real time, and 

enhancing machine tool precision and performance using 

thermodynamic principles. 

(3) Function execution layer  

The function execution layer is the core of the digital twin 

architecture, responsible for implementing and operating 

highly accurate models, focusing on predicting and analyzing 

the thermal errors of the linear feed axes. This layer includes 

thermal error models specifically designed for the linear feed 

axes and three-dimensional digital models, based on 

thermodynamic and mechanical dynamics principles, ensuring 

the precision and practicality of thermal error predictions. The 

thermal error models are divided into linear feed axis thermal 

expansion error models and origin thermal drift error models, 

which detailedly depict and predict the thermal behavior and 

error evolution of the machine tools under different operating 

conditions. The three-dimensional digital models include 

geometric and physical models, where the geometric models 

are created in 3D modeling software using lightweight 

modeling techniques, displaying the accurate geometry and 

dynamics of the linear feed axes; the physical models are 

constructed using computer programming languages, 

precisely showing the thermal deformation state of the linear 

feed axes during actual operation through abstract modeling 

methods. 

(4) Application service layer  

The application service layer acts as a critical link between 

the user interface and actual applications within the digital 

twin-based CNC machine tool thermal error prediction 

architecture, primarily aimed at transforming complex models 

and algorithms from the function execution layer into user-

friendly applications. This layer packages advanced 

simulation results and thermal error analysis tools, intuitively 

and real-time displaying the operational state and thermal error 

data of the machine tool feed axes on a human-machine 

interaction interface. The key task is to ensure the visual 

processing of information, allowing operators to easily 

understand and operate while ensuring the software's high 

reliability and stability to withstand the harsh conditions of 

industrial sites. The design of this layer focuses on enhancing 

the user experience and operational convenience, ensuring that 

from technicians to ordinary operators, everyone can 

effectively use digital twin technology for precise thermal 

error monitoring and compensation. 

 

 
 

Figure 3. Digital twin-based CNC machine tool thermal error prediction architecture 
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4. CNC MACHINE TOOL THERMAL ERROR 

MODELING BASED ON OPTIMIZED BPNN 

 

In the field of thermal error prediction and compensation for 

CNC machine tools, traditional modeling techniques such as 

multivariate linear regression and least squares method often 

fail to provide sufficiently accurate predictions due to the 

latency and non-linearity of machine tool thermal errors. To 

address these challenges, artificial neural networks, especially 

BPNNs, are widely used due to their powerful non-linear 

mapping capabilities and adaptive learning functions. 

However, standard BPNNs have problems such as falling into 

local minima, complex parameter initialization, and slow 

convergence rates. To overcome these limitations and further 

enhance the efficiency and accuracy of the prediction models, 

this paper proposes a BPNN model optimized by a chaotic ant 

colony algorithm. This model combines the global search 

capability of chaos theory with the optimization efficiency of 

ant colony algorithms, significantly improving learning speed 

and generalization ability, effectively avoiding overfitting 

during network training, thus achieving more accurate and 

stable predictions of thermal errors in CNC machine tools. 

Figure 4 shows the flowchart of the BPNN model optimized 

by the chaotic ant colony algorithm. 

The core principle of the constructed model relies on the 

optimization capability of the ant colony algorithm and the 

randomness of chaos theory. Initially, by setting the 

parameters of the BPNN, establishing the maximum number 

of ants and the number of iterations, the optimization process 

is initiated. In the ant colony algorithm, the foraging path of 

each ant is introduced with chaotic disturbances, using the 

uncertainty and sensitivity of chaos theory to avoid falling into 

local optima during the search process. As ants complete their 

foraging and return to the nest, based on their return order and 

the shortness of their paths, the pheromone is updated, 

prioritizing the search results of the ants with the shortest paths, 

thus enhancing search efficiency. This process is repeated until 

the iteration number is reached or all ants converge on a 

common path, indicating that the optimal network parameters 

have been found. These parameters are then assigned to the 

BPNN, forming an optimized model capable of precisely 

predicting the thermal errors of CNC machine tools in actual 

operations, thereby improving the machining precision and 

efficiency of the machine tools. 

When researching the BPNN model optimized by the 

chaotic ant colony algorithm for predicting thermal errors in 

CNC machine tools, precise experimental data as a basis for 

model training and validation is essential. Initially, by using a 

laser interferometer to measure the thermal errors of the 

spindle of a CNC machine tool under experimental conditions, 

detailed thermal drift error data can be obtained. This data not 

only includes the magnitude and direction of the errors (X, Y, 

Z directions) but also detailed records of the temperatures at 

each measurement point during measurement. Such data 

collection provides a quantified experimental basis for 

subsequent model training, ensuring that the constructed 

model can accurately reflect the actual thermal behavior of the 

machine tools under working conditions. Before establishing 

the thermal error prediction model, this paper conducts cluster 

analysis and correlation analysis on the collected temperature 

data, effectively identifying key measurement points closely 

related to spindle thermal errors. In this step, the analysis aims 

to explore the relationship between the temperatures at various 

measurement points and the thermal errors of the machine tool 

spindle, to determine the most influential temperature 

variables. 

In the BPNN model optimized by the chaotic ant colony 

algorithm for modeling thermal errors of CNC machine tools, 

the specific optimization steps include the following four key 

stages:  

(1) Parameter Setting Stage: At this stage, first define the 

number of parameters v to be optimized in the neural network 

and the specific parameters x1, x2, x3, ..., xv. Randomly select 

and assign each parameter a non-zero initial value, forming the 

parameter set Txu. Assign an initial pheromone value 

πk(Txu)(s)=F to each parameter, usually set as a constant, which 

will be updated during subsequent iterations. At the same time, 

set the maximum number of ants V and the maximum number 

of iterations S, providing a basic operational framework for the 

execution of the algorithm.  

 

 
 

Figure 4. Flowchart of the BPNN model optimized by chaotic ant colony algorithm 
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(2) Calculate Transition Probability: At this stage, each ant 

needs to choose the transition probability for the next 

parameter from its current position. This probability depends 

not only on the intensity of the pheromones but also considers 

the "distance" between parameters, i.e., the similarity or fit of 

the selected parameter to the current parameter solution. Based 

on these two factors, construct a probability formula to guide 

the ants' search behavior, ensuring that ants move towards 

directions with higher pheromone concentrations and better 

parameter solutions, thus exploring more optimal neural 

network parameter configurations.  

Construct the probability formula as follows: 

 

( )( )
( )( )

( )
1

k xuj

k xu L

i xu

a

s T
O s T

s T
=

=


 

(1) 

 

(3) Update of Pheromones: To avoid the ant colony 

algorithm merely cycling through previously explored paths 

and falling into local optima, this stage introduces the Logistic 

model from chaotic systems for local pheromone updates. 

Assume the pheromone evaporation factor is represented by ϑ, 

and the rate of pheromone evaporation is represented by 1-ϑ. 

The intensity of the pheromone on a path at time s is 

represented by π0. The local pheromone update formula is as 

follows:  

 

( ) ( ) ( ) 01uk uks s   = − +  (2) 

 

By adding a chaotic disturbance, the system's randomness 

and exploratory capacity are enhanced, allowing the search 

process to escape local optima and explore new possibilities. 

Assume the chaotic disturbance is represented by Quk, and the 

mapping coefficient is represented by w. The local pheromone 

formula after chaotic disturbance is as follows:  

 

( ) ( ) ( ) 01uk uk uks s wQ   = − + +  (3) 

 

Whenever an ant completes a search, the pheromone on that 

path is updated based on the quality of the path. The optimized 

pheromone update formula can reflect the relative merits of 

each path, providing correct guidance for the ant colony's 

search. Assume that the pheromone intensity left by an ant on 

path (u, k) during this search task is represented by ∆πuk(s), and 

the pheromone update formula for each path is as follows:  

 

( ) ( ) ( ) ( )0 1uk uk uks s s s   + = − +  (4) 

 

Assume that the residual pheromone of the j-th ant after 

completing a search task on the k-th element in the set area Txu 

is represented by ∆sj
k, and the calculation formula for ∆πuk(s) 

is as follows:  

 

( ) ( )
1

V
j

uk k xu

j

s s T
=

 =   (5) 

 

Assume a constant is represented by O, and the total path 

length traveled by the j-th ant after completing a search task is 

represented by ∆sj
k. The calculation formula for ∆sj

k is as 

follows:  
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(4) Iterative Optimization and Convergence: Repeat steps 2 

and 3 until the preset number of iterations S is reached or all 

ants converge on the same optimal path, at which point the 

algorithm is considered to have found the optimal solution. 

This final convergence result represents the optimal parameter 

configuration for the BPNN, which theoretically allows the 

neural network to achieve the best performance for predicting 

thermal errors in CNC machine tools. Through this 

optimization process, the model not only improves prediction 

accuracy but also enhances the stability and reliability of the 

network in practical applications. 

 

 

5. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Figure 5 shows the iteration status of the optimized BPNN 

model constructed. The data from Figure 5 shows that the 

BPNN model optimized by the chaotic ant colony algorithm 

has demonstrated significant performance improvements in 

the application of CNC machine tool thermal error 

compensation. Specifically, the training error (Train) dropped 

rapidly from an initial 0.009 to approximately 0.00002 and 

continued to slightly decrease to 0.0000102 in subsequent 

iterations, demonstrating the model’s effectiveness and 

efficiency in parameter optimization.  

 

 
 

Figure 5. Iteration situation of the optimized BPNN model 

constructed 

 

The validation error (Validation), after an initial rapid 

decrease, stabilized at 0.000018 from the fourth epoch, 

indicating that the model has good generalization ability on 

unseen data. The test error (Test) also showed a similar trend, 

decreasing from 0.02 to 0.0000102, confirming the model’s 

stability and accuracy in practical applications. The optimal 

error (Best) remained constant throughout the training process 

at 0.000018, further proving the model’s consistency and 

reliability across different datasets. From the analysis of the 

above data, it can be concluded that the BPNN optimized by 

the chaotic ant colony algorithm is highly effective in 

predicting and compensating thermal errors in CNC machine 

tools. The model not only demonstrated rapid convergence and 

an extremely low error rate during the training process but also 

exhibited excellent generalization ability and stability during 

the validation and testing phases. 
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(a) 

 
(b) 

 

Figure 6. Predicted and actual thermal error conditions of 

CNC machine tools 

 

Figure 6 CNC machine tool thermal error prediction vs. 

actual measurements comparing the actual and predicted data 

of CNC machine tool thermal errors in Figure 6, the prediction 

model generally well depicts the growth trend of thermal 

errors at different measurement points. The data shows that the 

error at measurement point 1 for all workpieces is always 0, 

indicating that the model's predictions match reality, 

confirming that the model accurately sets the starting point for 

thermal errors. As the measurement point number increases, 

both the actual and predicted error values show a gradually 

increasing trend, but the predicted values systematically 

underestimate the error at the last measurement point (e.g., the 

actual value at measurement point 6 for workpiece 10 is 19.6, 

while the predicted value is 18.2). Nonetheless, the model 

accurately reflects the growth rate and trend of thermal errors. 

From these observations, it can be concluded that although the 

prediction model has some errors at certain measurement 

points for some workpieces, overall, the prediction method 

based on the optimized BPNN provides good accuracy and 

reliability for predicting thermal errors in CNC machine tools. 

This demonstrates that the digital twin technology and neural 

network optimization algorithms effectively simulate and 

predict the thermal behavior of machine tools in actual 

operation, which is crucial for preemptive thermal error 

compensation. 

 
 

Figure 7. Difference between predicted and actual error in 

CNC machine tools 
 

According to the thermal error data of various workpieces 

at different measurement points provided in Figure 7, we can 

observe some key trends and patterns. First, the error at 

measurement point 1 for all workpieces is 0, which meets the 

initial conditions for thermal errors, indicating that the 

measurements start from a no thermal load condition. 

Subsequent measurement points show a trend of gradual 

increase in thermal errors as the operation time progresses, 

which conforms to the natural law of heat accumulation during 

continuous operation of CNC machine tools. Notably, some 

workpieces show a decrease or negative value in thermal 

errors at the last measurement points (such as workpiece 4 and 

workpiece 8), which may indicate that a dynamic equilibrium 

of heat distribution is being reached among the machine 

components or that cooling measures are beginning to take 

effect. From this data analysis, it is evident that the thermal 

errors of CNC machine tools exhibit a predictable pattern, 

validating the scientific and practical nature of the thermal 

error prediction architecture based on digital twin technology. 

Although the specific values of thermal errors vary among 

different measurement points and workpieces, these 

differences may stem from variations in machine usage 

conditions, environmental temperature changes, or different 

operating methods. 

Table 1 displays data that clearly expresses the correlation 

coefficients between thermal errors on the X, Y, and Z axes of 

CNC machine tools at different measurement points (from 

Point 1 to Point 17). Analysis of these data reveals that most 

measurement points have high correlation coefficients, 

particularly on the Y-axis, where coefficients exceed 0.8 at 

nearly all points, reaching as high as 0.9854 at measurement 

Point 7, showing a very strong positive correlation. The 

correlation coefficients on the X and Z axes, although slightly 

lower than those on the Y-axis, also display strong positive 

correlations at most points, with the X-axis showing the 

highest correlation coefficient of 0.9365 at measurement Point 

7, and the Z-axis peaking at measurement Point 10 with a 

coefficient of 0.9154. These high correlation coefficients 

indicate a clear direct relationship between rising temperatures 

and increased thermal errors in the machine tools. From these 

results, it can be concluded that temperature is a significant 

factor affecting the thermal errors of CNC machine tools, and 

its impact varies across different axes. The high correlation 
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coefficients confirm the close link between temperature and 

thermal errors, supporting the effectiveness of using 

temperature data for predicting and compensating thermal 

errors. 

 

Table 1. CNC machine tool thermal error and temperature correlation coefficients 

 
 Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8 Point 9 

X 0.8721 0.8356 0.8546 0.9215 0.8564 0.7784 0.9365 0.8741 0.8365 

Y 0.9125 0.8894 0.9215 0.9415 0.8895 0.8326 0.9854 0.8956 0.8795 

Z 0.8236 0.7842 0.8236 0.8546 0.7894 0.7321 0.8785 0.9125 0.7895 

 Point 10 Point 11 Point 12 Point 13 Point 14 Point 15 Point 16 Point 17 - 

X 0.9215 0.8795 0.8659 0.8265 0.8854 0.8265 0.9215 0.8451 - 

Y 0.9542 0.9236 0.9254 0.8654 0.9126 0.8369 0.9451 0.8859 - 

Z 0.9154 0.8452 0.8156 0.7689 0.8369 0.8245 0.8795 0.7849 - 

 

Table 2. Comparison of fitting parameters for different prediction models of CNC machine tool thermal errors 

 

 
Thermal 

Drift 

Maximum 

Absolute 

Residual 

Minimum 

Absolute 

Residual 

Average 

Absolute 

Residual 

Coefficient of 

Determination 

Root Mean 

Square 

Error 

Fitting 

Accuracy 

Traditional BPNN 

X direction 1.0235 0.0088 0.3652 0.8354 0.5896 0.9215 

Y direction 2.5648 0.5421 1.3789 0.8326 1.3652 0.9258 

Z direction 3.8956 0.7795 2.2364 0.8245 2.3694 0.8216 

CNN Prediction 

Model 

X direction 0.5874 0.0389 0.3125 0.8541 0.5874 0.9215 

Y direction 2.7895 0.3562 1.0256 0.9126 1.2356 0.9326 

Z direction 1.4526 0.4215 0.9369 0.8896 0.9568 0.9358 

RNN Prediction 

Model 

X direction 0.7326 0.1236 0.3326 0.8451 0.5874 0.9251 

Y direction 2.3562 0.5689 1.2895 0.8759 1.4325 0.9245 

Z direction 4.5128 0.6124 1.6895 0.8452 1.9852 0.8874 

The Proposed 

Prediction Model 

X direction 0.7652 0.0112 0.3147 0.9325 0.5412 0.9213 

Y direction 0.9865 0.2865 0.6358 0.9654 0.6689 0.9452 

Z direction 1.1265 0.3125 0.7895 0.9631 0.8265 0.9369 

 

Table 2 provides a detailed comparison of the traditional 

BPNN, CNN prediction models, RNN models, and the 

optimized BPNN model proposed in this paper in predicting 

thermal errors in CNC machine tools. By analyzing thermal 

drift, maximum absolute residual, minimum absolute residual, 

average absolute residual, coefficient of determination, root 

mean square error, and fitting accuracy, it is observed that the 

proposed model particularly excels in predictions on the Y and 

Z axes. It shows notably better performance in terms of 

minimum and average absolute residuals compared to other 

models, while also having a higher coefficient of 

determination and fitting accuracy. For instance, on the Y-axis, 

the proposed model has a minimum absolute residual of 

0.2865, an average of 0.6358, a coefficient of determination of 

0.9654, a root mean square error of 0.6689, and a fitting 

accuracy of 0.9452, all of which are the best among the 

compared values. These data demonstrate that the optimized 

BPNN model proposed in this paper has significant 

advantages in predicting thermal errors in CNC machine tools. 

Its high fitting accuracy and low error values reflect the 

model's effectiveness and accuracy in practical applications, 

especially in handling complex thermal behavior predictions. 

This proves that the use of digital twin technology and smart 

algorithm optimizations is not only theoretically viable but 

also effectively enhances the capability to compensate for 

thermal errors in CNC machine tools in practice. 

 

 

6. CONCLUSION  

 

This paper has achieved several key scientific and 

technological advances through in-depth research on thermal 

error compensation technology for CNC machine tools. First, 

by detailed analysis of the mechanisms generating thermal 

errors and optimization of temperature measurement point 

layout, this study has improved the precision and efficiency of 

thermal error measurements. Second, it successfully 

constructed a prediction architecture based on digital twin 

technology, which can precisely simulate the thermal behavior 

of machine tools and effectively predict and compensate for 

thermal errors. Lastly, the study developed a thermal error 

modeling method based on an optimized BPNN, which 

significantly improved the accuracy and response speed of 

thermal error predictions. 

Experimental results validate the effectiveness of the 

technologies. Through iterative analysis, the optimized BPNN 

demonstrated excellent convergence and stability. In 

comparisons of measured and predicted thermal errors, the 

model accurately captured the trends of thermal errors, and 

despite some errors, its overall performance was outstanding. 

The correlation analysis between thermal errors and 

temperatures further confirmed the direct and significant 

impact of temperature on thermal errors. In multi-model 

comparative analysis, this paper's model outperformed 

traditional BPNN, CNN, and RNN models across several key 

performance indicators, showcasing the efficiency and 

practicality of the optimized model. 

While this study has achieved significant results, there are 

still some limitations, such as the adaptability and robustness 

of the model under extreme conditions, which require further 

verification. Additionally, real-time applications of thermal 

error compensation must consider the complexity and 

variability of machine tool operations. Future research 

directions could include further optimization of temperature 

measurement point layout, use of more complex machine 

learning algorithms to handle nonlinear high-dimensional data, 

and development of more universal thermal error prediction 

models suitable for different types of CNC machine tools and 
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various operating conditions. Through these studies, it is 

expected to further enhance the machining precision and 

production efficiency of CNC machine tools, contributing to 

high-quality development in manufacturing. 
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